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Linear perturbation analyses of zero-pressure-gradient boundary layers at subcritical
Reynolds numbers predict that transient disturbance amplification can take place
due to the lift-up mechanism. Upstream, streamwise-elongated vortices yield the
largest response per unit of inflow disturbance energy, which takes the form of
streamwise-elongated streaks. In this work, we compute the linear and also nonlinear
inflow disturbances that generate the largest response inside the boundary layer, for
flow over a thin flat plate with a slender leading edge. In order to compare our results
with earlier linear analyses, we constrain the inlet disturbance to be monochromatic
in time, or a single frequency. The boundary layer effectively filters high frequencies,
and only low-frequency perturbations induce a strong response downstream. The
low-frequency optimal inflow disturbance has a spanwise wavenumber that scales
with

√
Re, and it consists of streamwise and normal vorticity components: the latter

is tilted around the leading edge into the streamwise direction and, further downstream,
generates streaks. While none of the computed monochromatic disturbances alone
can lead to breakdown to turbulence, secondary instability analyses demonstrate
that the streaky base state is unstable. Nonlinear simulations where the inflow
disturbance is supplemented with additional white noise undergo secondary instability
and breakdown to turbulence.

Key words: boundary layer receptivity, boundary layer stability, nonlinear instability

1. Introduction
Bypass transition refers to the evolution of a boundary-layer flow from laminar

to turbulent in response to external forcing with perturbation intensities larger than
0.5 % of the free-stream speed. The early stages involve the interaction of the
external perturbations with the laminar flow profile – an interaction that gives rise
to amplifying velocity streaks. These structures are elongated in the downstream
direction, and are dominated by the streamwise velocity perturbation. They reach
much larger amplitudes than the free-stream forcing that led to their genesis and,
ultimately, undergo secondary instability and become hosts to localized turbulence
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spots (e.g. see review by Zaki (2013)). Owing to their role in bypass transition,
streaks have been studied extensively using experiments, simulations and linear
theory. The theory often adopts a Blasius profile for the base state, and thus ignores
the leading-edge region of the flat plate over which the boundary layer develops.
The linearity assumption also implies that disturbances remain monochromatic in
homogeneous dimensions, which are time and the span for two-dimensional boundary
layers. In the present study, we consider the effect of the leading edge on the linear
amplification of disturbances in zero-pressure-gradient boundary layers. We also
consider nonlinear disturbances, but constrain the inlet spectra to be monochromatic
in time in order to distinguish the roles of different frequencies within a general
broadband free-stream perturbation.

1.1. Streaks in transitional boundary layers
Streaks in the pre-transitional boundary layer were noted by Klebanoff (1971), and
at the time he referred to them as breathing modes because they were accompanied
by thinning and thickening of the boundary layer. They were later termed Klebanoff
streaks by Kendall (1991). They are very-low-frequency, elongated structures and are
dominated by the streamwise velocity perturbation. A visualization of the perturbation
field alone, after the mean has been removed, shows forward and backward streaky
patterns. In the full velocity field, they are regions of higher and lower momentum
than the mean flow.

The streak perturbation is a result of lift-up of mean momentum (Taylor 1939;
Landahl 1975). A small positive wall-normal velocity disturbance displaces low-
momentum fluid upwards, thus creating a negative streamwise perturbation with
much higher amplitude. Conversely, a negative wall-normal velocity disturbance
sweeps high-momentum fluid towards the wall, and creates a positive streamwise
velocity perturbation. This mechanism has been reported to be robust with respect to
modifications of the base state (Brandt et al. 2011). Monokrousos et al. (2010) found
that the linear lift-up mechanism is most efficient for steady disturbances and degrades
slowly for increasing frequencies, in the calculation of three-dimensional optimal
perturbations in a Blasius boundary layer without a leading edge. The low-frequency
appearance of streaks has also been explained in terms of a low-frequency filtering
effect by the mean shear (Hunt & Durbin 1999; Zaki & Saha 2009), and the
amplification of streaks without the action of a restoring pressure (Phillips 1969).
Numerically, Schrader et al. (2010) demonstrated this sheltering in the linear regime,
by computing the boundary-layer response to small-amplitude inlet perturbations each
with a particular wavenumber-vector orientation.

Alternative explanations have been proposed based on the linear perturbation
equations for the wall-normal velocity and vorticity, or the Orr–Sommerfeld and
Squire equations. The eigenspectrum of the former is stable and each mode alone
is decaying. However, the vertical velocity perturbation appears as a forcing term
in the evolution equation for normal vorticity. The precise form is of streamwise
vorticity perturbation acting on the mean spanwise component, thus tilting it to
generate wall-normal vorticity. The response can be viewed as a superposition of
Squire modes, all of which are decaying, but since they are non-orthogonal their
incomplete cancellation gives rise to the amplifying streaks (Hultgren & Gustavsson
1981; Zaki & Durbin 2005, 2006).

Linear optimal disturbance analyses have sought the most dangerous inflow
condition that leads to the maximum downstream transient energy amplification
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in a boundary layer (Butler & Farrell 1992; Andersson, Berggren & Henningson
1999; Schmid & Henningson 2000). The optimal inflow condition is a steady
streamwise-aligned vortex, and the response is the amplifying streak, which was
also observed in nonlinear calculations of optimal inlet conditions of a Blasius flow
using steady boundary-layer equations (Zuccher, Bottaro & Luchini 2006). The theory
also accurately predicts the spanwise size of the perturbations to be of the order of
the local boundary-layer thickness, which is consistent with experimental observations
(e.g. Matsubara & Alfredsson 2001; Nolan & Walsh 2012), and has also been
verified by results from direct numerical simulations (DNS) (e.g. Jacobs & Durbin
2001; Nagarajan, Lele & Ferziger 2007). The experiments by Westin et al. (1994)
showed that the root mean square of the streamwise velocity perturbation, associated
with the streaks, amplifies with square root of the distance from the leading edge.
This scaling agrees with the theoretical prediction by Luchini (2000). A similar
scaling was also reported by Matsubara & Alfredsson (2001), and the profiles were
self-similar when normalized by their maxima.

