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Abstract

Let X1, X2, . . . and Y1, Y2, . . . be two sequences of absolutely continuous, independent
and identically distributed (i.i.d.) random variables with equal means E(Xi) = E(Yi), i =
1, 2, . . . . In this work we provide upper bounds for the total variation and Kolmogorov
distances between the distributions of the partial sums

∑n
i=1 Xi and

∑n
i=1 Yi . In the case

where the distributions of the Xis and the Yis are compared with respect to the convex
order, the proposed upper bounds are further refined. Finally, in order to illustrate the
applicability of the results presented, we consider specific examples concerning gamma
and normal approximations.
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1. Introduction

Suppose that X1, X2, . . . is a collection of independent and identically distributed (i.i.d.)
random variables and that Y1, Y2, . . . is another collection of i.i.d. random variables, different
from the first one. It is often of interest to provide an estimate for the closeness of the
distributions of the partial sums

∑n
i=1 Xi and

∑n
i=1 Yi in the form of an upper bound for the total

variation distance and the Kolmogorov distance, in the case where the marginal distributions
of Xi and Yi are compared with respect to certain classes of stochastic orderings. Such an
interest also arises from the fact that the distribution of the partial sum of one of the collections
is often unknown, yet the distribution of the partial sum of the other is not only known, but
indeed, is one of the most frequently used in statistics for inferential purposes. For instance, it
is not clear what the distribution of the partial sum of i.i.d. random variables from the Weibull
distribution is. However, it is known that the Weibull distribution can be compared with the
exponential distribution with respect to the so-called convex order. In addition, the sum of i.i.d.
exponential random variables follows the gamma distribution. Therefore, it would be reasonable
to expect that, when the difference between the variances of the marginal distributions is small,
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the distribution of the sum of i.i.d. Weibull random variables can be well approximated by a
gamma law. As demonstrated in Section 3, employing the convex order relation, upper bounds
for the total variation distance and the Kolmogorov distance between the distribution of that
partial sum and the distribution of the partial sum of i.i.d. exponentially distributed random
variables are readily available. We would also like to emphasize that we are mainly interested
in the case of fixed n, for otherwise, classical central limit theory provides almost all the answers
regarding the closeness of the distributions of the partial sums.

In this work, our study will be focused mainly on distributions which are compared with
respect to the convex order. Vaggelatou (2009) gave upper bounds for the total variation
distance and the Kolmogorov distance between the distributions of two different collections
of independent, integer-valued, convex-ordered random variables. For absolutely continuous
random variables, in order to obtain results analogous to the discrete case, further assumptions
are needed. In this paper we consider the case of absolutely continuous random variables with
their partial sums having absolutely continuous densities.

In Section 2 we provide the main machinery for obtaining upper bounds. Theorem 1, which
can be thought of as a ‘source’ result, gives upper bounds in general forms. The bounds contain
quantities such as the Kolmogorov distance, the total variation distance, and the Zolotarev ζ2
metric between representative observations from the two collections. When comparing the
distributions of the Xis and the Yis with respect to the convex order, Corollary 1 provides upper
bounds which are further refined.

In Section 3 we exploit the results of Section 2 to obtain upper bounds for the total variation
distance and the Kolmogorov distance between the distributions of the partial sums of i.i.d.
random variables from important specific distributions with convexly ordered marginal laws.
In particular, cases considered are those of distances between the distribution of the partial sum
of i.i.d. observations from the Weibull distribution and the gamma distribution. Furthermore,
we consider the case of observations from more general classes of distributions, namely the
so-called new better than used in expectation (NBUE) and new worse than used in expectation
(NWUE) distributions. Specifically, we provide upper bounds for the case of approximating
the distribution of the sum of i.i.d. NBUE and NWUE random variables by a suitable gamma
distribution. Finally, we consider the case of the distribution of the partial sum of i.i.d.
observations from the Student t-distribution and the normal distribution. The results obtained
are compared with other known results in the literature.

2. Main results

For any two random variables X and Y defined on the same probability space (�, P) and
with values in R, the total variation distance between their distributions is, by definition,

ρTV(X, Y ) := sup
A∈B(R)

| P(X ∈ A) − P(Y ∈ A)|.

In the case in which the random variables X and Y have densities fX and fY , respectively, the
total variation distance is

ρTV(X, Y ) = 1

2

∫
R

|fX(t) − fY (t)| dt.

