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Motivic Haar Measure
on Reductive Groups

Julia Gordon

Abstract. We define a motivic analogue of the Haar measure for groups of the form G(k((t))), where k

is an algebraically closed field of characteristic zero, and G is a reductive algebraic group defined over k.

A classical Haar measure on such groups does not exist since they are not locally compact. We use the

theory of motivic integration introduced by M. Kontsevich to define an additive function on a certain

natural Boolean algebra of subsets of G(k((t))). This function takes values in the so-called dimensional

completion of the Grothendieck ring of the category of varieties over the base field. It is invariant

under translations by all elements of G(k((t))), and therefore we call it a motivic analogue of Haar

measure. We give an explicit construction of the motivic Haar measure, and then prove that the result

is independent of all the choices that are made in the process.

Introduction

In this paper we define a version of Haar measure on groups that arise when taking
the set of points of an algebraic group over a “large” local field. For an algebraic
group G defined over an algebraically closed field k of characteristic zero, we consider

the set of its points G(F) over the field F = k((t)) of Laurent series with coefficients
in k. Since F is a local field, it can be expected that G(F) would be in many ways anal-
ogous to a p-adic group. However, there is no hope for a Haar measure on G(F) in
the usual sense, since, unlike the p-adic situation, the set G(F) is not locally compact.

By means of the theory of motivic integration introduced by M. Kontsevich [11], we
define a “variety-valued” invariant measure on G(F) in the case when G is reductive,
and give an explicit formula for such a measure.

The main purpose of this paper, however, is not just to show the existence of mo-

tivic Haar measure, but to provide an example of using what we know about p-adic
integrals to make conclusions about motivic integrals. Namely, the main technical
result is Proposition 22, and its proof essentially consists in extracting an equality
of motivic integrals from a well-known equality of the analogous p-adic integrals.

Statements of this kind can be hard to prove due to the algebraic geometric nature of
motivic integrals. On the other hand, recent work by J. Denef and F. Loeser, and by
J. Sebag provides some evidence that “motivic” statements are, in a sense, the most
general natural form of p-adic statements. Hence, it could turn out to be useful to

have the tools to go both ways: from motivic statements to p-adic ones, and back.
Presently there are a few versions of motivic integration. None of them gives the

motivic Haar measure on the groups that we are considering directly, for reasons dis-

cussed in the next section. Motivic integration on rigid analytic spaces [13] seems
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to be best suited for this purpose. However, at the time when our construction was
carried out, it was not available, and so here we construct the Haar measure “from

scratch”: first on the affine space, and then on an affine chart (a big cell) in the group.
The advantage of the present approach (if any) is in the explicitness and simplicity
of the construction, and, again, in the technique developed for the proof of Proposi-
tion 22.

1 Preliminaries

1.1 Motivation

In the original theory of motivic integration, the motivic measures live on arc spaces

of (smooth) varieties and take values in a certain completion of the Grothendieck
ring of the category of all algebraic varieties over k. The arc spaces are defined as
follows: For an algebraic variety X over k, the space of formal arcs on X is denoted by
L(X). It is the inverse limit lim

←−
Ln(X) in the category of k-schemes of the schemes

Ln(X) representing the functors defined on the category of k-algebras by

R 7→ Mork-schemes(Spec R[t]/tn+1R[t], X).

The set of k-rational points of L(X) can be identified with the set of points of X

over k[[t]], that is,
Mork-schemes(Spec k[[t]], X).

There are canonical morphisms πn : L(X)→ Ln(X). On the set of points, they corre-
spond to truncation of arcs. In particular, when n = 0, we get the natural projection
πX : L(X) → X. The canonical motivic measure is an additive function (whose val-

ues are, roughly speaking, equivalence classes of k-varieties) on a certain algebra of
subsets of the space L(X) (see [5]). In the case when X is a smooth variety over k,
this function assigns to the sets of the form π−1

X (πX(A)) with A a subvariety of X, the
equivalence class of A. Loosely speaking, the canonical motivic measure projects un-

der πX to the tautological measure on X (see §§1.3, 1.4). Such a normalization makes
the motivic measure on L(X) unique, [5] (hence the term canonical).

For an algebraic group G, uniqueness implies that the canonical motivic measure
on L(G) is automatically invariant under translations by the elements of L(G). We

observe that by definition of an arc space, the set of k-points of L(G) is in bijection
with the set of k[[t]]-points of G, that is, with the set of integral points in G(F) (In the
p-adic analogy, L(G) corresponds to a maximal compact subgroup inside a p-adic
group). Our task is to extend the motivic measure beyond the integral points of G(F)

in such a way that it would be invariant under the translations by all elements of
G(F).

For our construction, the arc spaces will not quite suffice because G(F) is not
in bijection with the set of k-points of any arc space. We will need a slightly more

general setup, described by E. Looijenga [14], and also the language of ind-schemes,
needed to handle objets that are “bigger” than arc spaces. We review all the necessary
definitions and theorems in the next few subsections. In Section 2, we first extend the
motivic measure on L(A

n) to the ind-scheme over k whose set of k-points coincides
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with the F-points of A
n. We then transport the motivic measure from the affine space

to a full measure subset of G(F) (namely, the big cell), using the translation-invariant

differential form on G.

Shortly before the work on this paper was completed, F. Loeser and J. Sebag de-
veloped a variant of motivic integration on formal schemes [13]. Thanks to the use
of Néron models built into their construction, the main difficulty that arises in our

approach, namely, the singularity in the closed fiber of the auxilliary schemes that we
have to introduce, is avoided. In this way, the theory of motivic integration described
in [13] seems better suited for the purpose of defining motivic Haar measure (see
also Remark 23 below). However, it has not yet been developed in quite the general-

ity required to deduce the existence of motivic Haar measure on G(F) automatically:
one needs to be able to pass from the theory that works with the geometric objects to
the theory that works with their k-points.

The rest of Section 1 is devoted to a fairly detailed description of all the ingredients
we use, namely, the spaces of sections, motivic measure, and ind-schemes.

1.2 The Space of Sections

Almost everything in the following three subsections is quoted from [14].

We reserve the symbol D for Spec k[[t]]. The term D-variety will mean a separated
reduced scheme that is flat and of finite type over D and whose closed fiber is reduced.

For a D-variety, X/D, with closed fiber X, we consider the set Xn of sections of its
structure morphism up to order n. By sections up to order n we mean morphisms
over D from Spec k[t]/(tn+1) to X which make the following diagram commute

X

��

Spec k[t]/(tn+1)

99
s

s
s

s
s

s
s

s
s

s
s

// D,

where the vertical arrow is the structure morphism of X.

The set Xn is the set of closed points of a k-variety (which we will also denote by

the same symbol Xn), [7, §4.2]. Naturally, X0 = X. The set X∞ of sections of the
structure morphism X → D is the projective limit of Xn’s, and therefore it is a set of
closed points of a provariety over k (by definition, a provariety is a projective limit
of a system of varieties; it is a scheme over k, which in our case is not of finite type).

If X/D is of the form X × D → D, with X a k-variety, then we get the arc spaces
described in the introduction: Xn = Ln(X) and X∞ = L(X).

As in the case of arc spaces, we have projection morphisms πm
n : Xm → Xn and

πn : X → Xn for all m ≥ n. (When n = 0, we shall write πX and πm
X instead of π0,

πm
0 .) A fiber of πn+1

n lies in an affine space over the Zariski tangent space of the base
point.