In the absence of a seed for secondary instability, the streaks would first amplify
and ultimately decay due to viscosity – hence the terminology ‘transient growth’. On
the other hand, if the streaks are perturbed, for example by high-frequency free-stream
vortical forcing, they become unstable. Their instability is followed by the formation
of turbulent spots, which are localized in space but spread as they advect downstream.
As spots grow in volume, they ultimately merge and form a fully turbulent boundary
layer.

1.2. Secondary instability of streaks
An empirical view of the role of streaks in bypass transition was provided from
experiments and DNS of zero-pressure-gradient boundary layers. Their secondary
instability is manifest as a streamwise undulation (e.g. Matsubara & Alfredsson
2001; Asai, Minagawa & Nishioka 2002; Mandal, Venkatakrishnan & Dey 2010),
which can be described as sinuous or varicose depending on the spanwise symmetry.
Matsubara & Alfredsson (2001) captured the progression of streaks from amplification
through instability and breakdown to turbulence in their experiments, and Mans,
de Lange & van Steenhoven (2007) provided detailed measurements of the streak
sinuous instability. Very recently, Balamurugan & Mandal (2017) studied the localized
secondary instability by simultaneous orthogonal dual-plane particle image velocimetry
(PIV) measurements. They found an oscillating shear layer in the wall-normal plane
is associated with the sinuous or varicose streak oscillation in the spanwise plane, and
they also identified a localized secondary instability wavepacket which can originate
near the boundary-layer edge.

In numerical simulations, Jacobs & Durbin (2001) noted that the low-speed
streaks lift up towards the edge of the boundary layer, where they are exposed
to high-frequency free-stream forcing. They subsequently develop a wavy motion,
and break down to turbulence. Brandt, Schlatter & Henningson (2004) made similar
observations, and characterized the streak instability to be primarily sinuous. These
observations motivated Zaki & Durbin (2005, 2006) to simulate the interaction of two
perturbations: a low-frequency disturbance that generates streaks, and a high-frequency
one that initiates the secondary instability of the lifted low-speed streaks near the
edge of the boundary layer. The simulations by Nagarajan et al. (2007) demonstrated
that the streak instability can also take place near the wall, in a fashion similar to
what Brandt & de Lange (2008) later described as a streak collision.
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Whether Tollmien–Schlichting (TS) waves play a role in streak instability was also
a matter of interest in a number of studies. Boiko et al. (1994) and later Westin et al.
(1998) showed that the presence of TS waves can promote transition to turbulence in
streaky boundary layers. This outcome is, however, far from inevitable. For example,
the spanwise shear associated with low-amplitude streaks can stabilize the TS waves
(Cossu & Brandt 2002; Fransson et al. 2005); while higher-amplitude streaks can
promote the secondary instability of the TS waves themselves, but at spanwise
wavenumbers that match the streak spacing (Liu, Zaki & Durbin 2008a,b). Recently,
Bose & Durbin (2016) demonstrated the presence of a new helical streak instability
and drew analogy to the instabilities of jets.

Linear stability analyses were performed in order to provide a theoretical
interpretation of the above observations. Andersson et al. (2001) examined the
inviscid instability of nonlinear streaks, obtained from the nonlinear flow response to
forcing by the linearly optimal disturbance. They predicted that the sinuous streak
instability is the fastest growing. The viscous analysis by Vaughan & Zaki (2011)
demonstrated that streaks have two types of instabilities, namely outer and inner
modes, which are differentiated by the height of their respective critical layers from
the wall. The former class encompasses the secondary instability of lifted low-speed
streaks which are destabilized when exposed to high-frequency vortical forcing from
the free stream. The inner modes, on the other hand, reside nearer to the wall and
induce transition in a manner that resembles the wavepackets reported by Nagarajan
et al. (2007). The base streaks in the above analyses were idealized, because they
are the nonlinear flow response to a monochromatic inflow disturbance. They were
repeated in the span, and the resulting instability was thus a Floquet, or collective,
oscillation of the entire row of streaks.

Hack & Zaki (2014) examined the secondary instability of streaks obtained from
realistic simulations of bypass transition beneath free-stream turbulence. Their
base states therefore comprised a wide variety of streak shapes, orientation and
amplitudes. They demonstrated that linear theory can accurately predict the localized
secondary instabilities of streaks, which precede breakdown to turbulence. They also
demonstrated that outer streak instabilities are most prevalent in zero-pressure-gradient
boundary layers, while the inner modes are more commonly observed in an adverse
pressure gradient. Their results are consistent with the work by Nolan & Zaki (2013),
who employed structure identification and tracking techniques to isolate the particular
streaks that initiate transition to turbulence, and demonstrated that transition onset
shifts from the edge of the boundary layer towards the wall with progressively adverse
pressure gradient. Most recently, Hack & Zaki (2016) trained a neural network to
identify the unstable streaks with the same level of accuracy as linear theory, but at
a fraction of the computational cost.

1.3. Motivation
Linear studies of streak amplification in canonical boundary layers adopted the Blasius
profile as the base state, and therefore the influence of the leading edge was not
considered. In addition, the linear assumption precludes the distortion of the mean
profile by Reynolds stresses, and the generation of harmonics of the perturbation and
saturation. It is therefore important to assess these effects on the most effective inflow
disturbance, which causes the maximum response in a spatially developing boundary
layer downstream of a leading edge.