Moreover, the Kolmogorov distance is defined by

ρK(X, Y ) := sup
t∈R

| P(X ≤ t) − P(Y ≤ t)|.
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For random variables X and Y with finite second moments, i.e. E(X2) < ∞ and E(Y 2) < ∞,
the total variation distance of order 2 or Zolotarev ζ2-metric (see Zolotarev (1983)) is defined
by

ζ2(X, Y ) :=
∫

R

| E(X − t)+ − E(Y − t)+| dt,

where (x)+ = max(x, 0). Here, we note that if X and Y have expectations E(X) and E(Y ) then
the finiteness of ζ2(X, Y ) implies that E(X) = E(Y ), and ζ2 admits the following representation
(see Rachev (1991, p. 258)):

ζ2(X, Y ) =
∫

R

∣∣∣∣
∫ t

−∞
(FX(u) − FY (u)) du

∣∣∣∣ dt

=
∫

R

∣∣∣∣
∫ +∞

t

(FX(u) − FY (u)) du

∣∣∣∣ dt,

where FX and FY denote the cumulative distribution function (CDF) of the random variables
X and Y , respectively. It is then important to note that, from now on, whenever the distance
ζ2(X, Y ) appears, it will be assumed that X and Y have finite second moments and that E(X) =
E(Y ). Note also that, as we will see later on, the equality of means is a natural situation that
results from the convex order relation between two distributions (see Remark 2, below).

For a function f : R → R, the symbol f (k) will denote the kth-order derivative of f , i.e.

f (k)(x) := dkf (x)

dkx
, x ∈ R.

The result that follows offers a relationship between the Kolmogorov distance and the metric
ζ2 for the case of real-valued random variables with densities and equal first moments.

Lemma 1. Let X and Y be absolutely continuous random variables with E(X2) < ∞, E(Y 2) <

∞, and E(X) = E(Y ). Also, let Z be an absolutely continuous random variable independent of
X and Y . If the density fZ of Z is an absolutely continuous function with ‖f (1)

Z ‖∞ :=
supx∈A |f (1)

Z (x)| < ∞, where A = {x ∈ R : f
(1)
Z (x) exists}, then

ρK(X + Z, Y + Z) ≤ ‖f (1)
Z ‖∞ζ2(X, Y ).

Proof. Let FX and FY denote the CDFs of X and Y , respectively. We then have

ρK(X + Z, Y + Z) = sup
t∈R

| P(X + Z ≤ t) − P(Y + Z ≤ t)|

= sup
t∈R

∣∣∣∣
∫

R

(FX(t − z) − FY (t − z))fZ(z) dz

∣∣∣∣, (1)

where the second equality follows from the independence assumption. Furthermore, using
integration by parts, we derive∫

R

(FX(t − z) − FY (t − z))fZ(z) dz

= −
∫

R

f
(1)
Z (z)

∫ z

−∞
(FX(t − u) − FY (t − u)) du dz, (2)
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because
lim

z→±∞ fZ(z) = 0,∫
R

(FX(t − u) − FY (t − u)) du = E(Y ) − E(X) = 0.

Thus, substituting (2) into (1), we finally obtain

ρK(X + Z, Y + Z) = sup
t∈R

∣∣∣∣
∫

R

f
(1)
Z (z)

∫ z

−∞
(FX(t − u) − FY (t − u)) du dz

∣∣∣∣
≤ sup

t∈R

∫
R

|f (1)
Z (z)|

∣∣∣∣
∫ z

−∞
[FX(t − u) − FY (t − u)] du

∣∣∣∣ dz

≤ ‖f (1)
Z ‖∞ζ2(X, Y ),

and the proof is complete.

Next, we prove an analogous inequality for the total variation distance.

Lemma 2. Let X and Y be absolutely continuous random variables with E(X2) < ∞,
E(Y 2) < ∞, and E(X) = E(Y ). Also, let Z be an absolutely continuous random variable
independent of X and Y . If the density fZ of Z and its derivative f

(1)
Z are absolutely continuous

functions then
ρTV(X + Z, Y + Z) ≤ 1

2‖f (2)
Z ‖1ζ2(X, Y ),

where ‖f (2)
Z ‖1 := ∫

R
|f (2)

Z (x)| dx < ∞.

