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Abstract

Let X1, X2, ... and Yy, Ya, ... be two sequences of absolutely continuous, independent
and identically distributed (i.i.d.) random variables with equal means E(X;) = E(Y;), i =
1,2, .... In this work we provide upper bounds for the total variation and Kolmogorov
distances between the distributions of the partial sums > ;_; X; and ) i, Y;. In the case
where the distributions of the X;s and the Y;s are compared with respect to the convex
order, the proposed upper bounds are further refined. Finally, in order to illustrate the
applicability of the results presented, we consider specific examples concerning gamma
and normal approximations.
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1. Introduction

Suppose that X1, X», ... is a collection of independent and identically distributed (i.i.d.)
random variables and that Y, Y5, ... is another collection of i.i.d. random variables, different
from the first one. It is often of interest to provide an estimate for the closeness of the
distributions of the partial sums Y i, X; and ) _;_, ¥; in the form of an upper bound for the total
variation distance and the Kolmogorov distance, in the case where the marginal distributions
of X; and Y; are compared with respect to certain classes of stochastic orderings. Such an
interest also arises from the fact that the distribution of the partial sum of one of the collections
is often unknown, yet the distribution of the partial sum of the other is not only known, but
indeed, is one of the most frequently used in statistics for inferential purposes. For instance, it
is not clear what the distribution of the partial sum of i.i.d. random variables from the Weibull
distribution is. However, it is known that the Weibull distribution can be compared with the
exponential distribution with respect to the so-called convex order. In addition, the sum of i.i.d.
exponential random variables follows the gamma distribution. Therefore, it would be reasonable
to expect that, when the difference between the variances of the marginal distributions is small,
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the distribution of the sum of i.i.d. Weibull random variables can be well approximated by a
gamma law. As demonstrated in Section 3, employing the convex order relation, upper bounds
for the total variation distance and the Kolmogorov distance between the distribution of that
partial sum and the distribution of the partial sum of i.i.d. exponentially distributed random
variables are readily available. We would also like to emphasize that we are mainly interested
in the case of fixed n, for otherwise, classical central limit theory provides almost all the answers
regarding the closeness of the distributions of the partial sums.

In this work, our study will be focused mainly on distributions which are compared with
respect to the convex order. Vaggelatou (2009) gave upper bounds for the total variation
distance and the Kolmogorov distance between the distributions of two different collections
of independent, integer-valued, convex-ordered random variables. For absolutely continuous
random variables, in order to obtain results analogous to the discrete case, further assumptions
are needed. In this paper we consider the case of absolutely continuous random variables with
their partial sums having absolutely continuous densities.

In Section 2 we provide the main machinery for obtaining upper bounds. Theorem 1, which
can be thought of as a ‘source’ result, gives upper bounds in general forms. The bounds contain
quantities such as the Kolmogorov distance, the total variation distance, and the Zolotarev ¢
metric between representative observations from the two collections. When comparing the
distributions of the X;s and the Y;s with respect to the convex order, Corollary 1 provides upper
bounds which are further refined.

In Section 3 we exploit the results of Section 2 to obtain upper bounds for the total variation
distance and the Kolmogorov distance between the distributions of the partial sums of i.i.d.
random variables from important specific distributions with convexly ordered marginal laws.
In particular, cases considered are those of distances between the distribution of the partial sum
of i.i.d. observations from the Weibull distribution and the gamma distribution. Furthermore,
we consider the case of observations from more general classes of distributions, namely the
so-called new better than used in expectation (NBUE) and new worse than used in expectation
(NWUE) distributions. Specifically, we provide upper bounds for the case of approximating
the distribution of the sum of i.i.d. NBUE and NWUE random variables by a suitable gamma
distribution. Finally, we consider the case of the distribution of the partial sum of i.i.d.
observations from the Student #-distribution and the normal distribution. The results obtained
are compared with other known results in the literature.

2. Main results

For any two random variables X and Y defined on the same probability space (€2, P) and
with values in R, the fotal variation distance between their distributions is, by definition,

ptv(X,Y):= sup |P(X €A —P{ €A
AeB(R)

In the case in which the random variables X and Y have densities fx and fy, respectively, the
total variation distance is

1
prv(X,Y) = 5/ [ fx (@) — fr(®)|dt.
R

Moreover, the Kolmogorov distance is defined by

Ppk(X,Y) :=sup|P(X <1t) —P(Y <1)|.
teR
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For random variables X and Y with finite second moments, i.e. E(X?) < coand E(Y?2) < oo,
the rotal variation distance of order 2 or Zolotarev {-metric (see Zolotarev (1983)) is defined
by