Recall that a constructible subset of a variety V is a finite disjoint union of (Zariski)
locally closed subvarieties of V .
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Definition 1 A set A ⊂ X∞ is called weakly stable at level n, if it is a union of fibers
of πn : X→ Xn, and πn(A) is constructible. A subset A ⊂ X∞ is called stable at level

n, if it is weakly stable at level n and for all m ≥ n, πm+1(A) → πm(A) is a piecewise
trivial fibration over πm(A) with fiber A

d
k , where d = dim X0. (For a definition of

piecewise trivial fibration, see [5, p. 6].) A set is called (weakly) stable if it is (weakly)
stable at some level n.

Remark 2 It immediately follows from the definition that a set which is stable at
level n is also stable at level m for all m, m > n. If X/D is smooth and of pure
dimension, a weakly stable set is automatically stable (for smooth X, a fiber of the
projection from Xn+1 to Xn is an affine space of dimension d = dim X over the

tangent space of the base point, [14, p. 4]). It is also worth mentioning that it is not
obvious and not always true that L(X) is stable at level 0. The fact that it is stable at
some level is a theorem (see e.g., [14, Proposition 3.1]). When X is smooth, it follows
from the proof of [14, Proposition 3.1] that L(X) is actually stable at level 0.

1.3 The Ring M̂

Now let us describe the ring M̂ where the measure will take values. Let Vk denote

the category of all varieties over k, and let K0(Vk) be the Grothendieck ring of this
category. Let L = [A

1] denote the isomorphism class of the affine line, an element
in K0(Vk). The notation comes from its motivic interpretation: it corresponds to

the so-called Lefschetz motive under the map from K0(Vk) to the ring of Chow mo-
tives, [15]. Consider the localization of K0(Vk) at L: M = K0(Vk)[L

−1]. In order
to get a measure on an interesting algebra of subsets of X∞, we need to complete
the ring M. Given m ∈ Z, let FmM be the subgroup of M generated by the ele-

ments of the form [Z]L
−r with dim Z ≤ −m + r. This is a filtration of M as a ring:

FmM.FnM ⊂ Fm+nM. This filtration is called the dimensional filtration. Denote by
M̂ the separated completion of M with respect to this filtration, i.e.,

M̂ = lim
←−

M/FmM.

This is called the dimensional completion. Our motivic measure will be M̂-valued.

Remark 3 Recent work by F. Loeser and R. Cluckers [12] suggests that in fact the
completion is unnecessary. Since motivic integration described in [12] specializes
to the motivic integration we are using here, the passage from M̂ to M should be
straightforward, once the results of [12] appear in their final form.

1.4 A Measure on the Space of Sections

Let A be a subset of X∞ which is stable at level n. Observe that by definition of

stability, the number (dim πm(A) − md) is independent of the choice of m ≥ n

(here d is the dimension of the closed fiber X of X). We call this number the virtual

dimension dim A of A. The class [πm(A)]L
−md ∈ M also does not depend on m; we

denote it by µ̃X(A). The collection of stable subsets of X∞ is a Boolean ring (i.e.,
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it is closed under finite union and difference), on which µ̃X defines a finite additive
measure.

Let µX be the composition of µ̃X and the completion map M→ M̂. We call it the
motivic measure on X. A subset A ⊂ X∞ is called measurable if for every (negative)
integer m there exists a stable subset Am ⊂ X∞ and a sequence (Ci ⊂ X∞)∞i=0 of
stable subsets such that the symmetric difference A ∆ Am is contained in

⋃

i∈N
Ci

with dim Ci < m for all i and dim Ci → −∞ as i →∞.
Now we cite the key proposition, which is a generalization of Denef and Loeser’s

theorem, [5].

Proposition 4 ([14, Proposition 2.2]) The measurable subsets of X∞ make up a

Boolean subring and µX extends to a measure on this ring by

µX(A) := lim
m→−∞

µX(Am).

In particular, the above limit exists in M̂ and its value depends only on A.

Remark 5 Notice that this definition of the measure differs from the one in [4] and
[5] by a factor of L

d (with our normalization, the projection of the motivic measure

under πX is the “tautological” measure on X, as it was described in the introduction).

1.5 The Transformation Rule

The following crucial results from [14] show that the additive function of sets µX

possesses the properties expected of a measure in the classical sense.

Proposition 6 ([14, Proposition 3.1]) For a D-variety X/D of pure relative dimen-

sion over D, the preimage of any constructible subset under πn : X∞ → Xn is mea-

surable. In particular, X∞ is measurable. If Y ⊂ X is nowhere dense, then Y∞ is of

measure zero.

For X/D of pure relative dimension we have a notion of an integrable function
Φ : X∞ → M̂. This requires the fibers of Φ to be measurable and the sum
∑

a µX(Φ−1(a))a (a ∈ M) to converge, i.e., at most countably many nonzero terms

(µX(Φ−1(ai))ai)i∈N are allowed, and the condition µX(Φ−1(ai))ai ∈ Fmi
M̂ with

limi→∞ mi = −∞ is required to hold. The motivic integral of Φ is then by defini-
tion the value of this series:

∫

Φ dµX =

∑

i

µX(Φ−1(ai))ai .

An integrable function of particular interest arises from an ideal I in the structure

sheaf, OX, of X. Such an ideal defines a function ordI : X∞ → N∪{∞} by assigning
to γ ∈ X∞ the multiplicity of γ∗I as follows. Let γ(o) denote the “constant term of
γ”, that is, the image of the closed point, o, of D in the closed fiber of X. The map
γ∗ is the map of rings OX,γ(o) → k[[t]] that induces γ. Then γ∗ applied to I means
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the base change of I to k[[t]]. That is, γ∗I is a sheaf on Spec k[[t]]; if we denote by M

the OX,γ(o)-module that corresponds, in the world of rings, to the stalk of I at γ(o),

then the stalk of γ∗I over the closed point is the k[[t]]-module k[[t]] ⊗OX,γ(o)
M (to

form the tensor product, we view k[[t]] as an OX,γ(o)-module via the map γ∗). An
example of the function ordI when X = L(X), and I is the sheaf corresponding to
a divisor D, is considered in detail in [4, §2.2] (where γ∗I is denoted γ · D). The

condition ordI γ = n only depends on the n-jet of γ, and it defines a constructible
subset Cn ⊂ Xn. It turns out that the set defined by ordI γ = ∞ is of measure zero,
and the function L

− ordI is integrable.

We can now state the theorem that is key for all applications — the transformation
rule. Let H : Y → X be a morphism of D-varieties of pure relative dimension d. We
define the Jacobian ideal JH ⊂ OY of H as the 0-th Fitting ideal of the sheaf of relative

differentials ΩY/X (for definitions, see [6, §16.1, §20.2] and [8, II.8.9.2]).

Theorem 7 ([14, Theorem 3.2]) Let H : Y → X be a D-morphism of pure dimen-

sional D-varieties with Y/D smooth. If A is a measurable subset of Y∞ with H|A injec-

tive, then HA is measurable and µX(HA) =
∫

A
L
− ordJH dµY.

Example 8 Suppose H : L(Y ) → L(X) is induced by an isomorphism h : Y → X.

Then H preserves the measure: µL(X)(HA) = µL(Y )(A) for any measurable subset
A ⊂ L(Y ).

