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1. Introduction

Letk be afield andk = @72y R; a homogeneouk-algebra. Denote by (R, d) the
Hilbert function of R, i.e., H(R, d) = dim R, for d > 0. In this paper we study
how the Hilbert function changes when we factor out generic homogeneous forms
of an arbitrary degree.

In [11], Green gives an upper bound fotR/ kR, d) foralld > 1, whereh is a
generic linear form irkR. He applies this to obtain a new short proof of Macaulay’s
Theorem [17] and Gotzmann'’s Persistence Theorem [10], which are fundamental
theorems on Hilbert functions. The main result in [12] by Herzog and Popescu
is the Theorem in the Introduction, which generalizes Green’s Theorem to generic
formsh of arbitrary degree in the case when char= 0. In Section 2, we present a
new short proof of this theorem and generalize it to an arbitrary characteristic (see
Theorem 2.4). In particular, it follows that all applications of Herzog—Popescu’s
Theorem given in [12, Sect. 4] also hold for an arbitrary characteristic.

Strongly stable ideals play a special role in the study of Hilbert functions (see
Section 3 for the definition of a strongly stable ideal). The reason is that one can
often apply Grébner’s basis techniques to reduce the general case to the study of
Hilbert functions of strongly stable ideals (see e.g. [1-3, 7, 8, 12, 14, 18]). In the
case of strongly stable ideals, we generalize in [9] Green’s bound to polynomial
rings Q with restricted powers of the variables (see Section 3 for a definition).
This provides an upper bound for(R/ kR, d) whenR = Q/I, I is a strongly
stable ideal and is a generic linear form. In Section 3, we generalize this result to
generic homogeneous forms of an arbitrary degree (see Theorem 3.2).
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Results on Hilbert functions have applications in combinatorics for describing
f-vectors andi-vectors (cf. [5, 13, 19]), and in algebraic geometry (cf. [4]).

2. Homogeneous Generic Forms in Arbitrary Characteristic

In order to state the results precisely, we need some notationu laetd d be
positive integers. There exist unique integerg m,_1, ..., ms such thatm,; >
mg_1 > -+ >mg = and

() )

We call (1) thedth Macaulay expansionf a. Define an operatar;, on nonnegat-
ive integersa as follows. Ifa = 0, thenay,) = 0. If a > 0 and thedth Macaulay
expansion of: is given by (1), then set

-1 1—1 -1
a<d>=(mdd >+(m2il )—i—---—i—(maé > )

The right-hand side of (2) is not necessarily thie Macaulay expansion @f.

Green [11] shows that if is a generic linear form iR, then for alld > 1
we have the inequality (R/ iR, d) < H(R, d) 4. In the case when char= 0,
Herzog and Popescu [12] generalize Green’s Theorem to generic foofresrbit-
rary degree. In order to state their theorem, we need to introduce more operators
on nonnegative integers. Lét> i > 0. Definea; ;) = 0if a = 0 and

md—i—l md_l—i—l m,—i—l
a<d”>_( d—i >+<d—i—1>+m+( r—i )

if a is positive withdth Macaulay expansion given by (1), where= j if j > i
andr =i+ 1if j <i.We also define

m; — i
ayd,i)y = Ad,iy + o )

where(";") = 1if m; > i and 0 otherwise.

Herzog and Popescu prove for all > s the upper bound FR/hR,d) <
Y10 HR. d) iy

If R isisomorphic to a quotient of a polynomial risg= k[x, ..., x,] modulo
a lexicographic ideal, then on the one hand we have that the inequalities in Green’s
and Herzog—Popescu’s theorems become equalities, and on the other; Hand
generic forR by [12, Prop. 1.4]. Also, it follows from Macaulay's Theorem [5,
13, 17, 19] that for any homogeneous ideal there exists a lexicographic ideal with
the same Hilbert function. Therefore we can restate Green’s Theorem and the main
result of Herzog and Popescu in [12] as in Theorem 2.2 below.
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Remark2.1. The numerical inequalities in the original Green’s and Herzog—
Popescu’s theorems are fér> s and, in general, they are not true fordd <
s — 1. However, the inequalities in Theorem 2.2 hold foKQ/ < s — 1 because
(in the hypothesis of the theorem) we have

H(S/(I,h),d) =H(S/1,d) =H(S/L,d) =H(S/(L, x}),d).

THEOREM 2.2. Let I, L € S be homogeneous ideals with the same Hilbert
function, such that. is lexicographic. Let: be a generic homogeneous form of
degrees > 1.

(1) [11, Thm. 1]if s = 1, thenH(S/(I, h),d) < H(S/(L, x,),d) forall d > 0.
(2) [12, Thm. in Introduction]f s is arbitrary andchark = 0, then for alld > 0
we haveH(S/(1, h), d) < H(S/(L, x}), d).

We present a new short proof of Theorem 2.2(2) and generalize it to arbitrary
characteristic. We first prove the following simple lemma:

LEMMA 2.3. LetT be a graded commutative finitely generated algebra over a
field. For any homogeneous idedlC T and homogeneous forgne Ty, s > 1,
we have

H((J: ¢)/(0:g),d)
=H(T/(0:g),d) —H(T/J,d+s5)+H(T/(J,g),d+s) for d>0.
Proof. The exact sequence
0—> (J: g)/(0:g) > T/(0:g) > T/J - T/(J,g) — 0

and the additivity property of the Hilbert function imply the desired result. O

THEOREM 2.4. Letk be a field of any characteristic and L € S homogeneous
ideals with the same Hilbert function, such ttais lexicographic. Iz is a generic
homogeneous form fdrof degrees, then for alld > 0 we haveH(S/(1, h),d) <
H(S/(L, x}), d).