(X, Y) i=/R|E(X — 04 —EY —1)4]dr,

where (x);+ = max(x, 0). Here, we note thatif X and Y have expectations E(X) and E(Y) then
the finiteness of {> (X, Y) implies that E(X) = E(Y), and ¢, admits the following representation
(see Rachev (1991, p. 258)):

t
(X, Y) = /];Q ‘ f (Fx(u) — Fy(u)) dul ds

-

where Fy and Fy denote the cumulative distribution function (CDF) of the random variables
X and Y, respectively. It is then important to note that, from now on, whenever the distance
£ (X, Y) appears, it will be assumed that X and Y have finite second moments and that E(X) =
E(Y). Note also that, as we will see later on, the equality of means is a natural situation that
results from the convex order relation between two distributions (see Remark 2, below).

For a function f: R — R, the symbol % will denote the kth-order derivative of f, i.e.

+00
/ (Fx(u) — Fy(u)) du| dt
t

df f(x)
dkx

O = x €R.

The result that follows offers a relationship between the Kolmogorov distance and the metric
&> for the case of real-valued random variables with densities and equal first moments.

Lemma 1. Let X and Y be absolutely continuous random variables withE(X?) < oo, E(Y?) <
oo, and E(X) = E(Y). Also, let Z be an absolutely continuous random variable independent of
X and Y. If the density fz of Z is an absolutely continuous function with ||f(l)||oo =
SUP, ¢4 |fél)(x)| < 0o, where A = {x e R: fé )(x) exists}, then

PRX+Z,Y +2) < 11 lost2(X, V).
Proof. Let Fx and Fy denote the CDFs of X and Y, respectively. We then have

oKX+ Z,Y+Z)=sup|P(X+Z<1)—P(Y +Z<1)]
teR

= sup
teR

/R(Fx(t —2)— Fy(t —2)) fz(2) dz|, )]

where the second equality follows from the independence assumption. Furthermore, using
integration by parts, we derive

/R(Fx(t -2)—Fy(t—2)fz(x)dz

— _f f}”(z)/ (Fx(t —u) — Fy(t —u))dudz, )
R —00
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because
lim fz(z) =0,
7z—+oo

f (Fx(t —u) — Fy(t —u))du = E(Y) — E(X) = 0.
R

Thus, substituting (2) into (1), we finally obtain

Pr(X +Z,Y + Z) = sup
teR

Z
ssup@f?(zn‘/ [Fx(t —u) — Fy(t —u)] du

teR

/fz(l)(z)/v (Fx(t —u)— Fy(t —u))dudz
R —00

dz

1
< 15 oot (X, Y,
and the proof is complete.
Next, we prove an analogous inequality for the total variation distance.

Lemma 2. Let X and Y be absolutely continuous random variables with E(X?) < oo,
E(Y2) < o0, and E(X) = E(Y). Also, let Z be an absolutely continuous random variable
independent of X and Y. Ifthe density fz of Z and its derivative fél) are absolutely continuous
functions then

PvX +Z,Y +2) < S £ (X, ¥,
2 2
where || £ 111 == [ 1 £ @) dx < o0.
Proof. If X + Z and Y + Z have densities fx+z and fy,z, respectively, then

1
prvIX+Z,Y+Z) = 5 /R [ fx+z) — frizu)|du

1
- 5/ ‘/(fX(t)_fY(t))fZ(u—t)dt du, 3)
RI1JR

where the second equality follows from the independence assumption.
Applying integration by parts twice, we obtain

/R (fx(@®) = fr() fz(u—1)dr = /R fz(u = 1) d(Fx(t) = Fy (1))
=- /R £37 = 0)(Fx (t) = Fy (1)) dt
= fR / LR e) - o) P ndsdr. @)
Substituting (4) into (3), we obtain h

1 13
pTv<X+z,Y+z>=E/RMJ‘SW—:)/ (Fx(5) — Fy(s)) ds d| du

l t
55//|f§2)(u—t)|‘/ (Fx(s) — Fy(s))ds
R JR —00
= L1 P, v).

dt du

This completes the proof.
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Throughout this work, we deal with i.i.d. random variables. Therefore, in order to simplify
the notation used, for any i.i.d. collection Uy, Uy, ..., U,, it is convenient to set

wy =B, of = var(U;), i=1,2,...,n

where E(U;) and var(U;) are the mean and variance of U;, respectively. Furthermore, S,? =

Z;’zl U;. In addition, for any i.i.d. collections X1, X5, ..., X, and Y1, Y2, ..., Y,, we set
ok = pk (X, ¥i), P = p1v(Xi, Yi), ¢ =0, Y), &)
foralli = 1, 2,...,n, assuming, of course, that these quantities are positive, for otherwise,

there is nothing to show.
Finally, for any density f, let f,, denote the nth convolution of f, i.e.

fxfx--oxf.
—
n times

We may now state the following general result.