Proof. If X + Z and Y + Z have densities fX+Z and fY+Z , respectively, then

ρTV(X + Z, Y + Z) = 1

2

∫
R

|fX+Z(u) − fY+Z(u)| du

= 1

2

∫
R

∣∣∣∣
∫

R

(fX(t) − fY (t))fZ(u − t) dt

∣∣∣∣ du, (3)

where the second equality follows from the independence assumption.
Applying integration by parts twice, we obtain∫

R

(fX(t) − fY (t))fZ(u − t) dt =
∫

R

fZ(u − t) d(FX(t) − FY (t))

= −
∫

R

f
(1)
Z (u − t)(FX(t) − FY (t)) dt

=
∫

R

∫ t

−∞
(FX(s) − FY (s))f

(2)
Z (u − t) ds dt. (4)

Substituting (4) into (3), we obtain

ρTV(X + Z, Y + Z) = 1

2

∫
R

∣∣∣∣
∫

R

f
(2)
Z (u − t)

∫ t

−∞
(FX(s) − FY (s)) ds dt

∣∣∣∣ du

≤ 1

2

∫
R

∫
R

|f (2)
Z (u − t)|

∣∣∣∣
∫ t

−∞
(FX(s) − FY (s)) ds

∣∣∣∣ dt du

= 1
2‖f (2)

Z ‖1ζ2(X, Y ).

This completes the proof.
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Throughout this work, we deal with i.i.d. random variables. Therefore, in order to simplify
the notation used, for any i.i.d. collection U1, U2, . . . , Un, it is convenient to set

µU := E(Ui), σ 2
U := var(Ui), i = 1, 2, . . . , n,

where E(Ui) and var(Ui) are the mean and variance of Ui , respectively. Furthermore, SU
n :=∑n

i=1 Ui. In addition, for any i.i.d. collections X1, X2, . . . , Xn and Y1, Y2, . . . , Yn, we set

ρk := ρK(Xi, Yi), ρtv := ρTV(Xi, Yi), ζ := ζ2(Xi, Yi), (5)

for all i = 1, 2, . . . , n, assuming, of course, that these quantities are positive, for otherwise,
there is nothing to show.

Finally, for any density f , let fn denote the nth convolution of f , i.e.

f ∗ f ∗ · · · ∗ f︸ ︷︷ ︸
n times

.

We may now state the following general result.

Theorem 1. Let X1, X2, . . . , Xn and Y1, Y2, . . . , Yn, n ≥ 2, be two collections where each one
consists of absolutely continuous i.i.d. random variables with finite second moments. Moreover,
let f denote the density of either the Xis or Yis. If µX = µY and the convolution fn−1 and its
derivative f

(1)
n−1 are absolutely continuous functions, then

ρTV(SX
n , SY

n ) ≤
(

2ρ2
tv + 2γtv + γtv

2ρtv

)
(1 + 2ρtv)

n−2 − γtv

2ρtv
(6)

and

ρK(SX
n , SY

n ) ≤
(

2ρtvρk + 2γk + γk

2ρtv

)
(1 + 2ρtv)

n−2 − γk

2ρtv
, (7)

where γk := ζ‖f (1)
n−1‖∞, γtv := 1

2ζ‖f (2)
n−1‖1, f

(1)
n−1 and f

(2)
n−1 are the first and second derivatives

of the density fn−1 of the sum
∑n

i=1, i �=s Yi , and ρk , ρtv, and ζ are given by (5).
In addition, if the density f is bounded then, for the Kolmogorov distance, we have

ρK(SX
n , SY

n ) ≤
(

2ρtvδ + 2γk + γk

2ρtv

)
(1 + 2ρtv)

n−2 − γk

2ρtv
, (8)

where δ = min{ρtv, 3M2/3ζ 1/3} with M := supy∈R f (y).

Proof. Let the notation ρ stand for either the Kolmogorov or the total variation distance.
Using the Lindeberg decomposition, we obtain

ρ

( n∑
i=1

Xi,

n∑
i=1

Yi

)

≤ ρ

( n∑
i=1

Xi,

n−1∑
i=1

Xi + Yn

)
+ ρ

(n−1∑
i=1

Xi + Yn,

n−2∑
i=1

Xi +
n∑

i=n−1

Yi

)

+ · · · + ρ

( 2∑
i=1

Xi +
n∑

i=3

Yi, X1 +
n∑

i=2

Yi

)
+ ρ

(
X1 +

n∑
i=2

Yi,

n∑
i=1

Yi

)

=
n∑

s=1

ρ

( s∑
i=1

Xi +
n∑

i=s+1

Yi,

s−1∑
i=1

Xi +
n∑

i=s

Yi

)
. (9)
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Without loss of generality, we may assume that Y1, Y2, . . . , Yn are independent of X1, X2, . . . ,

Xn. This assumption enables us to apply the next smoothing inequality valid for (Z, W)

independent of (U, V ):

ρ(Z + U, W + U) ≤ 2ρTV(Z, W)ρ(U, V ) + ρ(Z + V, W + V ) (10)

(cf. Proposition 2.9 of Rachev and Rüschendorf (1990) and Lemmas 14.3.2 and 17.1.7 of
Rachev (1991)).

