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Einstein-Like Lorentz Metrics and
Three-Dimensional Curvature
Homogeneity of Order One

G. Calvaruso

Abstract. We completely classify three-dimensional Lorentz manifolds, curvature homogeneous up to

order one, equipped with Einstein-like metrics. New examples arise with respect to both homogeneous

examples and three-dimensional Lorentz manifolds admitting a degenerate parallel null line field.

1 Introduction

A pseudo-Riemannian manifold (M, g) is said to be curvature homogeneous up to or-

der k if, for any points p, q ∈ M, there exists a linear isometry φ : TpM → TqM such

that φ ∗ (∇iR(q)) = ∇iR(p) for all i ≤ k. A locally homogeneous space is curvature

homogeneous of any order k. Conversely, if k is sufficiently high, curvature homo-

geneity up to order k implies local homogeneity. This result was proved by Singer

[15] for Riemannian manifolds. Through the equivalence theorem for G-structures

due to Cartan and Sternberg [16], Singer’s result extends to the pseudo-Riemannian

case.

Given a pseudo-Riemannian manifold (M, g), its Singer index kM is the smallest

integer such that curvature homogeneity up to order k > kM implies local homo-

geneity. If dim M = 2, then curvature homogeneity (up to order 0) already implies

local homogeneity. In [14], K. Sekigawa proved that a three-dimensional Riemannian

manifold, which is curvature homogeneous up to order one, is locally homogeneous.

Bueken and Djorić [3] determined all three-dimensional Lorentzian manifolds which

are curvature homogeneous up to order one and showed that only curvature homo-

geneity up to order two is sufficient for a three-dimensional Lorentzian manifold to

be locally homogeneous.

Interesting relationships have been showed in the Riemannian case between Ein-

stein-like metrics and homogeneity properties. Einstein-like metrics were first intro-

duced by A. Gray in [11]. They are defined through conditions on the Ricci tensor,

and their definition extends at once to pseudo-Riemannian manifolds. Precisely, we

have:

Class A: A pseudo-Riemannian manifold (M, g) belongs to class A if and only if its

Ricci tensor ̺ is cyclic-parallel, that is,
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Einstein-Like Lorentz Metrics 413

(1.1) (∇X̺)(Y, Z) + (∇Y ̺)(Z, X) + (∇Z̺)(X,Y ) = 0,

for all vector fields X,Y, Z tangent to M. (1.1) is equivalent to requiring that ̺ is a

Killing tensor, that is,

(1.2) (∇X̺)(X, X) = 0.

Class B: (M,g) belongs to class B if and only if its Ricci tensor is a Codazzi tensor,

that is,

(1.3) (∇X̺)(Y, Z) = (∇Y ̺)(X, Z).

Any manifold belonging to either class A or B has constant scalar curvature.

Moreover, for the class P of Ricci-parallel manifolds and the class E of Einstein spaces,

one has A ∩ B = P ⊃ E. However, P 6= E. In particular, in the pseudo-Riemannian

settings there exist plenty of manifolds with parallel Ricci tensor that are neither Ein-

stein nor locally decomposable. More details and some interesting Riemannian ex-

amples can be found in [11].

Several authors have studied Einstein-like metrics in different classes of Rieman-

nian manifolds [1, 2, 4, 5, 9, 13]. Recently, Einstein-like metrics have been studied

in some classes of three-dimensional Lorentz manifolds including manifolds admit-

ting a parallel null vector field in [10] and homogeneous manifolds in [7]. Note

that three-dimensional manifolds are natural candidates for a deep investigation of

Einstein-like metrics, because in dimension three the curvature is completely deter-

mined by the Ricci tensor.