The present work assesses how the leading-edge and nonlinear effects alter the
selectivity process whereby low-frequency free-stream perturbations are most likely
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to penetrate the boundary layer and amplify downstream. First the influence of
the leading edge will be examined when the perturbation amplitude is sufficiently
small and, as a result, nonlinearity is unimportant. The inflow disturbances will
be monochromatic in time and in the homogeneous cross-flow directions upstream
of the leading edge, which facilitates comparison to earlier linear theory for the
Blasius profile. Nonlinearity will then be introduced in the problem, although the
inflow disturbance will still be restricted to be monochromatic in time (but not in
the cross-flow wavenumbers). The secondary instability of the downstream, streaky
boundary layer will be examined using linear theory. The results will be discussed
in the context of the literature on secondary instabilities of streaks, and observations
from previous simulations and experiments.

The theoretical formulation is summarized in § 2, followed by the set-up of the
computational domain and flow parameters in § 3. The results from the linear and
nonlinear analyses are detailed in §§ 4 and 5, respectively. Secondary instability
analyses of the distorted boundary layer and simulations of breakdown to turbulence
are reported in § 6. Concluding remarks are provided in § 7.

2. Governing equations and algorithms
The flow of an incompressible fluid over a flat plate is governed by the Navier–

Stokes (NS) equations,

∂tu+ u · ∇u+∇p− Re−1
∇

2u= 0, ∇ · u= 0, (2.1a,b)

where u = (u, v, w)T and p are the non-dimensional velocity vector and pressure,
respectively. Here u, v and w are the streamwise, normal and spanwise velocity
components, respectively. The Reynolds number Re ≡ U∞R/ν is based on the
free-stream speed ≡ U∞, a reference length R and the fluid viscosity ν. Here R
is the half-thickness of the flat plate over which the boundary layer develops. The
left-hand side of the momentum equations will be denoted NS. The flow variables
in (2.1) can be decomposed as the sum of a base state, which in the present
case is a two-dimensional and steady solution of (2.1), and a perturbation field,
(u, p)= (U, P)+ (u′, p′).

The inflow perturbation is dependent on both space and time,

u′(x= xB, t)=G(t)u′B(xB), (2.2)

where B denotes the inflow boundary (see figure 1) and u′B(xB) is the spatial
dependence of the inflow perturbation. The temporal dependence is given by

G(t)= (1− e−σ t2)(1− e−σ(T−t)2)eiωt, (2.3)

where σ is a relaxation factor set to σ = 100 throughout this work and, unless
otherwise stated, the final time is set to T = 180. It was verified that further increase
of σ does not change the results presented herein. The first two terms on the right
of (2.3) ensure that u′(xB, 0) = 0 and u′(xB, T) = 0. The last term specifies the
frequency ω of the inflow perturbation. The energy of the inflow perturbation is
given by the following integral, which will be referred to as the b-norm,

‖u′B‖b =

(∫
B

u′B · u
′

B dB
)1/2

. (2.4)

Three algorithms are adopted in this work to evaluate the linear and nonlinear
optimal inflow perturbations and the secondary instability of the downstream flow.
They are presented in §§ 2.1 to 2.3.
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FIGURE 1. Computational domain and boundary conditions. (a) Full domain for nonlinear
analysis, and (b) half-domain for linear analysis.

2.1. Nonlinear optimal inflow perturbation
At every frequency, the objective of the analysis is to determine the inflow
perturbation with a prescribed amount of energy, or b-norm, that is most effective at
perturbing the boundary layer. The boundary-layer response is measured in terms of
the perturbation energy within the flow domain at the final time T ,

E(T)=
∫
Ω

Wu′T · u
′

T dΩ, (2.5)

where W is a weight function defined on the computational domain Ω , ranging from
zero to unity. This function is used to isolate the region of interest, for example the
boundary layer on the top side of a plate (see figure 1).

A Lagrangian L is defined with the objective of maximizing the perturbation
energy at the final time E(T), while satisfying the flow equations and the inflow
energy constraint,

L= E(T)−
1
T

∫ T

0

∫
Ω

[u†
· (NS)+ p†(∇ · u)] dΩ dt− λ(‖u′B‖

2
b − Eb). (2.6)

The second term is a constraint that the flow variables satisfy (2.1), and u† and p†

are the adjoint velocity and pressure; the last term constrains the b-norm of the inflow
perturbation to the prescribed value

√
Eb, and λ is the associated Lagrange multiplier.

A stationary point of the Lagrangian is sought by setting its variation with respect
to all independent variables to zero. The gradient of the final energy with respect to
the inflow perturbation is then obtained,

∇u′BE= T−1
∫ T

0
(p†n− Re−1

∇nu†)G dt, (2.7)
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where n is the unit outward norm on the boundary ∂Ω . The variables p† and u† are
solutions to the adjoint equations,

∂tu†
+ u · ∇u†

−∇u · u†
−∇p†

+ Re−1
∇

2u†
= 0, ∇ · u†

= 0, (2.8a,b)

which are integrated backwards from t= T to t= 0. The adjoint velocity is initialized
as u†

T = 2TWu′T . Since the velocity vector u is required in (2.8), it must be saved at
every step when integrating the forward equations (2.1).

By iterative integration of the forward-adjoint loop (2.1) and (2.8), the nonlinear
optimal inflow perturbation with a specified frequency and energy is obtained (Mao,
Blackburn & Sherwin 2015). This procedure can be repeated for different frequencies
and at different magnitudes of the inflow energy, and the boundary-layer response can
be contrasted. In the limit of small perturbation energy, the results should be consistent
with the outcome of linear analysis. Previous linear optimal perturbation studies have
not, however, examined the effect of the leading edge. Therefore, the linearized form
of the analysis is also summarized.