Now, applying (10) to each term in (9) with

Z = Xs +
n∑

i=s+1

Yi, W =
n∑

i=s

Yi, U =
s−1∑
i=1

Xi, V =
s−1∑
i=1

Yi,

we derive

ρ

( n∑
i=1

Xi,

n∑
i=1

Yi

)
≤ 2

n∑
s=1

ρTV

(
Xs +

n∑
i=s+1

Yi,

n∑
i=s

Yi

)
ρ

(s−1∑
i=1

Xi,

s−1∑
i=1

Yi

)

+
n∑

s=1

ρ

(
Xs +

n∑
i=1, i �=s

Yi,

n∑
i=1

Yi

)

= 2
n∑

s=2

asbs +
n∑

s=1

cs (11)

(the summation for s = 1 is empty), where

as = ρTV

(
Xs +

n∑
i=s+1

Yi,

n∑
i=s

Yi

)
, bs = ρ

(s−1∑
i=1

Xi,

s−1∑
i=1

Yi

)
,

cs = ρ

(
Xs +

n∑
i=1, i �=s

Yi,

n∑
i=1

Yi

)
.

Next, we will bound each as and cs term.
By the subadditivity property of the total variation distance we obtain

as = ρTV

(
Xs +

n∑
i=s+1

Yi, Ys +
n∑

i=s+1

Yi

)
≤ ρTV(Xs, Ys) = ρtv. (12)

Furthermore, applying Lemmas 1 and 2 on cs , we respectively derive the bounds

cs = ρ

(
Xs +

n∑
i=1, i �=s

Yi,

n∑
i=1

Yi

)
≤

{
γk for ρ = ρK,

γtv for ρ = ρTV,
(13)

where
γk = ζ‖f (1)

n−1‖∞ and γtv = 1
2ζ‖f (2)

n−1‖1.

Using inequalities (12) and (13) in (11), we obtain the following relation for the total variation
distance:

bn+1 = ρTV(SX
n , SY

n ) ≤ 2ρtv

n∑
s=2

bs + nγtv. (14)
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Applying (14) for n = 2 we can bound the quantity b3 in terms of b2, and by using (14) again
we can bound the quantity b4 in terms of b2 etc.; thus, iteratively, we can bound all the bss
in terms of b2, i.e. in terms of ρtv. Having done that, standard algebraic manipulation in (14)
gives the following inequality for the total variation distance:

ρTV(SX
n , SY

n ) ≤
(

2ρ2
tv + 2γtv + γtv

2ρtv

)
(1 + 2ρtv)

n−2 − γtv

2ρtv
,

i.e. inequality (6). The above inequality can be easily verified by induction.
To establish (7), we apply a similar reasoning. Now the bs and cs correspond to the

Kolmogorov distance. Hence, using inequalities (12) and (13) in (11) for ρ = ρK, we obtain
the recursive inequality

bn+1 = ρK(SX
n , SY

n ) ≤ 2ρtv

n∑
s=2

bs + nγκ,

and the bss can be found recursively in the same way as in the total variation case, finally giving

ρK(SX
n , SY

n ) ≤
(

2ρtvρk + 2γk + γk

2ρtv

)
(1 + 2ρtv)

n−2 − γk

2ρtv
,

i.e. inequality (7).
Additionally, assuming that Yi has a bounded density f , we may employ relation (14.1.16)

of Rachev (1991) to obtain an upper bound for the Kolmogorov distance in terms of ζ2, namely,

ρk = ρK(Xs, Ys) ≤ 3M2/3(ζ2(Xs, Ys))
1/3 = 3M2/3ζ 1/3, (15)

where M := supy∈R f (y). Using (15) and the fact that ρk ≤ ρtv, we finally obtain (8).