In [2] it was proved that three-dimensional (connected, simply connected) ho-

mogeneous Riemannian manifolds belong to class A (respectively, class B), if and

only if they are naturally reductive (respectively, symmetric). Since three-dimensional

Riemannian spaces with curvature homogeneous up to order one, are locally homo-

geneous [14], the first natural extension to consider was given by curvature homo-

geneous spaces (up to order zero). This was studied in [4], but did not lead to new

examples. In fact, a three-dimensional curvature homogeneous Riemannian space,

equipped with an Einstein-like metric belonging to class A (respectively, class B),

is locally isometric to a naturally reductive space (respectively, to a locally symmet-

ric space). In particular, it is locally homogeneous. An even stronger result holds

for class A, since any Riemannian three-manifold inside this class is locally homoge-

neous [13].

The situation appears quite different in the Lorentz framework. In fact, the author

classified Einstein-like Lorentz metrics on three-dimensional homogeneous mani-

folds in [7] and found that, besides naturally reductive and symmetric examples,

some exceptional cases arise. Since curvature homogeneity up to order two is needed

to ensure the local homogeneity of a three-dimensional Lorentz manifold [3], cur-

vature homogeneity of order one is the first step below homogeneity to look at. The
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aim of this paper is to provide the classification of three-dimensional curvature ho-

mogeneous up to order one Lorentz manifolds, equipped with Einstein-like metrics.

A remarkable difference arises between the Riemannian and Lorentzian cases. In

fact, there exist two classes of nonhomogeneous Lorentz three-manifolds, curvature

homogeneous up to order one [3], to which we refer here as (M1, g) and (M2, g)

respectively. For (M1, g), the assumption that the Lorentz metric is Einstein-like is

not sufficient to ensure local homogeneity, and there is a large family of Lorentz

three-manifolds of type (M1, g), depending on a smooth function and a real con-

stant, equipped with Einstein-like Lorentz metrics and different from the previous

examples found in [7, 10].

The paper is organized in the following way. In Section 2, we recall some ba-

sic facts concerning three-dimensional Lorentz manifolds, and describe (M1, g) and

(M2, g). The classification of Einstein-like metrics on M1 and M2 is provided in Sec-

tions 3 and 5, respectively. In Section 4, we classify Lorentz metrics in M1 admitting a

parallel degenerate line field. Section 6 concludes the paper with some remarks about

conformally flat metrics on three-dimensional Lorentz manifolds M1.

2 Curvature Homogeneity of Order One for Lorentz
Three-Manifolds

Let (M, g) be a three-dimensional Lorentz manifold, ∇ its Levi-Civita connection

and R its curvature tensor, taken with the sign convention

R(X,Y )Z = −∇X∇Y Z + ∇Y∇XZ + ∇[X,Y ]Z.

The curvature of (M, g) is completely determined by the Ricci tensor ̺ defined, for

any point p ∈ M and X,Y ∈ TpM, by

(2.1) ̺(X,Y )p =

3
∑

i=1

εig(R(X, ei)Y, ei),

where {e1, e2, e3} is a pseudo-orthonormal basis of TpM and εi = gp(ei , ei) = ±1

for all i. Throughout the paper, if not stated otherwise, we shall assume that e3 is

timelike, that is, g(e1, e1) = g(e2, e2) = −g(e3, e3) = 1.

Because of the symmetries of the curvature tensor, the Ricci tensor ̺ is symmetric

[12]. So, the Ricci operator Q, defined by g(QX,Y ) = ̺(X,Y ), is self-adjoint. In the

Riemannian case, there always exists an orthonormal basis diagonalizing Q, while

in the Lorentz case four different cases can occur [3, 12], and there exists a pseudo-

orthonormal basis {e1, e2, e3}, with e3 timelike, such that Q takes one of the following

forms, called Segre types:

Segre type{11, 1} :





a 0 0

0 b 0

0 0 c



 , Segre type{1zz̄} :





a 0 0

0 b c

0 −c b



 ,

Segre type{3} :





b a −a

a b 0

a 0 b



 , Segre type{21} :





a 0 0

0 b η

0 −η b − 2η



 ,

(2.2)
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where η = ±1. If (M, g) is curvature homogeneous, then Q has the same Segre type

at any point p ∈ M and, at least locally, there exists a pseudo-orthonormal frame

field {e1, e2, e3} for which the Ricci operator is described by one of forms in (2.2), for

some constants a, b, and c. When the components of ∇̺ with respect to {e1, e2, e3}
are constant, (M, g) is curvature homogeneous up to order one.