2.2. Linear optimal inflow perturbation
When the energy of the inflow perturbation and the associated downstream flow
response are sufficiently small, the perturbation dynamics can be approximated by
the linearized non-dimensional NS equations,

∂tu′ +U · ∇u′ + u′ · ∇U+∇p′ − Re−1
∇

2u′ = 0, ∇ · u′ = 0, (2.9a,b)

where the left-hand side of the linearized momentum equations will be denoted LNS.
An energy gain is defined as the ratio of the energy within the domain at the final
time to that of the inflow perturbation,

K =max
u′B

E(T)
‖u′B‖2

b
. (2.10)

The gain is thus a normalized measure of the amplification of the inflow perturbation
and, due to linearity, is independent of its energy.

The Lagrangian for the linearized system is defined as

L=K − T−1
∫ T

0

∫
Ω

[u‡
· (LNS)+ p‡(∇ · u′)] dΩ dt− λ(‖u′B‖

2
b − Eb), (2.11)

and the gradient of K with respect to the inflow perturbation is given by

∇u′BK = T−1
∫ T

0
(p‡n− Re−1

∇nu‡)G dt. (2.12)

The adjoint variables are solutions to the adjoint of the linearized NS equations,

∂tu‡
+U · ∇u‡

−∇U · u‡
−∇p‡

+ Re−1
∇

2u‡
= 0, ∇ · u‡

= 0. (2.13a,b)

These equations contain only the base velocity, U, and do not require the time-
dependent forward velocity field u(t). In addition, in the linear limit there is an
optimal step size in the optimization procedure (see Mao, Blackburn & Sherwin
2013, for details).
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2.3. Secondary instability analysis
In bypass transition, the receptivity of the boundary layer to free-stream forcing
and the amplification of Klebanoff modes are followed by secondary instability of
the streaky base profile. Linear theory can be applied to characterize the exponential
instabilities that can arise during this stage. In the present study, the base state for the
secondary instability analyses will be a cross-flow plane, extracted downstream of the
leading edge and comprising the mean flow and the response to the inlet perturbation.
Since streaks are of low frequency, the base flow is assumed to be two-dimensional
and steady, and the stability analysis in the streamwise direction is parametric. The
base state can therefore be denoted Q= (U2(y, z; x), V2(y, z; x),W2(y, z; x))T.

The secondary instability q′2 = (u′2, p′2)
T, where u′2 = (u′2, v

′

2, w′2), satisfies the
linearized equations,

∂tu′2 +Q · ∇u′2 + u′2 · ∇Q+∇p′2 − Re−1
∇

2u′2 = 0. (2.14)

A normal-mode assumption is invoked in the streamwise direction,

q′2(x, y, z)= q̂2(y, z) exp(iαx+ γ t), (2.15)

where α is the streamwise wavenumber and γ is the temporal growth rate. Substituting
this ansatz into the linearized perturbation equations (2.14) yields an eigenvalue
problem,

γ û2 = Aû2. (2.16)

The eigenspectrum of A describes the modal stability of the underlying base flow
Q. We do not construct A explicitly, and instead a spectral approximation of the
fundamental solution operator is evaluated using an adaption of the implicitly restarted
Arnoldi scheme (Barkley, Blackburn & Sherwin 2008).

3. Computational set-up
The computational domain for flow past a flat plate with a slender leading edge is

depicted in figure 1(a). The domain spans from x=−20 to x= 200 in the streamwise
direction, and from y=−40 to y= 40 in the vertical direction. For three-dimensional
computations, a spectral decomposition into spanwise wavenumbers, β, is adopted
with 64 Fourier modes over the width of the domain Lz = 12. The leading edge of
the plate is elliptic, with semi-major axis L and semi-minor axis R, and aspect ratio
AR= L/R= 20. The half-thickness of the plate R (or D/2) and the free-stream speed
U∞ are used as the reference length and velocity, respectively. This ‘full’ domain is
adopted for nonlinear computations, while the linear analyses consider the top surface
of the plate only, with the option of symmetric (∂u/∂n = 0, v = 0, ∂w/∂n = 0)
or antisymmetric (u = 0, ∂v/∂n = 0, w = 0) boundary conditions at y = 0
(figure 1b). This simplification for the linear study was adopted in order to reduce
the computational cost in favour of exploring a large range of the parameter space.

A spectral element method is used to discretize the governing equations (Karniadakis
& Sherwin 2005). The computational domain in figure 1(a) is decomposed into 2843
elements, clustered around the upper plate. The mesh for figure 1(b) is the same as
the upper part of figure 1(a), and consists of 1824 spectral elements. Each element is
further decomposed into a (P+ 1)× (P+ 1) grid using a spectral method, where P
represents a polynomial order and can be used to refine the resolution (Karniadakis
& Sherwin 2005). In this work, P= 7 was adopted in order to ensure that the results
are independent of resolution.
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FIGURE 2. (Colour online) The base flow at Re = 800. (a,b) Contours of streamwise
velocity around the upper part of the full domain and the leading edge, respectively.
(c) The pressure coefficient along the surface of the plate. (d) Comparison of the velocity
profile at x = 180 with the Blasius solution. The dashed line in (a) marks the 99 %
boundary-layer thickness, δ99.

A steady two-dimensional state is first evaluated and used as the base state for the
perturbation analyses. Since the flow is globally stable, the base flow is computed by
marching in time the full nonlinear NS equations (2.1) to a steady solution. The base
flow profile at Re=800 is illustrated in figure 2. The development of a boundary layer
over the leading edge and the following plate can be seen from figure 2(a,b). Around
the leading edge, the flow is subjected to a favourable and subsequently an adverse
pressure gradient (see figure 2c). However, on the flat-plate region downstream, the
flow develops into a canonical zero-pressure-gradient boundary layer. The comparison
of the downstream velocity profile at x = 180 with the Blasius solution is shown in
figure 2(d).