Proof An isomorphism of algebraic varieties induces an isomorphism on their tan-
gent bundles. Hence, JH is trivial (i.e., it is the ideal sheaf that coincides with the
structure sheaf of L(Y )). The function L

− ordJH is identically equal to 1 on L(Y ) in

this case. This, of course, agrees with the statement about the uniqueness of motivic
measure on L(X).

We will need to use the transformation rule in a slightly more general situation,
when Y is not smooth over D, but is allowed to have a singularity in the closed fiber.
In this case, however, the set A will be assumed to be away from the singularity.

For a D-variety X of pure relative dimension d, we denote by J(X/D) the d-th
Fitting ideal of ΩX/D. It defines the locus where X fails to be smooth over D, see [14,
§9].

Lemma 9 Let H : Y → X be a D-morphism of pure dimensional D-varieties; as-

sume that the generic fiber of Y is smooth. Let A be a measurable subset of Y∞ with

H|A injective and such that for all γ ∈ A, γ(o) is in the regular locus of Y. Then the

transformation rule holds for the set A: µX(HA) =
∫

A
L
− ordJH dµY.

Proof We follow the proof of the transformation rule in [14]. The proof rests on

the key Lemma 9.2, and that is where the assumption that Y is smooth appears first.
Here is the statement of Lemma 9.2, [14]:

Suppose Y/D is smooth and let A ⊂ Y∞ be a stable subset of level l. Assume
that H|A is injective and that ord JH |A is constant equal to e < ∞. Then for
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n ≥ sup{2e, l + e, ordJ(X/D) |HA}, Hn : πnA → HnπnA has the structure of an
affine-linear bundle of dimension e. (Here Hn is the truncation of the map H,

that is, the map induced by H on Yn.)

We claim that the same statement holds if the assumption that Y is smooth is replaced
by the weaker assumption from the statement of our lemma.

There are two implications of smoothness of Y that are used in the proof of
Lemma 9.2. The first one is that for all points γ ∈ A, the O-module γ∗

ΩY/D is

torsion-free, where O = k[[t]] (recall the definition of γ∗ applied to an ideal sheaf:
it is basically the base change to k[[t]] using the map of rings γ∗). For this state-
ment to hold for all γ ∈ A, it is not necessary for Y to be smooth over D. It is
sufficient that γ(o) is in Yreg and the generic fiber of Y is smooth. We show this by

computing the d-th Fitting ideal of the k[[t]]-module γ∗
ΩY/D in the same way as it is

done in [14, §9]. Recall [14] that J(Y/D) stands for the d-th Fitting ideal of ΩY/D,
where d is the relative dimension of Y. Since Fitting ideals commute with base change,
γ∗(J(Y/D)) = Fittd(γ∗

ΩY/D). The latter Fitting ideal measures the length of torsion

of γ∗
ΩY/D: if a k[[t]]-module of rank d has torsion of length e, its d-th Fitting ideal is

(te). It remains to observe that the order with respect to t of the ideal γ∗(J(Y/D)) is
the multiplicity of γ along the locus defined by J(Y/D), that is, the singular locus of Y

(see [14, §9]). By assumption, γ maps D to the regular part of Y, thus ordt γ∗J(Y/D)

is equal to 0.
The second implication of the smoothness of Y that is implicitly used in the proof

is that [14, Lemma 9.1] can be used with e = 0 in the notation of that lemma (in
which e stands for the order of J(Y/D) along γ). This property holds for any γ if Y is

smooth; in our case it still holds for all γ ∈ A by the assumption on A, as discussed
above.

1.6 k-Spaces

Let G be a linear algebraic group. As noted in the introduction, the set of k-points
of L(G) is in bijection with G(k[[t]]). With the use of the framework of k-spaces [1],

more can be said. The following definitions are quoted from [1].
Let k, as above, be an algebraically closed field of characteristic 0. By definition, a

k-space (resp., k-group) is a functor from the category of k-algebras to the category of
sets (resp., of groups) which is a sheaf for the faithfully flat topology (see [1] for the

details of the definition). The category of schemes can be viewed as a full subcategory
in the category of k-spaces. Direct limits exist in the category of k-spaces; we shall say
that a k-space (resp., a k-group) is an ind-scheme (resp., ind-group) if it is the direct
limit of a directed system of schemes. Note that an ind-group is not necessarily a

limit of a directed system of algebraic groups. Let (Xα)α∈I be a directed system of
schemes, X its limit in the category of k-spaces, and S a scheme. The set Mor(S, X) of
morphisms of S into X is the direct limit of the sets Mor(S, Xα), and the set Mor(X, S)
is the inverse limit of the sets Mor(Xα, S).
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1.7 The Ind-Scheme G((t))

In [1], the k-group GLr (k((t))) is the functor on the category of k-algebras defined by
R 7→ GLr (R((t))), and the “maximal compact subgroup” GLr (k[[t]]) is the subfunctor
R 7→ GLr (R[[t]]). In order to avoid confusion between the functor and the set of
k((t))-points of GLr , we will change the notation and denote the functors defined

above by GLr((t)) and GLr[[t]], respectively.

There is a filtration of the k-group GLr((t)) by the subfunctors GL(N)
r , where

GL(N)
r (R) is the set of matrices A(t) in GLr (R((t))) such that both A(t) and A(t)−1

have no poles of order greater than N , that is, all their entries can be written as
∑∞

i=−N ait
i with ai ∈ R.

The construction of the previous paragraph applies to any affine variety. Indeed,
let X = Spec k[x1, . . . , xd]/I. For a k-algebra R, define X(N)(R) to be the set of el-
ements of A

d(R) satisfying the equations in I and having poles of order not greater
than N in the sense defined above. By X((t)) we will denote the direct limit of X(N);

naturally, X((t)) is a subfunctor of A
d((t)).

Proposition 1.2 of [1] states that the k-group GLr[[t]] (GLr(k[[t]]) in the notation
of the authors) is represented by an affine group scheme and that (GL(N)

r )N≥0 are
represented by schemes, making the k-group GLr((t)) an ind-group. The proof uses
only the fact that GLr is an affine variety: to show that GL(N)

r is represented by a

scheme, one needs to think of GLr as the closed subset of the affine space Mr ×Mr

(Mr being the space of all r × r-matrices) defined by the equation AB = Id. The
equation AB = Id (which is, in fact, the system of r2 equations in r4 variables) can
be substituted with any finite number of polynomial equations in d variables, and

the proof will carry over to any closed subvariety of A
d. Thus if X is closed in A

d,
the k-space X((t)) is represented by the ind-scheme that is the direct limit of schemes
representing the functors X(N). We will denote these schemes by the same symbol
X(N). The affine space A

d((t)) itself and its filtration by (A
d)(N) are discussed in detail

in the next section.

In the case X = G, a reductive algebraic group, G((t)) is an ind-group.

All of the above is summarized in the following proposition; we omit its rigorous
proof.

Proposition 10 Let G be a reductive algebraic group. Then L(G) is embedded in the

ind-group G((t)), and G((t)) is a direct limit of affine schemes (G(N))N≥0 in the category

of k-spaces, with G(0)
= L(G) representing G[[t]].

1.8 The Space A
d((t))

We first focus our attention on affine space since we used it above to define X((t)) for
X an affine variety, and all the subsequent constructions will also be based upon it.