The author completely classified homogeneous Lorentz three-manifolds in [6],

and in [7] he classified Einstein-like metrics on these manifolds. On the other hand,

Lorentz three-manifolds with curvature homogeneous up to order one, have been

investigated by Bueken and Djorić in [3]. They proved that there exist exactly two

classes of proper (that is, nonhomogeneous) curvature homogeneous of order one

Lorentz three-manifolds, corresponding to some special cases of Segre types {21}
and {11, 1}. We report their description here.

Segre type {21}: When a = b + η, a three-dimensional Lorentz manifold (M1, g) is

curvature homogeneous up to order one if and only if there exists (at least locally) a

pseudo-orthonormal basis {e1, e2, e3}, with e3 timelike, two constants C and D and a

function γ, such that

[e1, e2] = −(γ + D)e2 + η(C − γ)e3,

[e1, e3] = η(C + γ)e2 + (γ − D)e3,

[e2, e3] = 0,

(2.3)

and

(2.4)

{

e1(γ) = η − 2γ(C + D),

e2(γ) + η e3(γ) = 0.

In particular, (M1, g) is locally homogeneous if and only if γ is constant (or

C = D = 0 and γ satisfies (3.1), as we shall remark on Section 3).

Segre type {11, 1}: when c = b 6= a, a three-dimensional Lorentz manifold (M2, g)

is curvature homogeneous up to order one if and only if there exists (at least locally)

a pseudo-orthonormal basis {e1, e2, e3}, with e3 timelike, a constant G and a function

I, such that

[e1, e2] = −e2 − (G + 2)e3,

[e1, e3] = −Ge2 + e3,

[e2, e3] = 2(G + 1)e1 − Ie2 − Ie3,

(2.5)

and

(2.6)











a = −2(G + 1)2,

b = −(e2 + e3)(I),

e1(I) = I(G + 1).

In particular, (M2, g) is locally homogeneous if and only if I is constant.
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Remark 2.1 In [3], the case of Segre type {11, 1} described here by (2.5) and (2.6)

is written in exactly the same way, even if later on the authors pass to a “null” frame

field. The case of Segre type {21} described here by (2.3) and (2.4), is presented in [3]

directly in terms of a null frame field. Here, we choose to use a pseudo-orthonormal

frame field, because such a frame was used in [6] for the description of the homoge-

neous models. Starting from the null frame field {E1, E2, E3} used in [3], the pseudo-

orthonormal frame field {e1, e2, e3} we used in (2.3) and (2.4) is defined as follows:

e1 = E1, e2 = η
E2 + E3√

2
, e3 =

E2 − E3√
2

.

In the sequel, we shall denote by (M1, g) a three-dimensional Lorentz manifold,

curvature homogeneous up to order one, described by (2.3) and (2.4), and by (M2, g)

a three-dimensional Lorentz manifold, curvature homogeneous up to order one, de-

scribed by (2.5) and (2.6).

Let (M, g) be a three-dimensional Lorentz manifold. In order to describe the cur-

vature of (M, g) with respect to a pseudo-orthonormal frame {ei}, we put

∇ei
e j =

∑

k

ε jBi jkek.

Functions Bi jk completely determine the Levi-Civita connection of (M, g). Note that

from ∇g = 0 it follows that Bik j = −Bi jk, for all i, j, k. In particular, Bi j j = 0 for all

indices i and j. Functions Bi jk are determined by the expression of the Lie brackets

of vectors e1, e2, e3 and conversely, since the well-known Koszul formula yields

(2.7) 2ε jεkBi jk = 2g(∇ei
e j , ek) = g([ei , e j], ek) − g([e j , ek], ei) + g([ek, ei], e j).