Remark 1. For computational purposes, especially in cases where the quantity ρtv is not known
explicitly, but rather we have a suitable upper bound for it, it would be preferable to express
the bounds in (6), (7), and (8) as

ρTV(SX
n , SY

n ) ≤ 2(ρ2
tv + γtv)(1 + 2ρtv)

n−2 + γtv

n−2∑
k=1

(
n − 2

k

)
(2ρtv)

k−1, (16)

ρK(SX
n , SY

n ) ≤ 2(ρtvρk + γk)(1 + 2ρtv)
n−2 + γk

n−2∑
k=1

(
n − 2

k

)
(2ρtv)

k−1, (17)

and

ρK(SX
n , SY

n ) ≤ 2(ρtvδ + γk)(1 + 2ρtv)
n−2 + γk

n−2∑
k=1

(
n − 2

k

)
(2ρtv)

k−1, (18)

respectively. The expressions above follow from the binomial expansion of the term (1 +
2ρtv)

n−2.

Next, we recall the definition of the convex order.
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Definition 1. A random variable X is smaller or larger than a random variable Y with respect
to the convex order if E f (X) ≤ E f (Y ) or, respectively, E f (X) ≥ E f (Y ) for all convex
functions f for which the expectations exist. In such cases we write X 	cx Y or X 
cx Y ,
respectively.

For more details on the properties and applications of the convex order, we refer the reader
to Szekli (1995), Müller and Stoyan (2002), and Shaked and Shantikumar (2007).

Remark 2. It should be noted that the convex relation X 	cx Y or X 
cx Y implies that
E(X) = E(Y ) and var(X) ≤ var(Y ) or, respectively, var(X) ≥ var(Y ). Moreover, if X 	cx Y

or X 
cx Y then X =st Y if and only if var(X) = var(Y ). Therefore, the closeness of the
distributions of X and Y can be measured in terms of the difference between their variances.

Assuming that the distributions of the Xis and Yis are compared with respect to the convex
order as defined above, we can obtain upper bounds for the total variation and Kolmogorov
distances in terms of the difference between their variances, |σ 2

Y − σ 2
X|. This is due to the fact

that, for random variables X and Y such that X 	cx Y or X 
cx Y , Kaas (1993) proved that
the metric ζ2(X, Y ) is equal to

ζ2(X, Y ) = |σ 2
Y − σ 2

X|
2

.

Thus, we have the following result, the proof of which is immediate.

Corollary 1. Let X1, X2, . . . , Xn and Y1, Y2, . . . , Yn, n ≥ 2, be two collections where each
one consists of absolutely continuous i.i.d. random variables with finite second moments.
Moreover, let f denote the density of either the Xis or Yis. If

Xi 	cx Yi or Xi 
cx Yi for all i = 1, 2, . . . , n,

and the convolution fn−1 and its derivative f
(1)
n−1 are absolutely continuous functions, then

inequalities (6), (7), (8), (16), (17), and (18) are valid with

ζ = 1
2 |σ 2

Y − σ 2
X|, γtv = 1

4 |σ 2
Y − σ 2

X|‖f (2)
n−1‖1, and γk = 1

2 |σ 2
Y − σ 2

X|‖f (1)
n−1‖∞.

The bounds of Theorem 1 and Corollary 1 are expressed in terms of the total variation
distance ρtv between the distributions of the coordinates Xi and Yi . Unfortunately, an analogue
of the inequality in (15) (cf. proof of Theorem 1) for the total variation distance does not
hold true. This is, in fact, a general problem for the continuous distributions. In the discrete
case, the total variation distance is always upper bounded by twice the Zolotarev’s metric ζ2,
i.e. ρTV(X, Y ) ≤ 2ζ2(X, Y ) for X and Y taking values in Z (cf. Lemma 1 of Boutsikas and
Vaggelatou (2008)). However, for real-valued random variables with density, ρTV cannot be
compared with ζ2 (in particular, there are cases where ζ2 → 0 while ρTV remains constant).
Therefore, the distance ρtv must be evaluated or upper bounded individually according to the
distributions involved each time in the problem of interest. The latter is a situation that usually
occurs in the continuous-distribution approximation error estimates (for example, in the Berry–
Esseen-type results).

3. Applications

In this section we illustrate the previous results with specific applications concerning gamma
and normal approximations.
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3.1. Distance between the sum of i.i.d. Weibull-distributed random variables and a
gamma-distributed random variable

Let X1, X2, . . . , Xn be i.i.d. random variables following the Weibull distribution W(α, θ)

with density

h(x) = αθ(θx)α−1 exp{−(θx)α}, x > 0, α > 0, θ > 0 (19)

(α and θ are the shape and scale parameters, respectively). The mean and variance of W(α, θ)

are given by

µX = 1

θ



(
1 + 1

α

)
, σ 2

X = 1

θ2 


(
1 + 2

α

)
− µ2

X,

where 
(·) denotes the gamma function, i.e. 
(β) = ∫ ∞
0 tβ−1e−t dt, β > 0. We also consider

a collection of i.i.d. random variables Y1, Y2, . . . , Yn distributed according to the exponential
distribution E(1/µX) with parameter 1/µX, i.e. with density

g(x) = θ


(1 + 1/α)
exp

{
− θ


(1 + 1/α)
x

}
, x > 0. (20)

It is known that W(α, θ) ≤cx E(1/µX) for α > 1, W(α, θ) ≥cx E(1/µX) for α < 1, and,
clearly, W(α, θ) =st E(1/µX) for α = 1.