Theorem 1. Let X, X5, ..., X, and Y, Y,, ..., Y,, n > 2, betwo collections where each one
consists of absolutely continuous i.i.d. random variables with finite second moments. Moreover,
let f denote the density of either the X;s or Yis. If ux = py and the convolution f,—1 and its
derivative f,”’, are absolutely continuous functions, then

Vv Vv

prv(SX, sV < (2p3v+2yw e )<1+2pw>" 2_ e (6)
and
Yk 2 Yk
sX s¥ 14+200)" "2 — i 7
Pk (S5, S} pr>< +2p) . (7)

where yx 1= §||fn(£)1 lloos ytv := %é‘ IIfn(E)1 I, fn(l_)1 and fn(i)l are the first and second derivatives
of the density f,—1 of the sum Z?:l, ists Yi, and px, pw, and ¢ are given by (5).
In addition, if the density f is bounded then, for the Kolmogorov distance, we have

LS
2oy '

pr(SX, SY) < (2pw5 +2m + 2”‘ ®)

tv

)(1 +2p)" % —

where § = min{py,, 3M*3¢ 13} with M := sup,, g f(y).

Proof. Let the notation p stand for either the Kolmogorov or the total variation distance.
Using the Lindeberg decomposition, we obtain

(E050)

i=1

n—1 n—1 n—2
p(in,inwn)+p<ZX,-+Yn,ZXi+
i=l1 i=1 i=1 i=l1 i=n—1
2 n n n
+-~+,0<ZX1'~I—ZY,',X1+ZYi)+,0<X1~I-ZY,, YZ)
i= i=3 i=2 i=2 1

i=

nlp(ZX+Z ,,Zx +Z ) 9)

s= = i=s+1 i=1
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Without loss of generality, we may assume that Y1, Y, ..., ¥, are independent of X1, Xo, ...,
X,. This assumption enables us to apply the next smoothing inequality valid for (Z, W)
independent of (U, V):

o(Z+U,W+U) <20mv(Z, W)pU,V)+ p(Z+V, W+ V) (10)

(cf. Proposition 2.9 of Rachev and Riischendorf (1990) and Lemmas 14.3.2 and 17.1.7 of
Rachev (1991)).
Now, applying (10) to each term in (9) with

n n s—1 s—1
Z=X;+ ) Y, W=)Y., U=) X, V=),
i=s+1 i=s i=1 i=1
we derive
n n n n n s—1 s—1
p(x Y n) =2 orv(xe 30 m 3w )o( XX Xon)
i=1 i=1 s=1 i=s+1 i=s i=1 i=1
n n n
S o(x Y nyon)
s=1 i=1,i#s i=1

n n
=22asbs +ch (11)
s=2 s=1

(the summation for s = 1 is empty), where

aa_pTV(X + Z 1,2 ) (%Xi,s_lYi),

i=s+1  i=s i=1 i=1

n
C?—:O( + Z YleYl>
1,i#s

i=

Next, we will bound each a; and ¢, term.
By the subadditivity property of the total variation distance we obtain

n n
a; = pTv(Xs + ) Y Ye+ ) Y,-) < prv(Xs, ¥5) = pu. (12)

i=s+1 i=s+1
Furthermore, applying Lemmas 1 and 2 on ¢, we respectively derive the bounds

n n
for p = pg,
cs=p(xs+ 3 Yi,ZY,)s{”‘ P (13)

isligs ol nv  for p = prv,

where | )

no=Cl e and  yo = 32IA I
Using inequalities (12) and (13) in (11), we obtain the following relation for the total variation
distance:

n
buti = prv(Sy. Sy) < 2pw Y by + nyw. (14)
s=2
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Applying (14) for n = 2 we can bound the quantity b3 in terms of by, and by using (14) again
we can bound the quantity b4 in terms of b, etc.; thus, iteratively, we can bound all the bss
in terms of by, i.e. in terms of p,,. Having done that, standard algebraic manipulation in (14)
gives the following inequality for the total variation distance:

Vv
2:0tv

Vv
2:Otv '

p1v (S, Sy) < (ngv + 20 + )(1 +200)" % —
i.e. inequality (6). The above inequality can be easily verified by induction.