As concerns the covariant derivative of the Ricci tensor, easy calculations show

that

(2.8) ∇i̺ jk = −
∑

t

(

ε jBi jt̺tk + εkBikt̺t j

)

for all indices i, j, k. We now treat the cases of (M1, g) and (M2, g) separately.

Curvature of (M1, g): Consider a three-dimensional Lorentz manifold (M1, g) de-

scribed by (2.3) and (2.4). Starting from (2.3), we can use (2.7) to determine the

Levi-Civita connection of (G, g). Standard calculations then give

(2.9)

∇e1
e1 = 0, ∇e2

e1 = (γ + D)e2 + ηγe3, ∇e3
e1 = −ηγe2 + (D − γ)e3,

∇e1
e2 = ηCe3, ∇e2

e2 = −(γ + D)e1, ∇e3
e2 = ηγe1,

∇e1
e3 = ηCe2, ∇e2

e3 = ηγe1, ∇e3
e3 = (D − γ)e1.

Using (2.9) and the definition of the curvature tensor (and taking into account (2.4)),

we easily get

R(e1, e2)e1 = −(D2 + η)e2 − e3, R(e1, e3)e3 = (η − D2)e1, R(e2, e3)e2 = −a2e3,
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that is,

R1212 = −D2 − η, R1313 = D2 − η, R2323 = D2,

R1213 = 1 R1223 = 0, R1323 = 0.

From (2.1) it then follows that the Ricci components are given by

(2.10) ̺i j =





−2D2 0 0

0 −2D2 − η 1

0 1 2D2 − η





(according to Segre type {21} for the Ricci operator, and condition a = b + η).

Finally, using (2.9) and (2.10) in (2.8), we find that the only possibly non-vanishing

components of ∇̺ are

(2.11)

∇1̺22 = ∇1̺33 = −2ηC, ∇1̺23 = 2C,

∇2̺12 = ηD, ∇2̺13 = −D,

∇3̺12 = −D, ∇3̺13 = ηD,

and the ones obtained from them using the symmetries of ∇̺.

Curvature of (M2, g): Let (M2, g) be described by (2.5) and (2.6). We can proceed

exactly as in the previous case. So, from (2.5) and (2.7) we obtain

(2.12)

∇e1
e1 = 0, ∇e2

e1 = e2 + (G + 2)e3, ∇e3
e1 = Ge2 − e3,

∇e1
e2 = 0, ∇e2

e2 = −e1 − Ie3, ∇e3
e2 = −Ge1 + Ie3,

∇e1
e3 = 0, ∇e2

e3 = (G + 2)e1 − Ie2, ∇e3
e3 = −e1 + Ie2.

From (2.12) and the definition of the curvature tensor, we get

R(e1, e2)e1 = −(G + 1)2e2,

R(e1, e3)e3 = −(G + 1)2e1,

R(e2, e3)e2 =

(

G + 1)2 − (e2 + e3)(I)
)

e3,

that is, taking into account (2.6),

R1212 = −(G + 1)2
=

a

2
, R1213 = 0,(2.13)

R1313 = (G + 1)2
= −a

2
, R1223 = 0,

R2323 = (G + 1)2 − (e2 + e3)(I) = −a

2
− b, R1323 = 0.
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From (2.1) and (2.13) we have

(2.14) ̺i j =





a 0 0

0 b 0

0 0 −b





(according to Segre type {11, 1} and condition c = b 6= a for the eigenvalues of the

Ricci operator). We can now use (2.12) and (2.14) in (2.8), and we obtain that the

only possibly non-vanishing components of ∇̺ are

∇2̺12 = b − a, ∇2̺13 = (a − b)(G + 2),(2.15)

∇3̺12 = (b − a)G, ∇3̺13 = b − a,

and the ones obtained by them using the symmetries of ∇̺.