The distribution of the sum SX
n = ∑n

i=1 Xi is unknown and, therefore, it would be useful
to approximate it by a known distribution. Of course, for n → ∞, employing the central
limit theorem we may use the normal approximation. However, we note that, when α → 1,
W(α, θ) gets closer to the exponential distribution E(θ) and, therefore, it is expected that, for
fixed n and α → 1, approximation by a gamma distribution would be a more appropriate
solution. Here, we observe that the distribution of the sum SY

n = ∑n
i=1 Yi is indeed the gamma

distribution with parameters n and 1/µX (denoted by G(n, 1/µX)), and, thus, exploiting the
results of Corollary 1, we may obtain error estimates for the distances ρK(SX

n , G(n, 1/µX))

and ρTV(SX
n , G(n, 1/µX)) for fixed values of n.

First of all we need to find the norms ‖f (1)‖∞ and ‖f (2)‖1 of the density f relative to the
gamma distribution. Tedious calculations lead to the following general result.

Lemma 3. Let f denote the density of the gamma distribution G(ν, λ), i.e.

f (x) = λν


(ν)
xν−1e−λx, x > 0, ν > 0, λ > 0.

Then, for ν ≥ 3,

‖f (1)‖∞ = λ2
√

ν − 1

(ν − 1)! bν−2
ν exp{−bν}

and

‖f (2)‖1 = 2λ2
√

ν − 1

(ν − 1)! (bν−2
ν exp{−bν} + cν−2

ν exp{−cν}),
where

bν := ν − 1 − √
ν − 1, cν := ν − 1 + √

ν − 1.

We will apply Corollary 1 to obtain the desired error bounds. We have

|σ 2
Y − σ 2

X| =
∣∣∣∣2µ2

X − 1

θ2 


(
1 + 2

α

)∣∣∣∣ = 2µ2
X

∣∣∣∣1 − 
(1 + 2/α)

2
2(1 + 1/α)

∣∣∣∣. (21)
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Furthermore, we need to evaluate the distances ρtv = ρTV(W(α, θ), E(1/µX)) and ρk =
ρK(W(α, θ), E(1/µX)). Using (19) and (20), we obtain

ρTV

(
W(α, θ), E

(
1

µX

))
= 1

2

∫ ∞

0
|h(x) − g(x)| dx

= 1

2

∫ r1

0
(g(x) − h(x)) dx + 1

2

∫ r2

r1

(h(x) − g(x)) dx

+ 1

2

∫ ∞

r2

(g(x) − h(x)) dx

= exp

{
− θr2


(1 + 1/α)

}
− exp

{
− θr1


(1 + 1/α)

}
+ exp{−(θr1)

α} − exp{−(θr2)
α}, (22)

where r1 and r2 are the roots of the nonlinear equation

(θx)α − θx


(1 + 1/α)
= (α − 1) log x + log

(
αθα−1


(
1 + 1

α

))
with respect to x. In addition, using standard calculus, it can be verified that

ρk = max{ϕ(r1), ϕ(r2)}, (23)

where

ϕ(x) :=
∣∣∣∣ exp

{
− θx


(1 + 1/α)

}
− exp{−(θx)α}

∣∣∣∣.
So, finally, applying Corollary 1 and using (21) and Lemma 3, we immediately derive the
following error bounds.