1.8.1

We begin with the arc space of the affine line L(A
1).
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By definition, Ln(A
1) represents the functor

R→ Mor(Spec R[t]/tn+1R[t], A
1) = Mor(k[x], R[t]/tn+1R[t])

∼= R[t]/tn+1R[t] ∼= Rn+1.

Hence, Ln(A
1) ∼= A

n+1, and the natural projection Ln+1(A
1) → Ln(A

1) corresponds
to the map R[t]/tn+2R[t] → R[t]/tn+1R[t] that takes P ∈ R[t]/tn+2R[t] to

(P mod tn+1), which, in turn, corresponds to the map (T0, . . . , Tn+1) 7→ (T0, . . . , Tn)
from A

n+2 to A
n+1. We conclude that the inverse limit of the system Ln(A

1) coin-
cides with the inverse limit of the spaces A

n with natural projections. The latter is the
scheme A

∞
= Spec k[T1, T2 . . . ] (see e.g., [10] and references therein for a detailed

treatment of A
∞, but note that all we will use here is its existence as a k-scheme).

1.8.2

We can also consider A
1 with its additive group structure, that is, the group Ga. Let

G
(N)
a be the functor

R→ {elements of R((t)) with poles of order ≤ N}.

An element of R((t)) with poles of order not greater than N is nothing but a sequence

of coefficients (a−N , . . . , a0, a1, . . . ), where ai ∈ R, i = 1, 2, . . . ; thus

G
(N)
a
∼= Spec k[T−N , . . . , T0, . . .] ∼= Spec k[T0, T1, . . .] = G

(0)
a
∼= L(Ga).

An analogous argument works for A
d((t)) with d ∈ N. In particular, (A

d)(N) is iso-
morphic over k to L(A

d) for all N ∈ N. Denote this isomorphism by SN .

1.8.3

Recall the notations, F = k((t)), D = Spec k[[t]]. If R is a k-algebra, by R-points of a

k-space we will simply mean the set which is an image of R (recall that a k-space is a
functor from k-algebras to sets). In all that follows we will be mostly concerned with
the set of k-points of A

d((t)), because this set is in bijection with A
d(F).

So far, we have described one way of thinking of A
d((t))(k): as a union of the

sets of k-points of the schemes over k forming the directed system (A
d)(N). Each

isomorphism SN between (A
d)(N) and (A

d)(0)
= L(A

d) induces a bijection on the sets
of their k-points, shifting the indices of a power series corresponding to a given point

by N to the right. We recall that L(A
d) = (Spec k[T0, . . . , Tn, . . . ])d. Now observe

that the set of k-points of L(A
d) is in natural bijection with the set of k[[t]]-points of

the affine space A
d as a scheme over k[[t]], that is, of Spec k[[t]][x1, . . . , xd]. This gives

another, sometimes more convenient, way of looking at k-points of A
d((t)).
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Fix a positive integer N and consider the k[[t]]-morphism S̃N from
Spec k[[t]][u1, . . . , ud] to Spec k[[t]][x1, . . . , xd] (i.e., to itself), induced by the map

of rings xi 7→ tN ui , i = 1, . . . , d. On k[[t]]-points (which are again viewed as d-
tuples of power series with coefficients in k), this map induces multiplication by tN ,
that is, a shift of all indices to the right by N . Observe that, even though it is not an
injective map of k[[t]]-schemes, on k[[t]]-points, it is an injection. Thus, if we take

two copies of A
d over k[[t]] and the morphism S̃N between them, we can identify

the set of k[[t]]-points of the image of S̃N with k-points of L(A
d), and then the set

of k[[t]]-points of the source copy of A
d will be naturally identified with the set of

k-points of (A
d)(N). This is an alternative description of the map induced on k-points

of (A
d)(N) by the isomorphism SN : (A

d)(N) → L(A
d).

1.9 Morphisms

By definition, G((t)) is a k-space, that is, a functor. Then a morphism between two
such objects is a morphism of functors (a natural transformation). However, we can
use the fact that G((t)) is represented by an ind-scheme. By a morphism between two
affine ind-schemes X = lim

−→
Xi and Y = lim

−→
Yi we shall mean a map of sets φ : X → Y

such that each φ(Xi) is contained in some Y j , and the induced map Xi → Y j is a
morphism of schemes.

Let G be an algebraic group. Then we can define an action of G(F) (the group of
k((t))-points of G) on the ind-group G((t)) by left or right translations in the same

way as it is done for group schemes, see e.g. Section 4.2 of [2].

2 A Construction of the Motivic Measure on G((t))

We begin with a construction of an additively invariant motivic measure on the affine
space A

d((t)). Then we use the structure theory of G to reduce the problem of con-
structing a measure on G((t)) to the construction on A

d((t)).

2.1 Haar Measure on the Affine Space

The algebra of measurable subsets of the space L(X) was defined in [5, Appendix]
for any variety X. In particular, we have an algebra of measurable sets in L(A

d).

However, notice that in [5], the expression “a subset of a scheme” means a subset of
the underlying topological space, whereas for us (as well as in [14]) a subset of L(X)
is a subset of the set of closed points of L(X), since it is the set of closed points of L(X)
that is in bijection with the set of sections of the structure morphism X×Spec kD→ D.

We obtain the algebra of measurable subsets (in our sense) of L(X) by taking the
intersection of all elemets of the algebra of sets defined in [5] with the set of closed
points of L(X). In general, by a subset of an ind-scheme X which is a direct limit
of k-schemes X(N) we shall mean an increasing union of subsets of the sets of closed

points of the schemes X(N).

Definition 11 We call a subset of A
d((t)) bounded measurable if it is contained in

(A
d)(N) for some N and its image under the isomorphism (A

d)(N) → L(A
d) defined
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in §1.8.2 is a measurable subset of L(A
d) as defined in §1.4.

2.1.1

Bounded measurable subsets form an algebra of sets (closed only under finite unions,

though). In order to define a measure on this algebra, we need to calculate the vol-
umes of some special subsets of L(A

d). We do it in the case d = 1 first.

Example 12 Let X = L(Ga), and denote the corresponding motivic measure (from
Proposition 4) by µ̃a. Consider a decreasing filtration of Ga(k[[t]]) by the subsets
tnk[[t]], n = 0, 1, . . . . Denote the corresponding algebraic subsets of L(Ga) by Bn,
so that the set of k-points of Bn is tnk[[t]]. Let us calculate their volumes. The set Bn

(n ∈ N) is precisely the fiber of L(Ga) over the point 0n−1 = (0, . . . , 0) ∈ Ln−1(Ga).
Hence, by definition,

µ̃a(Bn) = L
−n+1[πn−1(Bn)] = L

−n+1[{pt}]

= L
−n+11 = L

−n+1.

The total volume µ̃a(L(Ga)) is by definition [A
1]L

0
= L, so we have

(1) µ̃a(Bn) = L
−nµ̃a(L(Ga)).

2.1.2

Now we can define a motivic measure on Ga((t)). We keep the notation of the pre-
vious example. Let A be a measurable subset of G

(N)
a , i.e., its image B = SN (A) in

G
(0)
a = L(A

1) is measurable. Then we set

(2) µa(A) = L
N µ̃a(B).