To establish (7), we apply a similar reasoning. Now the by and c; correspond to the
Kolmogorov distance. Hence, using inequalities (12) and (13) in (11) for p = pk, we obtain
the recursive inequality

n
but1 = pr(Sy, SY) < 2pw Y by + 1Y,
s=2

and the bgs can be found recursively in the same way as in the total variation case, finally giving

Yk
2ptv

RS
2ptv '

PR (S, SY) < <2pwpk + 2% + )(1 +2p0)" % —
i.e. inequality (7).

Additionally, assuming that Y; has a bounded density f, we may employ relation (14.1.16)
of Rachev (1991) to obtain an upper bound for the Kolmogorov distance in terms of ¢, namely,

px = pr (Xg, Y5) < 3M*P(00(X,, Y))' P = 3MPP¢ 15, (15)
where M = SUpP,cR f(y). Using (15) and the fact that py < py, we finally obtain (8).

Remark 1. For computational purposes, especially in cases where the quantity pyy, is notknown
explicitly, but rather we have a suitable upper bound for it, it would be preferable to express
the bounds in (6), (7), and (8) as

n—2

_ n
prv(Sy, S)) < 2005 + ) (1 +200)" 2 + 11y Y (
k=1

L )(pr)’f—l, (16)

n—2

n
RSy S)) < 2pwok + (1 +200)" 2+ ) <
k=1

L )(mv)k—‘, (17)

and

n—2

RSy SY) < 2o + )L +2p0)" T+ 71 Y (
k=1

n—2

L )(mv)k—‘, (18)

respectively. The expressions above follow from the binomial expansion of the term (1 +

2ptv)n_2'

Next, we recall the definition of the convex order.
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Definition 1. A random variable X is smaller or larger than a random variable Y with respect
to the convex order if E f(X) < E f(Y) or, respectively, E f(X) > E f(Y) for all convex
functions f for which the expectations exist. In such cases we write X <cx Y or X > Y,
respectively.

For more details on the properties and applications of the convex order, we refer the reader
to Szekli (1995), Miiller and Stoyan (2002), and Shaked and Shantikumar (2007).

Remark 2. It should be noted that the convex relation X =< Y or X >« Y implies that
E(X) = E(Y) and var(X) < var(Y) or, respectively, var(X) > var(Y). Moreover, if X <. Y
or X >cx Y then X =y Y if and only if var(X) = var(Y). Therefore, the closeness of the
distributions of X and Y can be measured in terms of the difference between their variances.

Assuming that the distributions of the X;s and Y;s are compared with respect to the convex
order as defined above, we can obtain upper bounds for the total variation and Kolmogorov
distances in terms of the difference between their variances, |a}% - 0)2( |. This is due to the fact
that, for random variables X and Y such that X <x Y or X > Y, Kaas (1993) proved that
the metric £ (X, Y) is equal to

2 2
o,y = T

Thus, we have the following result, the proof of which is immediate.

Corollary 1. Let X1, X2,..., X, and Y1,Ys, ..., Y,, n = 2, be two collections where each
one consists of absolutely continuous i.i.d. random variables with finite second moments.
Moreover, let f denote the density of either the X;is or Y;s. If

Xi<xYi or Xi>xYi foralli=1,2,...,n,

and the convolution f,— and its derivative fn(l_)1 are absolutely continuous functions, then
inequalities (6), (7), (8), (16), (17), and (18) are valid with

1.2 2 1.2 2 2) 1.2 2 (e8]
;= §|0y _Ux|» Yiv = Z|Uy - 0x|||fn_1||l’ and y = j|0y - Ux|||fn_1||oo-

The bounds of Theorem 1 and Corollary 1 are expressed in terms of the total variation
distance pg, between the distributions of the coordinates X; and Y;. Unfortunately, an analogue
of the inequality in (15) (cf. proof of Theorem 1) for the total variation distance does not
hold true. This is, in fact, a general problem for the continuous distributions. In the discrete
case, the total variation distance is always upper bounded by twice the Zolotarev’s metric 7,
ie. prv(X,Y) < 25(X,Y) for X and Y taking values in Z (cf. Lemma 1 of Boutsikas and
Vaggelatou (2008)). However, for real-valued random variables with density, pry cannot be
compared with &, (in particular, there are cases where ¢ — 0 while pry remains constant).
Therefore, the distance py, must be evaluated or upper bounded individually according to the
distributions involved each time in the problem of interest. The latter is a situation that usually
occurs in the continuous-distribution approximation error estimates (for example, in the Berry—
Esseen-type results).