Proposition 1. Let X1, X2, . . . , Xn be i.i.d. observations from the Weibull distribution with
density (19). For n ≥ 4,

ρTV

(
SX

n , G

(
n,

1

µX

))
≤ B

G
TV :=

(
2ρ2

tv + 2γtv + γtv

2ρtv

)
(1 + 2ρtv)

n−2 − γtv

2ρtv

and

ρK

(
SX

n , G

(
n,

1

µX

))
≤ B

G
K :=

(
2ρtvρk + 2γk + γk

2ρtv

)
(1 + 2ρtv)

n−2 − γk

2ρtv
,

where

γtv =
√

n − 2

(n − 2)! (b
n−3
n−1 exp{−bn−1} + cn−3

n−1 exp{−cn−1})
∣∣∣∣1 − 
(1 + 2/α)

2
2(1 + 1/α)

∣∣∣∣,
γk =

√
n − 2

(n − 2)! bn−3
n−1 exp{−bn−1}

∣∣∣∣1 − 
(1 + 2/α)

2
2(1 + 1/α)

∣∣∣∣,
bn−1 = n − 2 − √

n − 2, cn−1 := n − 2 + √
n − 2,

and ρtv and ρk are given by (22) and (23), respectively.

Remark 3. Using mathematical packages, we can easily compute the exact values ofρtv andρk.
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Table 1.

n = 5 n = 10 n = 20

α B
G
K B

G
TV α B

G
K B

G
TV α B

G
K B

G
TV

0.90 0.098 077 0.139 942 0.90 0.081 772 0.129 262 0.90 0.127 408 0.210 300
0.95 0.039 789 0.056 967 0.95 0.027 896 0.044 639 0.95 0.030 055 0.050 972
0.97 0.022 029 0.031 578 0.97 0.014 502 0.023 306 0.97 0.013 784 0.023 578
0.99 0.006 788 0.009 741 0.99 0.004 211 0.006 795 0.99 0.003 579 0.006 166
1.01 0.006 567 0.009 425 1.01 0.004 074 0.006 573 1.01 0.003 460 0.005 961
1.03 0.019 932 0.028 575 1.03 0.013 092 0.021 043 1.03 0.012 381 0.021 182
1.05 0.033 625 0.048 157 1.05 0.023 423 0.037 496 1.05 0.024 863 0.042 189
1.10 0.069 440 0.099 209 1.10 0.056 323 0.089 198 1.10 0.082 025 0.135 868
1.15 0.107 745 0.153 609 1.15 0.102 214 0.160 120 1.15 0.208 963 0.337 398

Remark 4. For fixed n and θ , when α → 1, the aforementioned error estimates tend to 0, as
expected.

In Table 1, numerical values for the bounds B
G
TV and B

G
K of Proposition 1 are presented for

several values of α and n. The bounds are not affected by the value of θ because the distances ρk
and ρtv are stable under scale changes and, thus, for convenience, we chose θ = 1. Obviously,
we can see that, for fixed n, the numerical error estimates tend to 0 when α → 1, as expected.
The bounds were computed using MATHEMATICA©R software. We also note that, for the
calculations, the exact numerical values of the distances ρtv and ρk were used.

3.2. Distance between sums of NBUE or NWUE i.i.d. observations and a gamma random
variable

The Weibull distribution considered in Subsection 3.1 belongs to specific classes of distri-
butions provided by the following definition (cf. Barlow and Proschan (1975)).

Definition 2. The nonnegative random variable X (and its distribution function F ) is said to
be NBUE if, for all t ≥ 0, ∫ ∞

t
F̄ (x) dx

F̄ (t)
≤ E(X),

and it is said to be NWUE if, for all t ≥ 0,∫ ∞
t

F̄ (x) dx

F̄ (t)
≥ E(X),

where F̄ (x) = 1 − F(x).

We can verify that the Weibull distribution is NWUE if α < 1 and NBUE for α > 1.
The following result (see Theorem 3.A.55 of Shaked and Shanthikumar (2007)) is relevant.

Theorem 2. If X is an NBUE or NWUE random variable with mean µ and Y is an exponentially
distributed random variable with parameter 1/µ, then

X 	cx Y or, respectively, X 
cx Y.

https://doi.org/10.1239/jap/1238592128 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1238592128


266 T. C. CHRISTOFIDES AND E. VAGGELATOU

Assume now that X1, X2, . . . , Xn are i.i.d. observations from a distribution which is NBUE
(or NWUE). Let µX and σ 2

X denote the mean and variance, respectively, of the distribution.
Assume further that Y1, Y2, . . . , Yn are i.i.d. observations from the exponential distribution with
parameter 1/µX. We can easily verify that

|σ 2
Y − σ 2

X| = µ2
X|1 − C2

X|, (24)

where CX = σX/µX denotes the coefficient of variation of the random variable X.
In what follows, for notational simplicity, we set