3 Einstein-Like Lorentz Metrics on M1

As is well known, a three-dimensional pseudo-Riemannian manifold (M, g) is locally

symmetric if and only if it is Ricci-parallel. As concerns (M1, g), (2.11) implies at

once that (M1, g) is locally symmetric if and only if C = D = 0, for any function γ

satisfying

(3.1) e1(γ) = η, e2(γ) + e3(γ) = 0.

Since a locally symmetric space is locally homogeneous, but a function γ satisfying

the first equation in (3.1) cannot be constant, this case is missing in the characteriza-

tion given in [3] of locally homogeneous spaces of the form (M1, g). Hence, Corollary

4 in [3] can be corrected in the following way.

Proposition 3.1 A Lorentz manifold (M1, g), described by (2.3) and (2.4), is locally

homogeneous if and only if either γ is constant, or C = D = 0 and γ satisfies (3.1).

Proposition 3.1 also agrees with the general result of [6], where the author proved

that any three-dimensional homogeneous Lorentz manifold is either symmetric or

is a Lie group equipped with a left-invariant Lorentz metric. More precisely, if C =

D = 0 and γ satisfies (3.1), then it is easy to check using (2.9) that (M1, g) admits a

parallel null vector field u = e2 + ηe3. To our knowledge, locally symmetric Lorentz

three-manifolds admitting a parallel null vector field were first studied in [10].

We now determine manifolds of the form (M1, g) belonging to class A. Expressing

(1.1) (equivalently, (1.2)) with respect to the pseudo-orthonormal frame {ei}, we

find that (M1, g) belongs to class A if and only if

(3.2) ∇i̺ jk + ∇ j̺ik + ∇k̺i j = 0,

for all i, j, k. Taking into account (2.11), (3.2) holds if and only if


















0 = ∇1̺22 + 2∇2̺12 = −2η(C − D),

0 = ∇1̺33 + 2∇3̺13 = −2η(C − D),

0 = ∇1̺23 + ∇2̺13 + ∇3̺12 = 2(C − D),
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that is, C = D, for any function γ (satisfying (2.4)). Hence, we have proved the

following.

Theorem 3.2 A Lorentz manifold (M1, g), described by (2.3) and (2.4), belongs to

class A if and only if C = D.

Note that, by Proposition 3.1, for any constant C = D 6= 0 and non-constant

function γ (satisfying (2.4)), (M1, g) is a nonhomogeneous space. Therefore, in this

case (M1, g) belongs to class A but is not one of the homogeneous examples described

in [7]. As we shall verify in the next section, unless it is symmetric, such a manifold

does not even admit a parallel degenerate line field and so, it is not one of the ex-

amples already described in [10]. Theorem 3.2 shows a clear difference between the

Lorentzian case and the Riemannian one, since Riemannian three-manifolds inside

class A are locally homogeneous [13].

Next, we determine manifolds of the form (M1, g) belonging to class B. Express-

ing (1.3) with respect to the pseudo-orthonormal frame {ei}, we easily find that

(M1, g) belongs to class B if and only if

(3.3) ∇i̺ jk = ∇ j̺ik,

for all i, j, k. By (2.11), one can conclude at once that (3.3) holds if and only if

D = −2C , for any function γ (satisfying (2.4)). So, we have proved the following.

Theorem 3.3 A Lorentz manifold (M1, g), described by (2.3) and (2.4), belongs to

class B if and only if D = −2C.

For any constant D = −2C 6= 0 and non-constant function γ (satisfying (2.4)),

(M1, g) is a nonhomogeneous three-dimensional Lorentz manifold (curvature ho-

mogeneous up to order one) belonging to class B. So, it is not an example listed in

[7]. Moreover, as we shall see in the next section, unless it is symmetric, this manifold

does not admit a parallel degenerate line field.