On the level of rings, the inclusion G
(N−1)
a →֒ G

(N)
a corresponds to the map induced

by T−N 7→ 0 from k[T−N , T−N+1, . . . ] to k[T−N+1, . . . ]. The map SN identifies the

scheme G
(N)
a with L(Ga), and therefore the image of its subset G

(N−1)
a maps isomor-

phically onto the fiber of L(Ga) over 0, that is, the set B1. Similarly, for M < N ,
SN

(

G
(M)
a

)

= BN−M . Then the relation (1) guarantees that the volume µa(G
(N)
a ) is

well defined. A similar calculation applied to an arbitrary measurable subset of G
(N)
a

would show that the measure µa is well defined.

Remark 13 It is possible to arrive at the same conclusions without writing down
the sets Bn and their volumes explicitly, but by using the transformation rule and the

following lemma.

Lemma 14 The order of Jacobian ordt JS̃N
(γ) of the map S̃N : L(A

d) → L(A
d) is

equal to Nd for all γ ∈ L(A
d).
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Proof As in §1.8.3, we think of the closed points of L(A
d) as sections of the struc-

ture morphism of the scheme Spec k[[t]][x1, . . . , xd] over k[[t]]. We have the map

S̃N : Spec B → Spec A, where A = k[[t]][x1, . . . , xd], B = k[[t]][u1, . . . , ud], xi 7→
tN ui . There is an exact sequence of modules of differentials [6, §16.1]:

ΩA/k[[t]] ⊗A B // ΩB/k[[t]]
// ΩB/A

// 0.

We see that ΩB/A is a torsion B-module, and the above exact sequence is its free pre-

sentation. Hence Fitt0(ΩB/A) = (det(tN Id)) = (tNd) ⊂ B by [6, §20.2]. Therefore

the Jacobian ideal of the map S̃N is the ideal sheaf (tNd) on Spec B. Let

γ : Spec k[[t]]→ Spec k[[t]][u1, . . . , ud]

be a section. The stalk of JS̃N
at every point is the ideal (tNd) in the local ring of that

point, i.e., it is an ideal of k[[t]] embedded into the local ring of the point. Any section
γ fixes k[[t]] by definition, so the pullback of JS̃N

to k[[t]] by γ is the ideal (tNd) itself.
Thus ordt JS̃N

(γ) = Nd.

2.1.3

Recall the notation, µ̃a is the canonical measure on L(A
d) (see Proposition 4).

Definition 15 Let A ⊂ (A
d)(N) be a bounded measurable subset. Then define

µa(A) = L
Ndµ̃a(SN (A)).

Lemma 16 The measure µa is well defined and additively invariant.

Proof The first statement is proved exactly the same way as in §2.1.2. The invariance

follows from the transformation rule, but it is also easy to check this statement by
hand, using the explicit definition of the measure µa and the fact that translations are
isomorphisms.

Remark 17 By invariance, here we mean that the translates of bounded measurable
subsets are again bounded measurable, of the same measure.

It is now possible to define the full algebra of measurable sets in A
d((t)).

Definition 18 We call a subset B ⊂ A
d((t)) measurable if it can be represented as a

disjoint countable union of bounded measurable subsets B =
⋃

n∈N
Bn, such that the

series of their measures
∑∞

i=1 µa(Bn) converges in the ring M̂. The measure of B is
defined as µa(B) =

∑∞
n=1 µa(Bn).

The proof that µa(B) does not depend on a particular collection Bn mimics standard
measure theory, with the use of a norm on M̂ introduced in [5, Appendix]. It is
easy to see that the measure µa extended to the σ-algebra of measurable sets is still
translation-invariant.
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2.2 Notation

Let X be an affine variety, X((t)), the ind-scheme defined as in §1.7, and U , a Zariski

open subset of X with Z = X \ U closed. Then Z((t)) is a subfunctor of X((t)).
By CX(U ) we will denote the ind-scheme which is the direct limit of the schemes
X(N) \ Z(N), that is, the “complement of Z((t)) in X((t))”. We shall denote by C0

X(U )
the complement of Z[[t]] in X[[t]]]. Notice that C0

X(U ) is not the same as U [[t]], in

general, it is much larger. By the construction, there is an inclusion morphism of ind-
schemes CX(U ) →֒ X((t)). Later we will slightly abuse the terminology by thinking
of CX(U ) as a measurable subset of X((t)), meaning that the set of closed points of
CX(U ) can be thought of as a subset of the set of closed points of X((t)).

Example 19 X = A
1, Z = {0}, U = X \ Z. Then L(U ) is the set B1 from Example

12, that is, the fiber of πX over 0 ∈ L0(X), so its motivic volume is different from

the volume of X. However, C0
X(U ) is the complement of L(Z) in L(A

1), that is, a
complement of a single point, so the motivic volume of C0

X(U ) coincides with the
motivic volume of A

1.

In this example, CX(U ) = U ((t)) is the functor that assigns to every ring R the set
of Laurent series with coefficients in R such that at least one of the coefficients is a
unit in R. Also, notice that U ((t)) ∩ L(X) = C0

X(U ).

2.3

Once and for all, we choose the standard coordinates x1, . . . , xd on A
d. Let ω be a

top degree differential form ω = gdx1 ∧ · · · ∧ dxd defined on a Zariski open subset
U ⊂ A

d, where g is a regular function on U . Then define the measure µ|ω| on CAd (U )

by

(3) µ|ω|(A) =

∫

A

L
− ordt (g◦γ) dµa(γ),

where µa is the motivic measure on A
d((t)), A is a bounded measurable set contained

in CAd (U ); ordt (g ◦ γ) for γ ∈ (A
d)(N) is the order of vanishing of the formal power

series g(γ) at t = 0 (if the series has a pole at t = 0, the order is negative).

In this notation, the measure on A
d((t)) defined in §2.1.3 is the one that corre-

sponds to the form dx1 ∧ · · · ∧ dxd.

By definition of the measure µa, the integral in (3) can be written as

(4) µ|ω|(A) =

∫

A

L
− ordt (g◦γ) dµa(γ) =

∫

SN (A)

L
− ordt (g̃◦γ)+Nd dµa(γ)

for any N ≥ 0, where g̃(tN x1, . . . , tNxd) = g(x1, . . . , xd). In particular, since for a
bounded set A the number N can be chosen big enough to ensure SN (A) ⊂ L(A

d),
the motivic integral in the right-hand side of (4) exists (see [4]), and therefore the
integral in (3) is also defined (we can use the right-hand side of (4) as its definition).
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2.4 A Coordinate System on the Big Cell

Let G be a connected reductive algebraic group defined over k. Let T ⊂ G be a maxi-
mal torus (recall that the field k is assumed algebraically closed, so T is automatically

split), where m is its dimension, ∆ a choice of simple roots of the Lie algebra of G, n

the cardinality of ∆, B ⊃ T the Borel subgroup corresponding to ∆, U its unipotent
radical, B− the opposite Borel subgroup with respect to T, and U− its unipotent rad-
ical. Then [9, p. 174], the product morphism is an isomorphism of algebraic varieties

U− × T ×U → Ω
′,

where Ω
′ ⊂ G is a Zariski open subset (a big cell). For our purposes, it is more

convenient to consider its conjugate, the set Ω = U− × U × T. The unipotent
subgroup U (resp., U−) is isomorphic to a cartesian product of root subgroups Uα

corresponding to positive (resp., negative) roots. Choose a generator for each Uα, and
denote it by x ′

α if α is positive, and by y ′
α if α is negative. Each Uα can be identified

with a one-dimensional subspace gα in the Lie algebra of G. Denote by xα (resp., yα)
the generator of gα that corresponds to x ′

α (resp., y ′
α) under this isomorphism. This

defines a coordinate system on U− ×U . Next, choose a coordinate system s1, . . . , sm

on T by representing it as a product of m copies of Gm and choosing a coordinate s j

on each of them. Hence we have defined a coordinate map i : Ω → A
d, d = 2n + m.