4. Linear perturbation analysis
We first examine the gain of inflow perturbations in the linear framework where

the magnitude of the disturbances is assumed to be infinitesimal. As noted above, the
half-domain shown in figure 1(b) is adopted. As the flat plate is two-dimensional, the
inflow perturbation and its response are expressed in terms of a Fourier expansion in
the spanwise direction,

u′B(y, z)=
∞∑
β=0

u′B,β(y)e
iβz and u′(x, y, z)=

∞∑
β=0

u′β(x, y)eiβz, (4.1a,b)
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FIGURE 3. Convergence of the gain K of symmetric linear inflow perturbations with
respect to P at Re= 800, β = 1.4 and various ω.
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FIGURE 4. Contour of the gain K for linear optimal inflow perturbations at Re= 800 with
(a) symmetric and (b) antisymmetric boundary conditions at y= 0. Symmetric conditions
will be used in all the following linear studies.

where β denotes the spanwise wavenumber. In the linear limit, waves with different
β are decoupled. Therefore, each linear calculation is essentially two-dimensional, but
with a prescribed spanwise wavenumber.

To demonstrate the convergence of the numerical method when solving the
perturbation equations, figure 3 shows the maximum linear gain K for symmetric
inflow perturbations as a function of the inflow frequency ω, when different
polynomial orders are used, P = {6, 7, 8}. These results were obtained at Re = 800,
which is the largest Reynolds number considered in this work, and at spanwise
wavenumber β = 1.4. The results show that a value of P = 7 is sufficient to ensure
convergence.

The gains due to symmetric and antisymmetric inflow perturbations are presented
in figure 4 over a range of frequencies and spanwise wavenumbers. In both cases, the
most energetic flow response is associated with steady inflow perturbations, ω= 0, and
at β = 1.4. At higher frequencies, the maximum gain is obtained at higher spanwise
wavenumbers. Over the range of parameters considered, the symmetric perturbations
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FIGURE 5. Contour of the gain K of linear optimal inflow perturbations at (a) Re= 300
and (b) Re= 500.
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FIGURE 6. Variation of the gain with ω at optimal combinations of Re and β.

result in larger energy growth than antisymmetric ones, and hence will be the focus
of the remainder of the linear analyses.

The effect of Reynolds number on the gain is shown in figures 5(a,b), which should
also be compared to figure 4(b). As Re is increased from 300 to 500 and finally 800,
the flow response to the inlet perturbation becomes more energetic. The maximum
response remains at ω= 0, whereas the spanwise wavenumber increases from β= 0.84
to 1.14 and 1.4. Note that the present spanwise wavenumber is non-dimensionalized
by the half-thickness of the flat plate. If, alternatively, the normalization β ′ ≡ β/

√
Re

(Luchini 2000; Andersson et al. 2001) is adopted, the optimal wavenumbers become
β = {4.85, 5.10, 4.95} × 10−2. Therefore, appropriately scaled, the optimal spanwise
wavenumber becomes insensitive to the Reynolds number for the range of parameters
examined herein (see the upper axis in figures 4 and 5).

For each Reynolds number considered above, the gain is plotted against the
frequency at the optimal spanwise wavenumber in figure 6. As ω increases, the gain
reduces monotonically until ω ≈ 0.14 where K becomes nearly constant. Therefore
ω ≈ 0.14 can be considered as a cutoff frequency. The higher frequencies are thus
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FIGURE 7. Velocity profile of optimal inflow perturbations at β = 1.4 and Re = 800:
perturbation components for (a) ω = 0, (b) ω = 0.12 and (c) ω = 0.24; with - - - - for u,
—— for v and – · – · – for w.
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FIGURE 8. (Colour online) Side views of isosurfaces of streamwise perturbation velocity
at Re=800, T=180 and (a) ω=0, (b) ω=0.12 and (c) ω=0.24. The same contour levels
are adopted in panels (a–c). The dashed line marks the boundary-layer 99 % thickness.

relatively ineffective at perturbing the boundary layer. The associated perturbations
do not penetrate the boundary layer, and are simply advected in the free stream.

The velocity profiles of the linearly optimal inflow perturbations are presented
in figure 7. At frequencies below the cutoff value (figure 7a,b), the perturbation is
concentrated around y = 0, and thus impinges onto the leading edge and interacts
with the boundary layer. At frequencies higher than the cutoff value (figure 7c), the
perturbation is approximately uniform in the cross-flow plane at the inlet.

Applying the linear optimal perturbations at the inflow and integrating the linearized
equations (2.9), we compute the linear flow response. The Reynolds number is
Re= 800, the spanwise wavenumber is β = 1.4, and three frequencies are considered,
ω= 0, ω= 0.12 and ω= 0.24. A side view of the boundary-layer response at T = 180
is shown in figure 8. As noted above, the perturbations with frequencies below the
cutoff value ω ≈ 0.14 can penetrate the boundary layer (see figure 8a,b), while the
high-frequency perturbations only reside in the free stream (figure 8c).