4 (M1, g) Admitting a Parallel Degenerate Line Field

A parallel degenerate line field over a Lorentz manifold (M, g), is a one-dimensional

distribution D, such that ∇D ⊂ D. A parallel degenerate line field is locally spanned

by a nonvanishing null vector field u satisfying ∇u = ω ⊗ u, where ω is a (local)

1-form over M. In particular, if ω = 0, then u is a parallel null vector field over M.

Three-dimensional Lorentz manifolds admitting a parallel degenerate line field

have been investigated in [10]. Such a manifold admits local coordinates (t, x, y) such

that, with respect to the “null” local frame field {( ∂
∂t

), ( ∂
∂x

), ( ∂
∂y

)}, the Lorentzian

metric g and the Ricci operator are given by

(4.1) g =





0 0 1

0 ε 0

1 0 f



 , Q =







1
2

ftt
1
2

ftx − 1
2ε

fxx

0 0 1
2ε

ftx

0 0 1
2ε

ftt






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for some function f = f (t, x, y), where ε = ±1 and U = ( ∂
∂t

) is a null vector field

spanning a parallel degenerate line field. Starting from explicit expressions given in

(4.1), many curvature properties of these manifolds have been investigated in [10]. In

particular, Lorentz three-manifolds admitting a parallel degenerate line field, which

are either locally symmetric or equipped with Einstein-like Lorentz metrics, have

been completely described in [10].

It is easy to build a (local) pseudo-orthonormal frame field from
{

( ∂
∂t

), ( ∂
∂x

), ( ∂
∂y

)
}

and to check that in many cases, the Ricci operator described by (4.1) is of Segre type

{21}. So, it is particularly interesting to check when (M1, g) admits a parallel degen-

erate line field. The answer is provided by the following.

Theorem 4.1 A Lorentz manifold (M1, g), described by (2.3) and (2.4), admits a

parallel degenerate line field if and only if D = 0. In this case, (M1, g) also admits a

parallel null vector field.

Proof The “if” part follows almost immediately from (2.9). In fact, we can consider

an arbitrary smooth function µ : M → R, µ 6= 0, and (at least, locally) the vector

field u = µ(e2 + ηe3). Then, ‖u‖2
= 0, that is, u is a null vector field. Moreover,

assuming D = 0, by (2.9) we get

∇e1
u = (

1

µ
e1(µ) + C)u, ∇e2

u =

1

µ
e2(µ)u, ∇e3

u =

1

µ
e3(µ)u.

Therefore, u spans a parallel degenerate line field. In particular, choosing µ as a

solution of the system of partial differential equations

(4.2)











e1(µ) = −Cµ,

e2(µ) = 0,

e3(µ) = 0,

we obtain that u = µ(e2 + ηe3) is a parallel null vector field. Note that (2.3) and (4.2)

easily imply that integrability conditions for (4.2), namely, [ei , e j](µ) = ei(e j(µ)) −
e j(ei(µ)), are satisfied for all indeces i, j.

Conversely, suppose now that (M1, g) admits a parallel degenerate line field.

Hence, there exists (locally) a null vector field u and a 1-form ω, such that ∇u =

ω ⊗ u. With respect to the pseudo-orthonormal frame {e1, e2, e3} and its dual frame

{θ1, θ2, θ3}, we can write u = x1e1 + x2e2 + x3e3 and ω = λ1θ1 + λ2θ2 + λ3θ3, for

some smooth functions xi , λi : M → R. Note that since u is a (nonvanishing) null

vector field, we have 0 = ||u||2 = x2
1 + x2

2 − x2
3 and so, x3 6= 0 at any point. Expressing

condition ∇u = ω ⊗ u in terms of the pseudo-orthonormal frame {e1, e2, e3}, we

have ∇ei
u = λiu for all i = 1, 2, 3, that is, using (2.9), functions xi , λi must satisfy
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the following system of partial differential equations:

(4.3)























































































e1(x1) = λ1x1,

e1(x2) = λ1x2 − ηCx3,

e1(x3) = λ1x3 − ηCx2,

e2(x1) = λ2x1 + (γ + D)x2 − ηγx3,

e2(x2) = λ2x2 − (γ + D)x1,

e2(x3) = λ2x3 − ηγx1,

e3(x1) = λ3x1 − ηγx2 + (γ − D)x3,

e3(x2) = λ3x2 + ηγx1,

e3(x3) = λ3x3 + (γ − D)x1.