It is defined over k. The image of this map is the Zariski open subset of A
d defined by

s1 · · · sm 6= 0.

2.5

Let Ω be the big cell of G, as in the previous subsection. Denote by Z the comple-

ment of Ω in G, a constructible subset which is a union of a finite number of closed
subvarieties of G defined over k. Recall from §1.7 that the set of F-points of G can be
identified with the set of k-points of the ind-group G((t)), which is a direct limit of
the system (G(N))N≥0. Under this bijection the set Ω(F) is identified with the set of

k-points of CG(Ω). We recall from §2.2 that by definition G((t)) = CG(Ω) ∪ Z((t)).
Observe that the map i from the previous subsection extends to a map from CG(Ω)
to A

d((t)); it is still a map over k, and we will denote it by the same letter i.

Let ω be a 1-form on Ω that is defined by the following expression in the coordi-
nates (x,y,s) defined in §2.4:

(5) ω = dx1 ∧ · · · ∧ dxn ∧ dy1 ∧ · · · ∧ dyn ∧
ds1

s1

∧ · · · ∧
dsm

sm

=: dx ∧ dy ∧
ds

s
.

Lemma 20 The form ω is invariant under left and right translations on G.

We omit the proof.

Recall that by a subset of the ind-scheme G((t)) we mean a union of subsets of
closed points of the schemes G(N). Now we are ready to define a motivic measure on
G((t)).
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Definition 21 Let B be a subset of G((t)). We say that B is Ω-measurable if B can be
represented as a (disjoint) union B = C ∪A, where C ⊂ Z((t)) and A is a measurable

subset of CG(Ω). Here we say that a subset A of CG(Ω) is measurable if its image i(A)
is a measurable subset of A

d((t)). For B = C ∪ A measurable, set

(6) µΩ(B) = µ|(i−1)∗(ω)|(i(A)).

We call a measurable subset bounded, if it is contained in CG(Ω) and its image under

the map i is a bounded measurable subset of A
d((t)).

The following proposition is the cornestone of the proof that µΩ is the Haar mea-
sure.

Proposition 22 Let g be an element of G(F), and let A be a bounded Ω-measurable

set in CG(Ω) such that g−1A is also contained in CG(Ω) and bounded. Then µΩ(A) =

µΩ(g−1A).

Proof Let us denote by Lg the left translation by g viewed as an automorphism of
G defined over the field F. On the open subset Ω ∩ g−1

Ω it can be represented as
a rational map in the coordinates x, y, s defined in §2.4. We denote this map by

h(x, y, s), and its Jacobian matrix by J. More precisely, h is a birational map from A
d

to A
d over F defined by the formula h(x, y, s) = i(Lg(i−1(x, y, s))). Thus det J is an

F-valued regular function on Ω, and by Lemma 20, we have

(7) p(h(x, y, s)) · det J · dx ∧ dy ∧ ds = p(x, y, s)dx ∧ dy ∧ ds,

where p(x, y, s) = 1/s1· · · sm. Now the goal is to represent the restriction of the map

Lg to the given set g−1A as a restriction of a k[[t]]-morphism of D-varieties, so that
the transformation rule for motivic measures can be applied to it.

The sets A and g−1A are both contained in CG(Ω) and are bounded by assumption.
By definition, this means that i(A) is a measurable subset of (A

d)(N) for some N ≥ 0,

and that i(g−1A) is defined and is contained in (A
d)(M) for some M ≥ 0. We choose

both integers M, N to be minimal possible. Also, we can assume without loss of
generality that A is stable.

We will need the expression h(t−Mx, t−M y, t−Ms). We write it in the form

(8) h(t−Mx, t−M y, t−Ms) =

( f̃1(x, y, s)

∆(x, y, s)
, . . . ,

f̃d(x, y, s)

∆(x, y, s)

)

,

where f̃i , i = 1, . . . , d and ∆ are in k[[t]][x, y, s], and gcd( f̃1, . . . , f̃d, ∆) = 1.
Let us break up the set A according to the order of vanishing of ∆ on SM(i(g−1A)):

A =

⋃

e≥0

Ae,

A0 = {γ ∈ A | ordt ∆(SM ◦ i ◦ g−1γ) ≤ 0},

Ae = {γ ∈ A | ordt ∆(SM ◦ i ◦ g−1γ) = e} for e ≥ 1.
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Now we are ready to construct, for each e = 0, 1, . . . , a scheme Xe over D and two
D-morphisms H1 and H2 from Xe to A

d[[t]], such that the following conditions hold:

(i) There exists a measurable subset B of (Xe)∞ such that H1 induces a bijection

between B and SM(i(g−1Ae)).
(ii) The morphism H2 induces a bijection between B and Se(i(Ae)).
(iii) The following diagram (of maps of sets) commutes:

SM(i(g−1Ae)) B
H1

oo
H2

// Se(i(A))

i(g−1Ae)

SM

OO

h

// i(Ae)

Se

OO

Define the scheme Xe to be

Xe = Spec k[[t]][x1, . . . , xn, y1, . . . , yn, s1, . . . , sm, z]/(z∆− te).

Let H1 : Xe → A
d[[t]] = Spec k[[t]][u1, . . . , ud] be the morphism of schemes in-

duced by the identity map on the first d variables:

(9) ui 7→ xi , 1 ≤ i ≤ n; ui 7→ yi−n, n + 1 ≤ i ≤ 2n; ui 7→ si−2n, 2n < i ≤ d.

When e = 0, the map H1 is nothing but the inclusion morphism of the open subset
of A

d[[t]] defined by ∆ 6= 0 into A
d[[t]].

Let H2 : Xe → A
d[[t]] = Spec k[[t]][u1, . . . , ud] be the morphism defined by

(10) ui 7→ z f̃i(x, y, s), i = 1, . . . , d.

Naturally, H1 induces a bijection on k[[t]]-points. Let B ⊂ (Xe)∞ be the preimage
of the set SM(i(g−1Ae)) under this bijection. Then it immediately follows from the
definition of H2 that property (iii) holds (recall that SM is a bijection between the sets

i(g−1Ae) and SM(i(g−1Ae)); h(t−Mx, t−M y, t−Ms) =
( f̃1

∆
, . . . , f̃d

∆

)

, and “z =
te

∆
”).

Since the map h is a coordinate expression of a translation by a group element, it is a

bijection; thus the commutativity of the diagram implies that H2 induces a bijection
between the set B and the set Se(i(Ae)).