The cutoff frequency in figure 6 is a manifestation of shear sheltering. Free-stream
disturbances with low streamwise wavenumbers and optimal profiles in the cross-flow
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FIGURE 9. (Colour online) Top views of isosurfaces of streamwise perturbation velocity
0.02 (red) and −0.02 (blue) at Re = 800, β = 1.4 and (a) ω = 0, (b) ω = 0.08 and
(c) ω= 0.12. The grey colour represents the flat plate. The inflow perturbation is optimal
and has unit energy.

plane can penetrate into the boundary layer and generate a strong distortion due
to the absence of a restoring pressure, while those with high wavenumbers are
filtered by the shear (Hunt & Durbin 1999; Zaki & Saha 2009). The theory of shear
sheltering captures the dependence of the penetration depth of external disturbances
into the boundary layer, dp, measured from the edge of the boundary layer towards
the wall. This depth is proportional to the fluid viscosity (ν) and the square of the
wall-normal wavenumber (k2

y), and is inversely proportional to the shear rate (γ̇ ) and
streamwise wavenumber (kx), such that dp ∝ (νk2

y/γ̇ kx). The denominator captures
that strong shear filters the free-stream perturbations, unless they are very long in
the streamwise direction. The present results are consistent with this theory, with the
shielded disturbance approximately uniform in the vertical direction in the free stream,
corresponding to a zero vertical wavenumber (see figure 8c). It is worth noting that
in the wall-normal direction, the theory predicts an opposite trend with large scales
expelled and small scales penetrating the shear (Zaki & Saha 2009).

Since disturbances with frequencies above the cutoff value in figure 6 do not induce
a boundary-layer response, they are not considered further. Instead, we place our
attention on the downstream linear evolution of inflow perturbations with frequencies
below the cutoff value. Figure 9 compares the boundary-layer response at three
frequencies, ω= {0, 0.08, 0.12} at the time when the response is most energetic. Only
the streamwise perturbation velocity, which is the dominant component, is shown.
At ω = 0, the inflow perturbation induces elongated, high-amplitude velocity streaks
inside the boundary layer, which have been studied extensively in connection with
bypass transition to turbulence. At higher values of ω, the streaks become shorter and
weaker. This observation reinforces the importance of the low-frequency components
of free-stream turbulence in the early stages of transition, even when the leading edge
is taken into consideration.

The target (or final) time T is then varied to examine its influence on the
optimal development, as shown in figure 10. At higher T , the flow response is
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FIGURE 10. (Colour online) Top views of isosurfaces of streamwise perturbation velocity
0.02 (red) and −0.02 (blue) at Re = 800, β = 1.4, and (a) T = 40, (b) T = 80 and
(c) T = 120. The grey colour represents the flat plate. The inflow perturbation is optimal
and has unit energy.

more pronounced and expands towards the outflow. Over the range of parameters
considered, the boundary-layer response remains qualitatively unchanged and has the
form of elongated streamwise streaks.

5. Nonlinear perturbation analysis
When the energy of the inflow disturbance is sufficiently large, the linear

assumption does not hold and the nonlinear algorithms are adopted to study the
perturbation dynamics. The inflow perturbation is restricted to be monochromatic in
time in order to isolate the contribution of each frequency. As such, the temporal
decomposition of the inflow perturbation in (2.3) is still adopted, and the generation
of higher temporal harmonics by nonlinearity takes place downstream. Since all
spanwise modes are coupled in the nonlinear case, the full three-dimensional problem
is solved and the shape of the inlet disturbance includes a superposition of waves.
In addition, the symmetric and antisymmetric perturbations are coupled and, as a
result, both the upper and lower surfaces of the plate are simulated although the grid
resolution is concentrated on the upper half. In order to isolate the top surface, W
is set to unity for y > 0 and reduces exponentially to zero in the lower half of the
domain. When the energy of the inflow disturbance is restricted to a small magnitude,
it is anticipated that the outcome of the nonlinear computations converges to the
linear results from § 4. In this limit, the inflow perturbation should feature a single
spanwise wavenumber.

The Reynolds number is Re = 800 and the focus is directed to the case with
ω = 0, at which the inflow perturbation is most amplified in the linear limit. Four
energy levels, ‖u′B‖b = {0.5, 1, 2, 3} × 10−2, are considered. The resulting nonlinear
optimal inflow perturbations are reported in figure 11. The contour levels have been
scaled by the energy of the inflow disturbance in order to facilitate comparison. The
inflow perturbation consists of streamwise (x direction) and vertical (y direction)
vorticity components and, for all the cases studied, the former has a larger magnitude.
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FIGURE 11. (Colour online) Nonlinear optimal inflow perturbations at Re = 800, T =
180, ω = 0 and ‖u′B‖b = 0.5 × 10−2, 10−2, 2 × 10−2 and 3 × 10−2 from top to bottom.
The left and right columns are the streamwise (x direction) and vertical (y direction)
vorticity, respectively. Solid and dashed lines represent positive and negative contour levels,
respectively.

At higher energy of the inflow perturbation, both vorticity components become
increasingly more localized and their peaks shift away from y = 0 towards y ≈ 1,
which is near the edge of the downstream boundary layer.

The responses to the inflow disturbances are shown in figure 12. Low- and high-
speed velocity streaks amplify inside the boundary layer, at similar heights within the
boundary layer when the energy of the inflow perturbation is small. When the inflow
disturbance is more energetic, the low-speed streaks are lifted away from the surface
while the high-speed ones are shifted towards the wall. In an earlier study, this effect
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FIGURE 12. (Colour online) Side views of isosurfaces of streamwise perturbation velocity
0.1 (red) and −0.1 (blue) at Re = 800, T = 180, ω = 0 and ‖u′B‖b = 0.5 × 10−2, 10−2,
2× 10−2 and 3× 10−2 from (a) to (d). The dashed line marks the boundary-layer 99 %
thickness. Panels (e) and ( f ) are top and three-dimensional views of (d), respectively.

was explained in terms of a nonlinear lift-up mechanism, and it was shown to render
the flow unstable to high-frequency perturbations (Mao et al. 2017).