3. Applications

In this section we illustrate the previous results with specific applications concerning gamma
and normal approximations.
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3.1. Distance between the sum of i.i.d. Weibull-distributed random variables and a
gamma-distributed random variable

Let X1, X», ..., X, be i.i.d. random variables following the Weibull distribution ‘W (e, 0)
with density

h(x) = af(6x)* ! exp{—(6x)*}, x>0,0>0,0>0 (19)

(o and 6 are the shape and scale parameters, respectively). The mean and variance of 'W(«, 0)

are given by
. 2 - (142 3
Ux = P o) Ox = Py o Ky,
where I'(-) denotes the gamma function, i.e. I'(8) = fo tP=le="dr, B > 0. We also consider
a collection of i.i.d. random variables Y1, Ys, ..., ¥, distributed according to the exponential
distribution &(1/ux) with parameter 1/ux, i.e. with density

gx) = 0 x}, x > 0. (20)

SR [

rd+1/a) ra+1/a)

It is known that W(w, 0) <¢x (1/uyx) fora > 1, W(x,0) >cx E(1/ux) for o < 1, and,
clearly, W(«, 0) =g &(1/ux) fora = 1.

The distribution of the sum SX = >""_, X; is unknown and, therefore, it would be useful
to approximate it by a known dlstrlbutlon Of course, for n — oo, employing the central
limit theorem we may use the normal approximation. However, we note that, when o« — 1,
W(a, 0) gets closer to the exponential distribution & (6) and, therefore, it is expected that, for
fixed n and @ — 1, approximation by a gamma distribution would be a more appropriate
solution. Here, we observe that the distribution of the sum S¥ = >""_, ¥; is indeed the gamma
distribution with parameters n and 1/ux (denoted by 4(n, 1/1x)), and, thus, exploiting the
results of Corollary 1, we may obtain error estimates for the distances ,oK(S,f ,9(n, 1/ux))
and ,oTV(Sf, G(n, 1/ux)) for fixed values of n.

First of all we need to find the norms || f(||o and || f @ ||; of the density f relative to the
gamma distribution. Tedious calculations lead to the following general result.

Lemma 3. Let f denote the density of the gamma distribution §(v, 1), i.e.

v

A
f) = xVle™H, x>0,v>0,1>0.

I'(v)
Then, forv > 3,
1O = )‘(\/Tbv exp{—by)
and
1@ = 2A( q(b“ Fexp{—bu} + ¢y exp(—cu)),
where

b, =v—1—+v—1, cy =v—14++v—1.

We will apply Corollary 1 to obtain the desired error bounds. We have

I'(1 4 2/a)

|- 2%
2I2(1 + 1/)

21

1 2
loZ —o2| = ‘mx 0r<1+ )‘zzui
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Furthermore, we need to evaluate the distances pry, = prv(W(e, 6),E(1/ux)) and px =
PK(W(e, 0), E(1/1ux)). Using (19) and (20), we obtain

1 1 [
pTv<W(a, 0), 8(—)) - —f Ih(x) — g(x)| dx
mx 2 Jo

1 [ 1 [
=3 / (g(x) — h(x))dx + 3 / (h(x) — g(x)) dx
0 r

1 o0
+5f (g(x) — h(x)) dx
r

{ Ory } { 0ry }
=expl—-—————t—exp{l ————

ra+1/a) r'a+1/a)

+ exp{—(0r1)*} — exp{—(6r2)“}, (22)

where r and r; are the roots of the nonlinear equation

oy - 0% 1 log(wo* (14
00" ~ 7 = @ = Doz + log +-

with respect to x. In addition, using standard calculus, it can be verified that

pk = max{g(ri), ¢(r2)}, (23)
where
— =)
p(x) ;= |exp F+ 1) exp{—(0x)“}|.

So, finally, applying Corollary 1 and using (21) and Lemma 3, we immediately derive the
following error bounds.

Proposition 1. Ler X1, X», ..., X,, be i.i.d. observations from the Weibull distribution with
density (19). Forn > 4,

1
oTV <S,)f 9<n, M—){))f B?V = <2pt2v + ) + Vv )(1 +2p0)" 2 — Vv

20y m
and
1
pK<S,{‘, g(n —))5 B} = (2,0tv,0k + 2%+ o ><1 200" = 5
lix 2p1 2pry
where
\/VLTZ 3 _3 F(l + 2/0[)
Y (b1 exp{=bn-1} + ¢; "y exp{—cu1D|1 — 2r2(1+ 1/ |
_Vn_zbn—3ex {—b }1_M
Ty e P TR e |

by_1=n—-2—+n-2, Choli=n—2++n—-2,
and pw and px are given by (22) and (23), respectively.