In the case e = 0 the scheme Xe is smooth over D. For e > 0, Xe has smooth
generic fiber, and the singular locus in its closed fiber is defined by the equations

∆(x, y, s) = z = 0. We observe that the z-coordinate of γ(o) (the image of the closed
point of D) is not equal to zero for any element γ of the set B since ∆ is assumed
to vanish exactly up to order e on the image of γ in SM(i(g−1Ae)). That is, γ(o)
does not lie in the singular locus of the closed fiber of Xe. Since A is assumed to

be stable, the set B is also stable: the condition ordt ∆(γ) = e depends only on the
e-jet of γ. Indeed, the stability of A implies the stability of all the sets Ae. The only
formal difference between B and Ae is that the points in B have an extra coordinate
z = z0 + z1t + · · · + zntn + · · · and satisfy an extra equation z∆(x, y, s) = te. By our
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assumption on Ae and by the definition of B, the order of ∆/te is equal to 0. Hence,
if n > e, each equation in zn+1 of the form (z0 + · · · + zn+1tn+1 + · · · )∆(x, y, s) =

te + tn+1g(t), g(t) ∈ k[[t]] with fixed x, y, s and fixed z0, . . . , zn has a unique solution.
Therefore, the set B is stable at level e or the level of A, whichever is greater.

It follows now from Lemma 9 that the transformation rule can be applied to the
restriction of the morphisms H1 and H2 to the set B. Let us denote the motivic

measure on Xe that was defined in §1.4 by dµe, and the motivic measure on A
d[[t]]

by dµa, as before. By the transformation rule, we have

(11)
dµa|SM (i(g−1Ae)) = L

− ord JH1 dµe|B,

dµa|Se(i(Ae)) = L
− ord JH2 dµe|B.

It remains to calculate JH1
and JH2

. We start with the Jacobian of H1. Let R1 be
the ring R1 = k[[t]][u1, . . . , ud], and let

R2 = k[[t]][x1, . . . , xn, y1, . . . , yn, s1, . . . , sm, z]/(z∆− te).

By definition, JH1
is the 0-th Fitting ideal of the module ΩR2/R1

, where the map R1 →
R2 is given by formula (9). We have the exact sequence

(12) ΩR1/k[[t]] ⊗R1
R2 // ΩR2/k[[t]]

// ΩR2/R1
// 0.

Hence, ΩR2/R1
is in this case a torsion R2-module isomorphic to R2[σ]/σ∆. Its 0-th

Fitting ideal is (∆). Notice that by the remark on definition of the set B earlier in this
proof, ordt (γ

∗
∆) = e for all γ ∈ B.

Let us now calculate the Jacobian of H2. The rings R1 and R2 remain the same, but
the map R1 → R2 is given by formula (10) now. Then ΩR2/R1

is the R2-module gener-

ated over R2 by the formal symbols dx1, . . . , dxn, dy1, . . . , dyn, ds1, . . . , dsm, dz with
the relations obtained by setting to zero the formal derivatives of the polynomials z∆

and z f̃i(x, y, s), i = 1, . . . , d. Hence, by definition of the Fitting ideal, the 0-th Fitting
ideal of this module is generated by the following (d + 1)× (d + 1)-determinant:

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

z ∂ f̃1

∂x1
. . . z ∂ f̃d

∂x1
z ∂∆

∂x1

z
∂ f̃1

∂x2
. . . z

∂ f̃d

∂x2
z ∂∆

∂x2

... . . .
...

...

z
∂ f̃1

∂sm
. . . z

∂ f̃d

∂sm
z ∂∆

∂sm

f̃1 . . . f̃d ∆

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= zd

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∂ f̃1

∂x1
− ∂∆

∂x1

f̃1

∆
. . . ∂ f̃d

∂x1
− ∂∆

∂x1

f̃d

∆

∂∆

∂x1

∂ f̃1

∂x2
− ∂∆

∂x2

f̃1

∆
. . . ∂ f̃d

∂x2
− ∂∆

∂x2

f̃d

∆

∂∆

∂x2

... . . .
...

...
∂ f̃1

∂sm
− ∂∆

∂sm

f̃1

∆
. . . ∂ f̃d

∂sm
− ∂∆

∂sm

f̃d

∆

∂∆

∂sm

0 . . . 0 ∆

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

By formula (8), the latter determinant is equal to zd
∆

d(t−Md det J)∆, where det J is
the Jacobian determinant of the map h that was defined in the beginning of the proof

(we are using the equality ∂ f
∂x
− ∂∆

∂x
f
∆

= ∆
∂( f /∆)

∂x
). Finally, we see that the Jacobian

ideal of the map H2 is the ideal (t(e−M)d det J∆).
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Let p̃(tMx, tM y, tMs) = p(x, y, s) = 1/s1· · · sm = p̄(tex, te y, tes). With these nota-
tions, by (4) and (11), get:

µΩ(g−1Ae) = L
Md

∫

SM (i(Ae))

L
− ordt p̃◦γ dµa(γ)

= L
Md

∫

B

L
− ordt p̃◦H1(γ)−ordt JH1

(γ) dµe(γ);

µΩ(Ae) = L
ed

∫

B

L
− ordt p̄◦H2(γ)−ordt JH2

(γ) dµe(γ).

It remains to compare the subintegral expressions. We need to show that

M − (ordt p̃ ◦H1(γ) + ordt JH1
(γ)) = e− (ordt p̄ ◦H2(γ) + ordt JH2

(γ))

for γ ∈ B. This equality immediately follows from (7) and the formulas for JH1

and JH2
.

We have shown that µΩ(Ae) = µΩ(g−1Ae) for e = 0, 1, . . . . Hence, by the addi-
tivity of the measure, µΩ(A) = µΩ(g−1A).

It is relevant to mention the alternative approach to motivic measure, based on
motivic integration for formal schemes [13] here. The following remark is due to

discussions with J.-K. Yu.

Remark 23 In our construction, we interpret G(k((t))) as the set of k-points of
an ind-scheme. We are using the invariant differential form on G, whose explicit

expression in terms of the coordinates on the big cell is known, to define the motivic
measure. The main difficulty, as we just saw in the proof of the above proposition,
is that we naturally encounter schemes over D that have a singularity in the closed
fiber. If the same construction were carried out in the context of formal schemes and

rigid analytic spaces, this difficulty would have been avoided: thanks to the use of
Néron models in [13], one could define the motivic measure on the analogues of our
auxilliary schemes Xe without having to deal with singular objects. However, to carry
this out precisely, the results of [13] would have to be extended to allow us to work

on the level of k-points rather than with the objects themselves (a procedure similar
to Looijenga’s generalization of the original work of Denef and Loeser).

Now we return to our construction and extend Proposition 22 to all measurable
sets, not only bounded ones.

Theorem 24 The measure µΩ is translation-invariant (both on the left and on the

right).

Proof We will prove left-invariance; right-invariance is proved identically. Let A be
an Ω-measurable subset of G((t)), and g ∈ G(F). We need to show that µΩ(A) =
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µΩ(g−1A). We can assume that A is bounded Ω-measurable without loss of gener-
ality, since any unbounded Ω-measurable set by definition can be represented as a

countable disjoint union of bounded Ω-measurable sets.
Let us break up the set g−1A according to the maximal order of pole of the coor-

dinates of its points: g−1A =
⋃∞

n=0 Bn ∪ B∞, where

B0 = g−1A ∩ L(G),

Bn = {γ ∈ g−1A | γ ∈ CG(Ω); i(γ) ∈ (A
d)(N) \ (A

d)(N−1)}, n ≥ 1,

B∞ = {γ ∈ g−1A | γ /∈ CG(Ω)}.