In order to illustrate how the inflow streamwise and vertical vorticity induce the
streaky boundary-layer response, we examine the leading-edge region. Since the mean
flow turns around the leading edge, we consider the components of the perturbation
field that are tangent and normal to the base state, ω′t ≡ω′ · êt and ω′n≡ω′ · ên, where
êt ≡ (U, V)/|U| and ên = (V,−U)/|U|. The associated spanwise-averaged squared

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

91
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2019.91


Low-frequency selectivity in boundary layer 255

-20 -10 0 10 20

-20 -10 0 10 20

-20 -10 0 10 20

-20 -10 0
x

y

y

y

y

(a) (b)

(c) (d)

(e) (f)

(g) (h)

x
10 20 -20 -10 0 10 20

-20 -10 0 10 20

-20 -10 0 10 20

-20 -10 0 10 20

2

0

2

0

2

0

2

0

2

0

2

0

2

0

2

0

0.8 2.1 5.7 15 40
(÷ 10-3)

(÷ 10-3)

0.8 2.1 5.7 15 40
(÷ 10-3)

1.6 4.3 11 30 80 (÷ 10-3)1.6 4.3 11 30 80

(÷ 10-3)3.2 8.5 23 60 160 (÷ 10-3)3.2 8.5 23 60 160

(÷ 10-3)4.8 13 34 90 240 (÷ 10-3)4.8 13 34 90 240

FIGURE 13. (Colour online) Contours of (a,c,e,g) Eω′t and (b,d, f,h) Eω′n at T = 160 in
response to the optimal inflow at Re = 800, ω = 0 and ‖u′B‖b = 0.5 × 10−2, 10−2, 2 ×
10−2 and 3× 10−2 from top to bottom. The black dots highlight the local maximum of
the streamwise vorticity on the left and the dashed lines mark the boundary-layer 99 %
thickness. Contour levels are in logarithmic scale.

vorticities are

Eω′t =
1
Lz

∫ Lz

0
ω′2t dz and Eω′n =

1
Lz

∫ Lz

0
ω′2n dz. (5.1a,b)

Contours of Eω′t and Eω′n starting at the inflow plane through the leading-edge region
are shown in figure 13. Here T = 160 is used, rather than the target time T = 180,
so the inflow disturbance is also visible (cf. (2.3)). Similarly as in figure 11, the
contour levels are normalized by the energy of the inflow disturbance to facilitate
their comparison. Local maxima of Eω′t near the edge of the boundary layer are
marked by black dots. When the free-stream perturbation is advected around the
leading edge, it is stretched and tilted by the curved mean-flow streamlines (Leib,
Wundrow & Goldstein 1999). This effect can be expected to be more prominent for
a blunt geometry as noted by Schrader et al. (2010). Downstream, over the flat-plate
region, the streamwise vorticity itself is decaying; However, it also tilts the mean
shear to generate an energetic streak response within the boundary layer, in particular
near the upper part, via the lift-up mechanism.
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FIGURE 14. Variation of streak amplitude A with streamwise location x at Re=800, ω=0,
T = 180 and ‖u′B‖b = 2× 10−2.

The evolution of the inflow perturbation is thus initially dominated by the leading-
edge effect, which tilts the perturbation vorticity into the streamwise component.
Subsequently, immediately downstream of the leading edge, linear lift-up amplification
of boundary-layer streaks takes place in a manner qualitatively similar to the results
in figure 10. The linear stage is followed by nonlinear effects, where low-speed
streaks breach towards the free stream and high-speed ones are displaced towards the
wall (figure 12).

6. Secondary instability of streaks and transition to turbulence
6.1. Secondary instability analysis

At sufficiently large energy of the inflow perturbation, the boundary-layer response
becomes nonlinear: both the negative and positive perturbations reach high amplitudes,
with the former being displaced towards the free stream and the latter towards
the wall (see figure 12). This configuration is prone to secondary instabilities,
in particular when it is exposed to high-frequency forcing, for example due to
free-stream turbulence. The secondary instabilities of the streaky boundary layer are
herein examined using biglobal stability analysis. The base flow is a cross-flow plane
extracted from the full nonlinear NS computations of the boundary-layer response
to the optimal inflow forcing. The Reynolds number is Re = 800, and the inflow
parameters are ω = 0 and ‖u′B‖b = 2 × 10−2. At T = 180, the cross-flow planes are
extracted at various streamwise locations and their temporal stability eigenspectra are
evaluated.

In previous studies, the stability of streaky boundary layers was correlated with the
streak amplitude (e.g. Cossu & Brandt 2002; Biancofiore, Brandt & Zaki 2017),

A= 1
2 [max(U −Ub)−min(U −Ub)], (6.1)

where Ub is the streamwise velocity of the base flow. The streak amplitude in the
present study first increases with x then decreases, as shown in figure 14. The
maximum amplitude is 36 %, and located at x = 92. It is important to note that, in
addition to the amplitude of the streaks being destabilizing, their shape, or functional
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FIGURE 15. (Colour online) Streak perturbations at various streamwise locations: (a) x=
92, (b) x= 106 and (c) x= 120. The dashed lines mark the boundary-layer 99 % thickness.
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FIGURE 16. (Colour online) The secondary instability growth rate γ in the α–x plane for
Re= 800, ω= 0, T = 180 and ‖u′B‖b = 2× 10−2.

form, is also important (Andersson et al. 2001). In addition, Vaughan & Zaki (2011)
later demonstrated that two general classes of streak instabilities are possible, and
termed them ‘outer’ and ‘inner’ modes depending on the height of their critical layers
and their respective phase speeds.