Now, we can compute [ei , e j](xk), for all indices i, j, k, using both (4.3) and (2.3). In

particular, we get

(4.4)

{

0 = [e2, e3](x2) = (e2(λ3) − e3(λ2))x2 − D2x3,

0 = [e2, e3](x3) = (e2(λ3) − e3(λ2))x3 − D2x2.

Since x3 6= 0 at any point, we can compute e2(λ3)− e3(λ2) from the second equation

in (4.4) and replace it in the first one. In this way, we obtain D2(x2
2 − x2

3) = 0, that is,

either D = 0 or x3 = ± x2. We now prove that, even when x3 = ± x2, we necessarily

have D = 0. In fact, from ||u||2 = 0 and x3 = ± x2 it follows x1 = 0. When x3 = x2,

taking into account x1 = 0, the fourth equation in (4.3) gives at once −Dx2 = 0

and so, D = 0 (since x2 = x3 6= 0). When x3 = −x2, then the fourth and seventh

equations in (4.3) become

(4.5)

{

(γ + ηγ + D)x2 = 0,

−(γ + ηγ − D)x2 = 0.

Since x2 = −x3 6= 0, summing the two equations in (4.5), we have that D = 0.

Remark 4.2 Comparing the results of Theorem 4.1 with those of Theorem 3.2, we

can conclude that when (M1, g) belongs to class A, it admits a parallel degenerate line

field if and only if C = D = 0, that is, when (M1, g) is locally symmetric. Therefore,

whenever C = D 6= 0, the Lorentz manifold (M1, g) belongs to class A but does not

admit a parallel degenerate line field (and so, it is not an example described in [10]).

A similar argument, starting from Theorems 3.3 and 4.1, leads us to conclude that

a Lorentz manifold (M1, g) belonging to class B admits a parallel degenerate line

field if and only if D = −2C = 0 (in particular, it is locally symmetric). Whenever

D = −2C 6= 0, (M1, g) belongs to class B but does not admit a parallel degenerate

line field.
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We end this section with the classification of Lorentz manifolds (M2, g) admitting

a parallel degenerate line field. As was proved in [10], a Lorentz metric described by

(4.1) has constant Ricci eigenvalues and a diagonalizable Ricci operator if and only if

(4.6) f (t, x, y) = kt2 + tP(y) + xη(y) + ξ(y),

for some smooth functions P, η, ξ. Using (4.6) in (4.1), one easily finds that the Ricci

eigenvalues are 0 and k, the latter of multiplicity two. Comparing these with the

eigenvalues a, b of (M2, g) as described in (2.6), we then get G + 1 = 0 (and a = 0 6=
k = b). Proceeding as in the proof of Theorem 4.1, via standard calculations we then

obtain the following.

Theorem 4.3 A Lorentz manifold (M2, g) described by (2.5) and (2.6) admits a par-

allel degenerate line field if and only if G = −1.

5 Einstein-Like Lorentz Metrics on M2 and Classification Results

We first remark that (2.15) implies at once that (M2, g) is locally symmetric if and

only if a = b. In this case, all Ricci eigenvalues coincide, that is, (M2, g) has constant

sectional curvature a
2
. However, since a = b contradicts c = b 6= a, this possibility

was correctly excluded in [3].

