## PROBLEMS FOR SOLUTION

P40. (Conjecture). If the edges of a convex polyhedron form a "cage" surrounding a sphere of unit radius, then these edges have a total length of at least $9 \sqrt{3}$ (see Math. Rev. 20 (1959), Rev. 1950).
H. S. M. Coxeter

P41. Let $P_{1}, P_{2}, P_{3}, P_{4}$ be any four points in the plane, no three collinear. On $P_{i} P_{i+1}$ construct a square with centre $Q_{i}$ so that the triangles $Q_{i} P_{i} P_{i+1}$ all have the same "orientation" ( $\mathrm{i}=1,2,3,4 ; P_{5}=P_{1}$ ). Show that the segments $Q_{1} Q_{3}$ and $Q_{2} Q_{4}$ have the same lengths, and the lines containing them are perpendicular.

W.A.J. Luxemburg

P42. Let $q_{n}=1+\Sigma_{r=1}^{n} \phi(r)$ where $\phi$ denotes the Euler totient function and let $p_{n}$ be the $n$-th prime ( $p_{1}=2$ ). Prove that $p_{n}=q_{n}$ for $n=1,2,3,4,5,6$ but for no other values of $n$.
L. Moser

P43. Let $G$ be a group generated by $P$ and $Q$, and let $H$ be the cyclic subgroup generated by $P$. If $P$ and $Q$ satisfy only the relations $P^{2} P Q=Q^{2}$ and $Q^{2} P Q^{-4}=P^{k}$ for some $k$, then the index of $H$ in $G$ is 14.
N. S. Mendelsohn

## SOLUTIONS

P7. Define $f(n)$ by $n^{f(n)}| | n!$, i. e., $n^{f(n)} \mid n!$ and $n^{f(n)+1} \not X_{n}$ !
(a) Prove that $\lim \sup (f(n) \log n /(n \log \log n))=1$.
(b) Prove that if $p$ is the greatest prime factor of $n$, then for almost all $n$,

$$
f(n)=\sum_{i=1}^{\infty}\left[n / p^{i}\right]
$$

(Almost all means all $n$ excepting a sequence of density 0. )

## P. Erdōs

Solution by the proposer.
(a) I shall prove that for infinitely many $n$
(i) $f(n)>(1-\varepsilon)(n \log \log n) / \log n$,
and for all $n>n_{0}(\varepsilon)$
(ii) $f(n)<(1+\varepsilon)(n \log \log n) / \log n$.

Put $n!=\prod_{p \leq n} p^{\alpha_{p}}, \quad \alpha_{p}=[n / p]+\left[n / p^{2}\right]+\ldots$
Clearly $\alpha_{p}<n /(p-1)$. Thus, if $q^{\beta} q| | n$ we have

$$
\begin{equation*}
\mathrm{f}(\mathrm{n})<\min _{\mathrm{q} \mid \mathrm{n}} \mathrm{n} /(\mathrm{q}-1) \beta_{\mathrm{q}} \tag{1}
\end{equation*}
$$

Hence, if $f(n) \geq(1+\varepsilon) n(\log \log n) / \log n$, we have from (1) that for every $q \mid n$,

$$
\begin{equation*}
1 \leq \beta_{\mathrm{q}}<(\log n) /(1+\varepsilon)(q-1) \log \log n \tag{2}
\end{equation*}
$$

Now (2) implies that all prime factors of $n$ are less than or equal to $1+(\log n) /(1+\varepsilon) \log \log n$. Hence, from (2),
$n \leq \prod_{q<1+(\log n) /(1+\varepsilon) \log \log n^{(\log n) /(q-1)(1+\varepsilon) \log \log n}}$ or
$\log n$
$\leq \frac{\log n}{(1+\varepsilon) \log \log n} \sum_{q<1+(\log n) /(1+\varepsilon) \log \log n}(\log q) /(q-1)$ $<\frac{\log n}{1+\varepsilon}$.