The secondary instability of the streaky base state was evaluated at various
downstream locations in the region from x = 92 to x = 106; the perturbation streaks
at these locations are plotted in figure 15. In this region the boundary-layer thickness
is approximately 1.35R. At every position, the streamwise wavenumber α was varied,
and the growth rates of the associated most unstable modes are plotted in figure 16.
The onset of instability, or positive growth rate of the temporal modes, appears
at α = 0.35 and x ≈ 101, where the amplitude of the streaks reaches 35 % of the
free-stream speed. At larger x, the base flow becomes more unstable even though the
streak amplitude, as defined above in (6.1) and illustrated in figure 15, is slightly
reduced. This further destabilization is therefore associated with the change in the
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FIGURE 17. (Colour online) Secondary instability modes at x = 106 and α = 1. The
black lines in (a) are contour lines of streamwise base velocity from 0.1 to 1 and in (b)
are contour lines of streaks from −0.25 to 0.35. The colour contours denote streamwise
perturbation velocity.

streak shape, which becomes non-periodic in the spanwise direction due to the
nonlinear lift-up (Mao et al. 2017). The fastest-amplifying instability has a streamwise
wavenumber α ≈ 1. At higher inflow perturbation levels, e.g. ‖u′B‖b = 3 × 10−2 (not
shown here), the region for secondary instability moves upstream and the most
unstable streamwise wavenumber reduces.

A representative eigenmode of the secondary instability at the optimal streamwise
wavenumber is illustrated in figure 17, along with line contours of the streaky
base state. The mode is symmetric with respect to the high-speed streaks. It is
concentrated in the near-wall region, and can be regarded as an inner secondary
instability according to the classification by Vaughan & Zaki (2011). The streaky base
state may also have an outer instability, although with lower growth rate than the
most unstable mode in figure 17. Which secondary instability emerges in simulations
of transition depends on the growth rate and also the initial seed, or receptivity.

6.2. Transition to turbulence
As discussed in the sections on the nonlinear perturbation and secondary instability,
a low-frequency inflow disturbance is required to generate the streaks, which will
become unstable to high-frequency perturbations. In this section, we examine the
breakup of streaks and the transition to turbulence, by performing DNS of the steady
inflow optimal perturbation supplemented with high-frequency body forcing to activate
the secondary instability. The forcing is added upstream of the secondary instability
region, from x = 88 to x = 92, and is concentrated in the boundary layer. The flow
development over the flat plate is shown in figure 18. The streamwise velocity at z= 2
is plotted in figure 18(a) where, owing to the choice of contour levels, the inflow
disturbance is not visible. A three-dimensional view of the streamwise perturbation is
shown in figure 18(b), where the streaks, their secondary instability and breakdown
to turbulence are clearly captured.

The entire transition process, starting from the free-stream perturbation, can be
described in the following manner. Upstream of a slender leading edge, the most
effective forms of linear and nonlinear perturbations are steady. This result is due
to two effects where low frequencies are favoured: (i) low-frequency perturbations
are the most effective at penetrating the shear, even in nonlinear computations with
a leading edge; and (ii) the nonlinear amplification of streaks is most pronounced
for streamwise structures. Had either mechanism favoured oblique modes, perhaps
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FIGURE 18. (Colour online) Visualization from DNS of transition at Re = 800.
(a) Contours of streamwise velocity at z= 2. The dashed line marks the boundary-layer
99 % thickness. (b) Isosurfaces of streamwise perturbation velocity with magnitude 0.1
(red) and −0.1 (blue). The inflow perturbation is optimal at T = 180, ω= 0 and ‖u′B‖b =

2× 10−2 and an external forcing is added to activate secondary instabilities.

the nonlinear optimal inflow disturbance would have been unsteady. The results show
that the inflow distortion comprises streamwise velocity and vorticity. It interacts
with the boundary layer starting from the leading edge of the plate, and the response
are streaks which are prone to secondary instability. In the presence of additional
free-stream forcing, the streaky base flow undergoes secondary instability and breaks
down to turbulence.

7. Conclusion
The response of flow over a flat plate with a slender leading edge to free-stream

perturbations was studied. The focus was placed on identifying the free-stream
perturbations that are most effective at generating an energetic response inside the
downstream boundary layer. Using an adjoint, both the linear and nonlinear scenarios
were examined, and the inlet perturbations were restricted to being monochromatic
in time. In the linear limit, the disturbance field remains monochromatic in
time downstream, and all the spanwise wavenumbers remain decoupled. As the
energy of the inflow disturbance is increased, the problem becomes nonlinear. The
monochromatic restriction on the inflow was retained, so we can isolate the effect of
every frequency at perturbing the boundary layer. However, higher harmonics develop
downstream due to the nonlinear advection term in the Navier–Stokes equations. The
spanwise spectral content of the disturbance in the nonlinear case is broadband, even
at the inlet.

In the linear limit, the most effective inflow perturbations are steady and symmetric
relative to the plate. Low-frequency inflow perturbations with ω < 0.14 can also
induce a response within the boundary layer, while disturbances with ω > 0.14 are
filtered by the mean shear. Appropriately scaled, the optimal inflow perturbation
has a normalized spanwise wavenumber β ′ ≡ β/

√
Re ' 0.05 that is insensitive to

the Reynolds number over the range of parameters examined. The leading edge
strengthens the streamwise vorticity, which subsequently leads to the amplification of
streaks via the lift-up mechanism.

When the streak magnitude becomes appreciable, the flow becomes prone to
secondary instabilities with streamwise wavenumbers ∼O(1). The most unstable
mode is symmetric relative to the high-speed streak and resides near the wall.
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By introducing body forcing in the simulation domain, within the unstable region,
the secondary instability of the streaky flow can be activated and bypass transition is
observed downstream.

In the present study, the inflow was restricted to be monochromatic in temporal-
frequency space. This assumption enabled the study of the most effective components
of the free-stream spectrum to interact with the boundary layer, nonlinearly, and to
generate an energetic response. Future work should relax this assumption, and allow
the inflow perturbation to include multiple frequency components. In that context, the
objective function can be to promote transition to turbulence. The inflow disturbance
would then include the essential elements to induce an energetic, and also unstable,
boundary-layer distortion that undergoes laminar-to-turbulent transition at the upstream
most streamwise location.
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