Next, (M2, g) belongs to class A if and only if (3.2) is satisfied. Because of (2.15),

(3.2) implies

0 = ∇1̺22 + 2∇2̺12 = b − a

that is, a = b. Therefore, a Lorentz manifold (M2, g) described by (2.5) and (2.6) never

belongs to class A (or, if we admit the possibility a = b, it belongs to class A only in

the trivial case when (M2, g) has constant sectional curvature).

In the same way, (M2, g) belongs to class B if and only if (3.3) holds. Because of

(2.15), we have that ∇1̺22 = ∇2̺12 implies at once 0 = b − a, that is, a = b. Hence,

a Lorentz manifold (M2, g) described by (2.5) and (2.6) never belongs to class B.

It is not surprising that no exceptional examples arise among (M2, g), because the

case of a Lorentz manifold having a diagonal Ricci operator is the most similar to the

Riemannian case. Since (M1, g) and (M2, g) are the only nonhomogeneous examples

of Lorentz three-manifolds which are curvature homogeneous up to order one [3],

taking into account the results of [7] we can state the following classification results.

Theorem 5.1 The class of three-dimensional Lorentz manifolds curvature homoge-

neous up to order one and belonging to class A consists of

• Lorentz manifolds locally isometric to a naturally reductive space [8],
• locally homogeneous spaces, locally isometric to some homogeneous Lorentz mani-

folds which are not naturally reductive [7],
• M1 with C = D 6= 0 and γ any non-constant function satisfying (2.4).

Theorem 5.2 The class of three-dimensional Lorentz manifolds curvature homoge-

neous up to order one and belonging to class B consists of

• locally symmetric spaces,
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• some locally homogeneous spaces which are not locally symmetric [7],
• M1 with D = −2C 6= 0 and γ any non-constant function satisfying (2.4).

The full classification of locally homogeneous Lorentz three-manifolds belonging

to either class A or B can be found in [7], while three-dimensional naturally re-

ductive Lorentzian spaces have been classified in [8]. Theorems 5.1 and 5.2 show

that Lorentz three-manifolds, curvature homogeneous up to order one and belonging to

either class A or B need not even to be locally homogeneous. Compared with the re-

sults of [4] and [13], Theorems 5.1 and 5.2 emphasize how different it is to consider

Einstein-like metrics in the Lorentzian framework and in the Riemannian one.

6 Conformally Flat Lorentz Metrics on M1

As is well known, a three-dimensional pseudo-Riemannian manifold (M, g) is (lo-

cally) conformally flat if and only if its Schouten tensor c vanishes, that is,

(6.1) c(X,Y, Z) = (∇X̺)(Y, Z) − (∇Y ̺)(X, Z)

− 1
2

(

g((∇Xτ )Y, Z) − g((∇Y τ )X, Z)
)

= 0,

for all vector fields X, Y and Z, where τ denotes the scalar curvature of (M, g). It is

also well known that whenever the scalar curvature τ is constant, (6.1) reduces ex-

actly to (1.3), that is, a pseudo-Riemannian three-manifold (M, g) of constant scalar

curvature is conformally flat if and only if it belongs to class B. In particular, since

the scalar curvature is defined by contraction of the Ricci tensor, it is constant on

any curvature homogeneous pseudo-Riemannian manifold. Therefore, from Theo-

rem 5.2 we get the following.

Theorem 6.1 The class of conformally flat three-dimensional Lorentz manifolds with

curvature homogeneous up to order one consists of

• locally symmetric spaces,
• some locally homogeneous spaces which are not locally symmetric [7],
• M1 with D = −2C 6= 0 and γ a non-constant function satisfying (2.4).

Theorem 6.1 confirms that conformal flatness is a weaker assumption in Lorent-

zian geometry than in the Riemannian framework. In fact, locally symmetric spaces

are the only conformally flat curvature homogeneous Riemannian manifolds [9, 17].

Other interesting differences about conformal flatness in Riemannian and Lorentzian

geometries were emphasized in [10].
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