Then µΩ(gBn) = µΩ(Bn) for n ≥ 0 by Proposition 22; µΩ(B∞) = 0 by definition. It

remains to show that µΩ(gB∞) = 0. Then we will have

µΩ(g−1A) =

∞
∑

n=1

µΩ(Bn) + µΩ(B∞) =

∞
∑

n=1

µΩ(gBn) + µΩ(gB∞) = µΩ(A).

The set gB∞ is contained in the set E = gZ((t))∩CG(Ω), so it suffices to show that
the set E has measure 0. We can represent it as a disjoint union of bounded subsets
of CG(Ω): E =

⋃∞
N=0 EN with E0 = E ∩ L(G) and EN = E ∩ (Ω(N) \ Ω

(N−1)) for

N ≥ 1. It remains to observe that SN (i(EN )) is well defined and it is a locally closed
subscheme of L(A

d). Its relative dimension over k[[t]] is less than d, and therefore
by definition of the measure on the affine space we have µa(SN (i(EN ))) = 0. This

implies µΩ(EN ) = 0 for all N ≥ 0; hence µΩ(E) = 0.

Corollary 25 The algebra of Ω-measurable sets and the measure µΩ itself do not de-

pend on the choice of the torus T or the set of positive roots (that is, Ω can be dropped

from the notation).

Proof This follows from the theorem and the fact that all the big cells are conjugate
in G over k (recall that we are assuming k to be algebraically closed).

2.6

As stated in the introduction, the goal was to define a motivic measure on G((t)) that

would extend the canonical motivic measure on L(G). The following theorem shows
that we have achieved it.

Theorem 26 Let Ω be any big cell in the group G. Then L(G) is Ω-measurable, and

the restriction of µΩ to L(G) coincides with the canonical motivic measure on L(G).

Proof Let us denote the canonical motivic measure on L(G) by µG. Denote the

complement of Ω in G by Z, as before. First, notice that µG(L(Z)) = 0 by the axioms
of the canonical measure; L(G) = L(Z) ∪ (CG(Ω) ∩ L(G)), and µΩ(Z) = 0 by
definition of µΩ. Therefore, we only need to show that the restrictions of µΩ and µG

to CG(Ω) ∩ L(G) coincide (and are defined on the same algebra of sets).

https://doi.org/10.4153/CJM-2006-005-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2006-005-2


112 J. Gordon

Consider the multiplication map U− ×U × T → G over k. This map is an iso-
morphism between A

n × A
n × G

m
m and Ω over k. It induces an isomorphism (over

k[[t]]) of the arc spaces: L(A
n)× L(A

n)× L(G
m
m)→ L(Ω). If we apply the transfor-

mation rule to this isomorphism, we immediately obtain that the restrictions of µΩ

and µG to L(Ω) coincide, by Example 8 and the observation that ordt (s1 . . . sm) = 1
on G

m
m[[t]].

Since L(Ω) is a smaller set than CG(Ω)∩L(G), the equality between the two mea-
sures restricted to L(Ω) is not enough. However, we claim that a finite number of
translates of L(Ω) cover the whole arc space of G, and then the theorem follows im-
mediately.

The claim can be proved, for example, as follows. At first consider the situation
over k. All possible big cells cover the group G(k) (recall that k is assumed alge-
braically closed, and hence even Borel subgroups cover G(k)). Since G is quasicom-
pact in Zariski topology, and the big cells are Zariski open, there exists a finite sub-

cover by some big cells Ω1(k), . . . , Ωn(k). The arc space L(G) itself is stable at level 0
since G is a smooth variety, and so are L(Ω1), . . . , L(Ωn), by Remark 2. In particular,
L(G) = π−1

0 (G), L(Ωi) = π−1
0 (Ωi), i = 1, . . . , n. It follows that

⋃n
i=1 L(Ωi) = L(G).

Hence, any µG-measurable subset A of L(G) can be broken up into a disjoint union

A =
⋃n

i=1 Ai with Ai ⊂ L(Ωi), Ωi-measurable. By Corollary 25, any Ωi-measurable
set is also Ω-measurable, and µΩ(Ai) = µΩi

(Ai) for any i = 1, . . . , n. On the other
hand, we have shown in the beginning of this proof that µΩi

(Ai) = µG(Ai). Hence,
µΩ(A) =

∑n
i=1 µG(Ai) = µG(A).

Remark 27 1. It is possible to construct explicitly the finite number of translates of
the given big cell Ω that cover L(G). It can be done by means of Bruhat decompo-
sition and the following statement [3, §2.1, p. 43]: if w, s are elements of the Weyl

group of G satisfying l(s) = 1 and l(sw) = l(w) + 1, and n ∈ G is a representative of s,
then nBwB is contained in B(sw)B (here B is a fixed Borel subgroup, and l(w) stands
for length of w).

2. The statement of the last theorem can be proved directly by a Jacobian calcula-

tion in a way similar to the proof of Proposition 22. Namely, after having established
the equality of the two measures on L(Ω), we could subdivide the remaining part
of L(G) ∩ Ω((t)) into a disjoint union of subsets according to the order of pole of
Ω-coordinates of its elements, and then repeat the procedure described in Proposi-

tion 22: construct an auxilliary D-variety corresponding to each piece with a given
order of pole and a k[[t]]-morphism from it to L(G) which corresponds to the natu-
ral inclusion of the big cell into G. A complicated calculation shows that the Jacobian
ideal of this morphism coincides with the principal ideal generated by (s1· · · sm) (re-

call that s1, . . . , sm are the coordinates of the torus component of the given element
of the big cell). Then the statement follows from the Jacobian transformation rule
applied to this morphism.

2.7 Concluding Remarks

Finally, I would like to mention briefly a few closely related questions which have not
been discussed so far, and which hopefully will be addressed in the future.
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2.7.1 Uniqueness

The classical Haar measure is unique up to a scalar multiple. The canonical motivic
measure on L(G) is unique because it is normalized in such a way that it projects to
the tautological measure on the variety G. Our construction of the motivic measure

on G((t)) gives an answer that does not depend on the choice of the big cell (Corollary
25) and coincides with the unique motivic measure on L(G). Since we do not have an
axiomatic measure theory for motivic measures on ind-schemes in general, it is hard
to formulate a uniqueness statement for motivic Haar measure. The most general

approach to motivic Haar measure probably requires the context of rigid analytic
spaces and formal schemes, and so we will not address the issue of uniqueness here.

2.7.2

The assumptions that the ground field k is algebraically closed and has characteristic 0
were adopted because we followed the exposition of [14] where these assumptions
were made. However, it should be possible to extend our result without any difficulty

to the case when k is not algebraically closed but the group G is assumed split over F.
It would also be interesting to construct a motivic Haar measure for reductive groups
that are not split over F, which would probably require the context of [13].

Acknowledgements I am deeply grateful to my advisor T. C. Hales for suggesting

this project and guiding me through it, and to F. Loeser, A.-M. Aubert, A. Bravo,
Ju-Lee Kim, J. Korman, A. Kuronya, E. Lawes, N. Ramachandran, M. Roth and V. Vol-
ogodsky for helpful conversations and suggestions. Special thanks to J.-K. Yu for his
interest in this work and the discussions which led to Remark 23.

References

[1] A. Beauville and Y. Laszlo, Conformal blocks and generalized theta functions. Comm. Math. Phys.
164(1994), 385–419.

[2] S. Bosch, W. Lütkebohmert, and M. Raynaud,Néron Models. Ergebnisse der Mathematik und ihrer
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