Remark 3. Using mathematical packages, we can easily compute the exact values of py, and px.
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TABLE 1.
n=>,5 n=10 n=20
o B} BY, a B} BY, o B} BY,

0.90 0.098077 0.139942 090 0.081772 0.129262 0.90 0.127408 0.210300
095 0.039789 0.056967 095 0.027896 0.044639 0.95 0.030055 0.050972
097 0.022029 0.031578 097 0.014502 0.023306 0.97 0.013784 0.023578
0.99 0.006788 0.009741 099 0.004211 0.006795 0.99 0.003579 0.006 166
1.01  0.006567 0.009425 1.01 0.004074 0.006573 1.01 0.003460 0.005961
1.03  0.019932 0.028575 1.03 0.013092 0.021043 1.03 0.012381 0.021182
1.05 0.033625 0.048157 1.05 0.023423 0.037496 1.05 0.024863 0.042189
1.10  0.069440 0.099209 1.10 0.056323 0.089198 1.10 0.082025 0.135868
1.15 0.107745 0.153609 1.15 0.102214 0.160120 1.15 0.208963 0.337398

Remark 4. For fixed n and 6, when o« — 1, the aforementioned error estimates tend to 0, as
expected.

In Table 1, numerical values for the bounds B?V and BI% of Proposition 1 are presented for
several values of o and n. The bounds are not affected by the value of 6 because the distances px
and pyy are stable under scale changes and, thus, for convenience, we chose # = 1. Obviously,
we can see that, for fixed n, the numerical error estimates tend to O when o — 1, as expected.
The bounds were computed using MATHEMATICA® software. We also note that, for the
calculations, the exact numerical values of the distances pg, and px were used.

3.2. Distance between sums of NBUE or NWUE i.i.d. observations and a gamma random
variable
The Weibull distribution considered in Subsection 3.1 belongs to specific classes of distri-
butions provided by the following definition (cf. Barlow and Proschan (1975)).

Definition 2. The nonnegative random variable X (and its distribution function F') is said to
be NBUE if, for all t > 0,

ftoo F(x)dx
F(1)
and it is said to be NWUE if, for all r > 0,

= E(X),

JTE0dx gy
F(1)
where F(x) = 1 — F(x).

We can verify that the Weibull distribution is NWUE if ¢ < 1 and NBUE for o > 1.
The following result (see Theorem 3.A.55 of Shaked and Shanthikumar (2007)) is relevant.

Theorem 2. If X is an NBUE or NWUE random variable with mean p and Y is an exponentially
distributed random variable with parameter 1/, then

X <x Y or respectively, X > Y.
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Assume now that X1, X», ..., X,, are i.i.d. observations from a distribution which is NBUE
(or NWUE). Let ux and 0)2( denote the mean and variance, respectively, of the distribution.
Assume further that Y1, Y3, . . ., ¥, are i.i.d. observations from the exponential distribution with

parameter 1/uy. We can easily verify that
oy — ol = uxIl = Cxl, (24)

where Cx = ox/ux denotes the coefficient of variation of the random variable X.
In what follows, for notational simplicity, we set

Ax = 41— %l (25)
A/n— 2 _3
my, = = 2)!bZ_l exp{—by—1}, (26)
vn—2 _ _
0 (b3 exp{—by_1} + "3 expl—ca_1}), 27)

T =2

where b, 1 =n—2—+/n—2andc,_1 =n — 2+ /n — 2 (recall Lemma 3).
In view of (24) and Lemma 3, Corollary 1 provides the following gamma approximation
bounds for n > 4:

1 h, A ho A
PTV(SZ(,%(n,—))S <2ptzv+2hnAX+ " X>(1+2pw)”2_ n X’
Hx 2pw 2 Py

1 muAx _ muyAx
oK <S,§, 9<n —>)§ <2pwpk +2muAx + — )(1 +200)" 2 = 2, (29)
nx 20ty 2pty

(28)

where Ay, h,, and m,, are given by (25), (26), and (27), respectively.