To prove (i), let $t$ be large and put

$$
\beta_{q}=[t /(q-1)], \quad m=\prod_{q \leq t} q^{\beta q} .
$$

Then

$$
\begin{equation*}
\log m=\Sigma_{t \leq q} \beta_{q} \log q=t \log t+O(t) \tag{3}
\end{equation*}
$$

Clearly

$$
\begin{equation*}
f(m)=\min _{q \leq t} \alpha_{q} / \beta_{q} \geq \min _{q \leq t} \alpha_{q}(q-1) / t \tag{4}
\end{equation*}
$$

where $q^{\alpha} q| | m!$.
Now

$$
\begin{equation*}
\alpha_{q}=[\mathrm{m} / \mathrm{q}]+\left[\mathrm{m} / \mathrm{q}^{2}\right]+\ldots \geq \frac{\mathrm{m}}{\mathrm{q}-1}-\frac{\log \mathrm{m}}{\log 2} . \tag{5}
\end{equation*}
$$

Thus, from (3), (4), and (5),

$$
\begin{align*}
f(m) & \geq \min _{q \leq t}\left(\frac{m}{q-1}-\frac{\log m}{\log 2}\right) \frac{q-1}{t}  \tag{6}\\
& >\frac{m}{t}-2 \log m
\end{align*}
$$

Now (3) implies, by simple calculation, that

$$
\begin{equation*}
t=(1+o(1))(\log m) / \log \log m \tag{7}
\end{equation*}
$$

and (6) and (7) imply that (1) holds for m .
(b) Let $\mathrm{P}(\mathrm{n})$ be the largest prime factor of n . We show that for almost all $n$

$$
\begin{equation*}
f(n)=\Sigma_{k}\left[n / p_{(n)}^{k}\right] \tag{8}
\end{equation*}
$$

Of course

$$
{\underset{(n)}{ }}_{\Sigma\left[n / p_{(n)}\right.}^{\left.k^{k}\right]} \|_{\|!}
$$

Thus, for all $n, f(n) \leq \Sigma_{k}[n / P(n)]$. Now we show that for every $\varepsilon>0$ and $x>x(\varepsilon)$, (8) holds for all but $\varepsilon x$ integers $\leq x$.

Let $A=A(\varepsilon)$ be large. If $q^{\alpha} \mid n, \alpha>1, q^{\alpha}>A$, then $n$ is divisible by a square $\geq A^{2 / 3}$. To see this, observe that if $\alpha$ is even nothing has to be proved; and if $\alpha$ is odd, then $\alpha \geq 2$ and $q^{\alpha-1} \geq A^{(\alpha-1) / \alpha} \geq A^{2 / 3}$. It follows that the number of integers $\leq \mathrm{x}$ with $\mathrm{P}^{\alpha} \mid \mathrm{n}, \alpha>1, \mathrm{p}^{\alpha}>\mathrm{A}$ is less than

$$
\sum_{k \geq A^{2 / 3^{n / k^{2}}<n / A^{1 / 3}}<\varepsilon n / 2}
$$

for $A>A(\varepsilon)$. Thus we may restrict our attention to the integers n for which $\mathrm{p}^{\alpha} \mid \mathrm{n}, \alpha>1$ implies $\mathrm{p}^{\alpha} \leq \mathrm{A}$. The number of integers $n=p_{1}^{\alpha_{1}} \mathrm{p}_{2}^{\alpha_{2}} \cdots \mathrm{p}_{(\mathrm{n})}^{(\alpha)_{n}}\left(\mathrm{p}_{1}<\mathrm{p}_{2}<\ldots<\mathrm{p}_{(\mathrm{n})} \leq \mathrm{A}\right)$ in this class is clearly less than $2^{A}<\varepsilon x / 2$ for sufficiently large $x$ (since $\mathrm{p}_{\mathrm{i}}^{\alpha_{i}} \leq \mathrm{A}$ and we have $\leq A$ choices for the $\mathrm{P}_{\mathrm{i}}^{\alpha_{i}}$ ). For the integers which do not belong to any of these classes (8) holds. To see this put

$$
n=\prod_{i=1}^{(n)} p_{i}^{\alpha_{i}}, p_{i}^{\alpha_{i}}| | n, p_{i}^{\alpha_{i}} \leq A \text { for } \alpha_{i}>1, p_{(n)}>A
$$