Proof.Let f; be a generic linear form far. Then for alld > 0 Green’s Theorem
provides the upper bound

H(S/, f1),d) < H(S/(L, x), d). 3)
By Lemma 2.3 it follows that (3) is equivalent to the inequality
H((I: f1).d) < H(L: x,), d) (4)

ford > 0. Note thalL: x,) is again a lexicographic ideal. By Macaulay's Theorem
[17] and (4) we can choose a lexicographic id&bkuch thatk < (L: x,) and
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H((I: f1),d) = H(K,d) for all d. Let f, be a generic linear form fofI: f1).
Applying Green’s Theorem to the ide@l: f1) we get the inequality

H((I: f1): f2),d) < H((K: x,), d) (5)

for d > 0. Note that for any ideaV/ C S and elementg, go € S we have
the equality((J: g1): g2) = (J: g1g2). Also, sinceK C (L: x,), it follows that
(K: x,) € ((L: x,): x,). Therefore we obtain from (5) that

H((I: fif2).d) = HW(U: f0): f2),d) <H(K: x,), d)
< HI(L: x,): x,),d) < H((L: x2), d)

for d > 0. Proceeding in this way we can find linear foriis. . ., f, such that

H((I: f1... ), d) < H((L: x;), d)

ford > 0. (Here for 2< i < s we choosef; to be a generic linear form for the
ideal(I: f1... f;—1).) Again by Lemma 2.3 this is equivalent to

H(S/U, fi... f5),d) < H(S/(L, x,),d)
for d > 0. Sinceh is generic forl, it follows that
H(S/U, h), d) <H(S/U, fi... f).d) <HS/(L, x,), d)

for d > 0, which completes the proof of Theorem 2.4. O

3. Polynomial Rings with Restricted Powers of the Variables

Let2 < a; < --- < a, < ooandsetQ = k[xy,...,x,]/(x3*, ..., x%), where
x> =0for1<i < n. We say thaiQ is apolynomial ring with restricted powers
of the variablesAs in the case of polynomial rings, it is well known that for any
homogeneous ideal i@, there exists a lexicographic ideal with the same Hilbert
function [6, 15, 16].

For a monomialn € Q, denote byp (m) the largest index of a variable appear-
ing inm. Anideal I in Q is calledstableif I is generated by monomials and for
any monomiakn € I we havex;m /x4 € I for 1 <i < ¢(m). The ideall is
calledstrongly stablef it is monomial andx;m /x; € I whenevenn is a monomial
in 1, x;lm, andi < j. In the case whet is strongly stable, Theorem 2.2(1) was
generalized in [9] to the ring®. More precisely, we have

THEOREM 3.1 ([9, Thm. 2.1(1)]).Let I, L < Q be homogeneous ideals with the
same Hilbert function, such thdtis strongly stable and. is lexicographic. Then

H(Q/(,x,),d) < H(Q/(L,x,),d) forall d>0.
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We generalize Theorem 3.1 to generic homogeneous forms of arbitrary degree:

THEOREM 3.2.Let/, L € Q be homogeneous ideals with the same Hilbert func-
tion, such that/ is strongly stable and. is lexicographic. Iz is a homogeneous
form of degree which is generic fol, then

H(Q/, h),d) <H(Q/(L,x}),d) forall d>0.

Proof. It suffices to prove the theorem when we repladey x;. The proof is
by induction ons. If s = 1, then Theorem 3.2 follows from Theorem 3.1. Now
assume that we have already proved tha@(I, x1), d) < H(Q/(L, x:™1), d)
for d > 0, which by Lemma 2.3 is equivalent to

H(( : x57Y /x5 dy SHL < x5~ /xa= T d) (6)

ford > 0. LetK C (L : x:~1/x»=**1 pe a lexicographic ideal such that
H(K,d) = H( : x5Y/x@=+1 d) for d > 0O; the existence of such an ideal
follows from (6) and the Clements—Lindstrom Theorem [6]. The idéalx~1)/

x@ =t g /xan=s+1 s strongly stable, so applying Theorem 3.1 to it we obtain

HO( = xy 7Y s x) /xin ™ d) SHWK = x) /x ™, d). ()

Now we proceed as in the proof of Theorem 2.4. Namely, skicg (L : x:71)/
xn=s+1 it follows that (K : x,)/x% =5 € ((L : x57Y) : x,)/x% 5. Also, since for
any idealJ C Q the equality(J : x%) = ((J : x3~1) : x,) holds, we obtain from
(7) that ford > 0

H((I : x;)/x;" ", d)
=H(I :x)™D s x)/x27 d) SHK = x,) /x5, d)
SHL X578 i x) /x5 d) = H((L < x5)/x™ 5, d). (8)
Lemma 2.3 and (8) imply that the desired inequality
H(Q/(I, x;),d) <H(Q/(L,x,),d)

holds ford > 0. O
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