The upper bounds for both distances in (28) and (29) are expressed in terms of the total
variation distance py, and the Kolmogorov distance px. We may use a similar approach to the
one described in Subsection 3.1 in order to determine the exact values of py, and px. However,
for NBUE or NWUE random variables, upper bounds for px were obtained in Daley (1988,
Theorems 1 and 2). In particular, Daley showed that if X is NBUE and Y is exponentially
distributed with the same mean, then

Pr(X,Y) =1 —exp{—y2Ax}, (30)

PK(X,Y) < \JA +2Ax — Ax. 31)

Furthermore, as the following result shows, the total variation distance p, can be upper
bounded by twice the quantities on the right-hand sides of (30) and (31) involving the coefficient
of variation of X.

whereas, if X is NWUE,

Lemma 4. Let X be a random variable with mean x and finite variance 0}2(. Also, let Y be
an exponential random variable with parameter 1/ux. If X is NBUE then

prv(X,Y) < 2(1 —exp{—v/2Ax}),

prv(X,Y) < 2(,/ A% +2Ax — Ax).

and if X is NWUE then
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Proof. Let h and g denote the densities, and let H and G denote the CDFs of the random
variables X and Y, respectively. Since X is NBUE or NWUE, by Theorem 2, the distributions
of X and Y are ordered according to the convex order, and, therefore, their densities cross each
other at exactly two points, say r; and r». Then,

1 o0
prv(X, Y) = 5[ |h(x) — g(x)|dx
0
1 M 1 [
= 5/ (g(x) — h(x))dx + 5/ (h(x) — g(x))dx
0 r

1 o0
+ 5/ (8(x) — h(x))dx
r2

=G(@r1) — G(rp) — H(r1) + H(r2)
r

= exp{——z}—exp{—r—} H(r1) + H(r2)
[x

x
ry Il
=expy—— (—Rx(r2) + Rx(r;) —expy——,
125:¢ 125:¢

where Rx denotes the survival function of X.
The result now follows from the fact that if X is NBUE then, by Cheng and He (1988),
sup

Rx(t) — exp{——} <1 —exp{—v2Ax},
t>0 1%
and if X is NWUE then, by He and Cheng (1987),

5‘/A§+2Ax — Ax.

Now, relations (28) and (29) in combination with (30), (31), and Lemma 4 yield the following
error estimates (as a matter of fact, we use (16) and (17) due to the upper bounding of p, and
Pk, which lead to exactly the same results).

sup
t>0

Rx(t) — exp{—MLX}

This completes the proof.

Proposition 2. Let X1, Xo, ..., X,, be i.i.d. observations from a distribution which is NBUE
with mean wy. Then, forn > 4,
1 h AX _ hnAX
SX7 [ =< 832 " 1 4B n—2 ol ,
o 8 ) (B am 2
1 muAx
Sy G(n — 4B% +2m, A | +4By)—2 — DnlX
o (51-9(r L)) 2 (58 + ks + ) s
where By := 1 —exp{—+/2Ax} and Ax, h,, and m, are given by (25), (26), and (27),
respectively.

Proposition 3. Ler X, Xo, ..., X, be i.i.d. observations from a distribution which is NWUE
with mean ux. Then, forn > 4,

1 AX _ hnAX

Sy §(n.— ) )= (8Dx X ) (14 4Dy — 22X
pTV( ! g(” ux))‘( X (14400 4Dx
1 A myAyx

sX, ,— 4D% +2 1 +4Dy)" 2 - 22
pK( ! 9(’1 MX)) ( x 2 4Dx >( +4Dz) 4Dy
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where Dy = (Ag( + A2 — Ax and Ay, hy,, and m, are given by (25), (26), and (27),
respectively.

The error estimates of Propositions 2 and 3 are useful both in theory and practice for fixed r,
in cases where we cannot invoke central limit theory to approximate the distribution of the sum
SX by the normal distribution.

Remark 5. As the coefficient of variation of X tends to 1, Ay tends to 0 and, consequently, the
upper bounds of Propositions 2 and 3 tend to 0. This is reasonable, given that the coefficient
of variation of an exponential random variable is equal to 1.

Remark 6. Clearly, Propositions 2 and 3 provide bounds for the Weibull distribution considered
in Subsection 3.1 with
F+2/a)

Ay =1 = 27 |
X 22(1 + 1/a)

3.3. Distance between the distribution of the sum of i.i.d. Student random variables and
a normal distribution

Assume that 71, T3, .. ., T, are i.i.d. random variables following the Student 7-distribution
with k degrees of freedom, k > 2. In this case we have ur = 0 and a% = k/(k — 2).
Furthermore, let Z1, Z», ..., Z, be i.i.d. normally distributed random variables with uz = 0

and O’% = 1. Obviously, the sum SnZ follows the normal distribution N (0, n) and, consequently,
Snz/ﬁ ~ N(0,1). Wealsohave T; > Z; foralli =1,2,...,n.
Let f,,—1 denote the density of N(0,n — 1). Clearly,

k 2
2 2
|UZ—0T|=k_2—1=k_2, k> 2.
In addition, the norms || ", | and || £, Il of the normal distribution N (0, n — 1) are given
by
1 4
(e8] 2)
If,Zilloo=——— and |f,7 I =—""7—. (32)
n= T - 1)V 2re n-l (n — 1)v/27e