If $\alpha_{i}=1$, then $p_{i}^{f(n)} \mid n!\left(\right.$ for $\left.p_{i}^{\alpha_{i} f(n)}| | n!\right)$.
If $\alpha_{i}>1$, then because $\mathrm{P}_{\mathrm{i}} \leq \mathrm{A}<\mathrm{p}_{(\mathrm{n})}$, we have

$$
\Sigma\left[n / p_{i}^{k}\right]>\alpha_{i} \Sigma\left[n / p_{(n)}{ }^{k}\right]
$$

so that $p_{i}^{\alpha_{i} f(n)}| | n!$, and we are done.

P8. Let $F$ be a field of characteristic 2; Let $F^{*}$ be its multiplicative group and let $F^{2}$ be the subfield of the squares of $F$. As sume $F^{2} \neq F$. Show (i) $F, F^{2}$ and $F^{*} / F^{2^{*}}$ have the same cardinal number; (ii) there exist two fields $F^{\circ}$ and $F^{\infty}$ such that $F^{\infty} \subset F \subset F^{\circ},\left(F^{\circ}\right)^{2}=F^{\circ},\left(F^{\infty}\right)^{2}=F^{\infty}$ and such that every field $G$ with $G=G^{2}$ and containing $F$ (contained in $F$ ) contains a field isomorphic to $\mathrm{F}^{\circ}$ (is contained in $\mathrm{F}^{\infty}$ ).

> P. Scherk.

Solution by the proposer. Let $F=\{\alpha, \beta, \ldots\}$ be a field of characteristic 2 ; thus $\alpha=-\alpha$. Put $F^{2}=\left\{\alpha^{2}, \beta^{2}, \ldots\right\}$. Then

$$
\begin{equation*}
\alpha \rightarrow \alpha^{2} \tag{1}
\end{equation*}
$$

is a mapping of $F$ onto $F^{2}$. Since $\alpha^{2}=\beta^{2}$ implies $\alpha=\beta$, this mapping is $1-1$. It maps products onto products and due to

$$
(\alpha+\beta)^{2}=\alpha^{2}+\beta^{2}
$$

also sums on sums. Thus $F^{2}$ is a subfield of $F$ and (1) is an isomorphism of $F$ onto $F^{2}$. In particular $F$ and $F^{2}$ have the same cardinal number. Hence $F=F^{2}$ if $F$ is finite. (However there are transcendental extensions $F$ of finite fields of characteristic 2 such that $F \neq F^{2}$.)

For any $F$ let $F^{*}$ denote the multiplicative group of the elements $\neq 0$ of $F$. Suppose now $F^{2} \neq F$. Thus $F^{2 *}$ will be a proper subgroup of $F^{*}$. Choose any $\delta \in F, \delta \notin F^{2}$. Then

$$
\begin{equation*}
\alpha \rightarrow \delta+\alpha^{2} \tag{2}
\end{equation*}
$$

will map $F^{*}$ into itself. If $\delta+\alpha^{2}$ and $\delta+\beta^{2}$ lie in the same coset of $F^{2^{*}}$, then $\delta+\alpha^{2}=\gamma^{2}\left(\delta+\beta^{2}\right)$ for some $\gamma$. If $\gamma \neq 1$, then

$$
\delta=\frac{\alpha^{2}+\gamma^{2} \beta^{2}}{1+\gamma^{2}}=\left(\frac{\alpha+\gamma \beta}{1+\gamma}\right)^{2} \in F^{2} .
$$

Thus $\gamma=1, \alpha^{2}=\beta^{2}$ and $\alpha=\beta$. Hence (2) maps different elements of $F^{*}$ into different cosets. In particular, the cardinal number of $F^{*} / F^{2^{*}}$ is not smaller than that of $F^{*}$. Hence they are equal.