Let i and ¢ denote the densities of 7; and Z;, respectively. Then /4 and ¢ cross each other
at exactly two (symmetric) points, say —r and r, since T; >¢x Z;. Thus, it is easy to see that

pwv = prv(Ti, N(O, 1))

- %/_(: Ih() — $(1)] dr

2
=2(Fr(r) — @),

1 77 1 [ 1 [
_ —f (b))~ )t + 5 (¢><r>—h<r>)dr+5/ (h(t) — (1)) dr

where Fr is the CDF of the Student ¢-distribution with k degrees of freedom and & is the CDF
of N(O, 1).

Here, it is important to note that Papadatos and Papathanasiou (1995, relation (5.2)) provided
the following simple upper bound for the distance ptv(7;, N(0, 1)):

4
prv(T;, N0, 1)) < —2 (33)
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which establishes that the rate of convergence is at least O (1/k). Therefore, since px and ptvy
are stable under scale changes and by taking into consideration (16), (18), Corollary 1, (32),
and (33), we obtain the following error estimates.

Proposition 4. Let Ty, T», ..., T, be i.i.d. random variables which follow the Student t-distri-
bution with k degrees of freedom, k > 2. For n > 2, we have

St v

NG
_ ( 2 14160k - 2)—1><1 L8 )"2
T\ =22 4 — DV27e k—2

|
4 — )2me

St W
pr| = NO. 1)) < By

NG
._< 2. 1+16(k—2)‘1><1+ 8 )”2
TNk =22 8(n— D)2re k—2
1
8 — 1)v2me

We note that in Proposition 4, for the distance px, we used § = min{p,, 3M 2/ 3{ 1/ 3} with

exp{—z2/2}) 1
V2 V2

(recall (8)). Thus, we obtain § < min{4/(k —2), 3/(2r (k —2))'/3} and the minimum is always
equal to 4/(k — 2) for k > 6.

Theorem 2.1 of Cacoullos et al. (1997) combined with Theorem 2.1 of Cacoullos et al.
(2001) yields the following upper bound for the total variation distance:

M =sup f(y) = sup(
yeR zeR

Sy
pTV<ﬁ,N(0, 1)) < Bcpp
= 3 + 4 (34)
22nk —1)(k—4) k—2
2.12132 1
~ <7 + 4)% (35)

for fixed n and k — oo (the notation a; ~ by implies that limj_, o (ax/br) = 1). The bounds
BT‘A{, and Bl‘éf provided by Proposition 4 are asymptotically equal to

BN 2n 1 (36)
™= D)2re K
N n 1

BY ~ —
K = D2re k

for fixed n and k — oo. Both error estimates (35) and (36) are of order O(1/k), but,
asymptotically, (36) is obviously smaller than (35) due to the existence of the constant /2me =~
4.132 73 in the denominator of (36).
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TABLE 2.
n=3 n=>5 n=10
k Bcpp B'TA{; k Bcpp B'TA</ k Bcpp B‘T’\Q

25 0.228468 0.120412 30 0.177406 0.122136 35 0.141875 0.216775
30 0.187460 0.083342 35 0.150434 0.084298 40 0.123166 0.139503
35 0.158937 0.062061 40 0.130582 0.062309 45 0.108817 0.097159
40 0.137949 0.048610 45 0.115359 0.048372 50 0.097463 0.071707
45 0.121859 0.039502 50 0.103316 0.038952 55 0.088254 0.055300
50 0.109130 0.033007 55 0.093549 0.032263 60 0.080636 0.044132
55 0.098810 0.028186 60 0.085470 0.027325 65 0.074228 0.036191
60 0.090273 0.024491 65 0.078675 0.023562 70 0.068764 0.030342
65 0.083094 0.021584 70 0.072882 0.020620 80 0.059939 0.022455
70 0.076972 0.019247 80 0.063525 0.016355 90 0.053122 0.017501

In Table 2, numerical comparisons between the bounds BT'A<, of Proposition 4 and Bcpp of
(34) are presented for several values of k and n. Obviously, for fixed n, both error estimates
tend to 0 when k — o0, as expected. The bounds were computed using MATHEMATICA
software. Here, it is important to note that, for the calculations, we used the exact values of the
bounds given by Proposition 4 and (34), and not the asymptotic error estimates (35) and (36).
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