Iterating the construction of $F^{2}$, we obtain a sequence of subspaces

$$
\begin{equation*}
F \supset F^{2} \supset F^{4} \supset \ldots \supset F^{\infty}=\cap_{1}^{\infty} F^{2 n} \tag{3}
\end{equation*}
$$

[Being the intersection of fields, $F^{\infty}$ certainly is a field.]
Let $\alpha \in F^{\infty}$. Thus $\alpha \in F^{2 n}$ for all $n>0$. Hence there is a $\beta_{n} \in F^{2^{n-1}}$ such that $\alpha=\beta_{n}{ }^{2}$. Let $n<m$. Then $\beta_{m}{ }^{2}=\beta_{n}^{2}=\alpha$ and both $\beta_{m}$ and $\beta_{n}$ lie in $F^{2 n-1}$. The solution of $\xi^{2}=\alpha$ being unique in $F^{2^{n-1}}$, we have $\beta_{m}=\beta_{n}=\beta$, say. Thus $\beta \in F^{2^{n-1}}$ for all $n$, i. e. $\beta \in F^{\infty}$. We have $\alpha=\beta^{2}$. Hence the restriction of (1) to $F^{\infty}$ becomes an automorphism, and $\left(F^{\infty}\right)^{2}=F^{\infty}$.

Obviously, two elements $\alpha$ and $\beta$ of $F^{*}$ lie in the same coset of $F^{2 *}$ if and only if $\alpha^{2}$ and $\beta^{2}$ lie in the same coset of $F^{4^{*}}$ in $F^{2^{*}}$. Thus (1) induces an isomorphism of $F^{*} / F^{2^{*}}$ onto $F^{2 *} / F^{4^{*}}$. More generally, all the factor groups $\left(F^{2 n-1}\right)^{*} /\left(F^{2 n}\right)^{*}$ will be isomorphic. Hence the fields (3) must be mutually distinct if $F \neq F^{2}$.

If $H$ is a subfield of $F, H^{2}$ will be a subfield of $F^{2}, H^{2^{n}}$ will be one of $\mathrm{F}^{2^{n}}$ and $\mathrm{H}^{\infty} \subset \mathrm{F}^{\infty}$. In particular $\mathrm{H}=\mathrm{H}^{2}$ implies $H=H^{\infty} \subset F^{\infty}$.

We can also proceed in the opposite direction by adjoining to the field $F$ the square roots of all of its elements. This leads to a new field $F^{\frac{1}{2}} \supset F$ satisfying $\left(F^{\frac{1}{2}}\right)^{2}=F$. We then can define $\mathrm{F}^{2-\mathrm{n}}$ by induction. The field

$$
F^{0}=U_{n=1}^{\infty} F^{2^{-n}}
$$

satisfies

$$
F \subset F^{\frac{1}{2}} \subset F^{\frac{1}{4}} \subset \ldots \subset F^{0}=\left(F^{0}\right)^{2}
$$

If $F$ is a subfield of $G$, then $F^{2^{-n}} \subset G^{2^{-n}}$ for all $n$ and $F^{\circ} \subset G^{\circ}$. In particular $G=G^{2}$ implies $F^{\circ} \subset G^{\circ}=G$.

P13. Angular measure in a Minkowski plane is sometimes defined proportional to the area of the corresponding sector of the unit circle $U$, sometimes proportional to the arc length of U. Determine all Minkowski metrics where the two measures are proportional.

## H. Helfenstein.

Solution by the proposer. Let $r=f(\phi)$ be the polar equation of $U$ in an associated EucIidean metric. If we assume continuous differentiability of $f(\phi)$ (the proof can be modified to avoid this) and denote by $\psi$ the angle between the radius vector and the tangent of $U$ we arrive at the following identity in $\theta$

$$
\int_{0}^{\theta} \frac{\left[f^{2}(\phi)+f^{\prime 2}(\phi)\right]^{\frac{1}{2}} d \phi}{f(\phi+\psi)}=k \int_{0}^{\theta} f^{2}(\phi) d \phi
$$

where $k$ is the factor of proportionality. Differentiating with respect to $\theta$ and replacing $f^{\prime}(\theta)$ by $f(\theta) \cot \psi$ we obtain
$\operatorname{kf}(\theta) f(\theta+\psi) \sin \psi= \pm 1$, which is the conjugate diameter condition for Radon curves. Hence the desired Minkowski metrics are those with symmetric perpendicularity.