AX := 1
2 |1 − C2

X|, (25)

mn :=
√

n − 2

(n − 2)!b
n−3
n−1 exp{−bn−1}, (26)

hn :=
√

n − 2

(n − 2)! (b
n−3
n−1 exp{−bn−1} + cn−3

n−1 exp{−cn−1}), (27)

where bn−1 = n − 2 − √
n − 2 and cn−1 = n − 2 + √

n − 2 (recall Lemma 3).
In view of (24) and Lemma 3, Corollary 1 provides the following gamma approximation

bounds for n ≥ 4:

ρTV

(
SX

n , G

(
n,

1

µX

))
≤

(
2ρ2

tv + 2hnAX + hnAX

2ρtv

)
(1 + 2ρtv)

n−2 − hnAX

2ρtv
, (28)

ρK

(
SX

n , G

(
n,

1

µX

))
≤

(
2ρtvρk + 2mnAX + mnAX

2ρtv

)
(1 + 2ρtv)

n−2 − mnAX

2ρtv
, (29)

where AX, hn, and mn are given by (25), (26), and (27), respectively.
The upper bounds for both distances in (28) and (29) are expressed in terms of the total

variation distance ρtv and the Kolmogorov distance ρk. We may use a similar approach to the
one described in Subsection 3.1 in order to determine the exact values of ρtv and ρk. However,
for NBUE or NWUE random variables, upper bounds for ρk were obtained in Daley (1988,
Theorems 1 and 2). In particular, Daley showed that if X is NBUE and Y is exponentially
distributed with the same mean, then

ρK(X, Y ) ≤ 1 − exp{−√
2AX}, (30)

whereas, if X is NWUE,

ρK(X, Y ) ≤
√

A2
X + 2AX − AX. (31)

Furthermore, as the following result shows, the total variation distance ρtv can be upper
bounded by twice the quantities on the right-hand sides of (30) and (31) involving the coefficient
of variation of X.

Lemma 4. Let X be a random variable with mean µX and finite variance σ 2
X. Also, let Y be

an exponential random variable with parameter 1/µX. If X is NBUE then

ρTV(X, Y ) ≤ 2(1 − exp{−√
2AX}),

and if X is NWUE then

ρTV(X, Y ) ≤ 2(

√
A2

X + 2AX − AX).
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Proof. Let h and g denote the densities, and let H and G denote the CDFs of the random
variables X and Y , respectively. Since X is NBUE or NWUE, by Theorem 2, the distributions
of X and Y are ordered according to the convex order, and, therefore, their densities cross each
other at exactly two points, say r1 and r2. Then,

ρTV(X, Y ) = 1

2

∫ ∞

0
|h(x) − g(x)| dx

= 1

2

∫ r1

0
(g(x) − h(x)) dx + 1

2

∫ r2

r1

(h(x) − g(x)) dx

+ 1

2

∫ ∞

r2

(g(x) − h(x)) dx

= G(r1) − G(r2) − H(r1) + H(r2)

= exp

{
− r2

µX

}
− exp

{
− r1

µX

}
−H(r1) + H(r2)

= exp

{
− r2

µX

}
−RX(r2) + RX(r1) − exp

{
− r1

µX

}
,

where RX denotes the survival function of X.
The result now follows from the fact that if X is NBUE then, by Cheng and He (1988),

sup
t>0

∣∣∣∣RX(t) − exp

{
− t

µX

}∣∣∣∣ ≤ 1 − exp{−√
2AX},

and if X is NWUE then, by He and Cheng (1987),

sup
t>0

∣∣∣∣RX(t) − exp

{
− t

µX

}∣∣∣∣ ≤
√

A2
X + 2AX − AX.

This completes the proof.

Now, relations (28) and (29) in combination with (30), (31), and Lemma 4 yield the following
error estimates (as a matter of fact, we use (16) and (17) due to the upper bounding of ρtv and
ρk, which lead to exactly the same results).

Proposition 2. Let X1, X2, . . . , Xn be i.i.d. observations from a distribution which is NBUE
with mean µX. Then, for n ≥ 4,

ρTV

(
SX

n , G

(
n,

1

µX

))
≤

(
8B2

X + 2hnAX + hnAX

4BX

)
(1 + 4BX)n−2 − hnAX

4BX

,

ρK

(
SX

n , G

(
n,

1

µX

))
≤

(
4B2

X + 2mnAX + mnAX

4BX

)
(1 + 4BX)n−2 − mnAX

4BX

,

where BX := 1 − exp{−√
2AX} and AX, hn, and mn are given by (25), (26), and (27),

respectively.

Proposition 3. Let X1, X2, . . . , Xn be i.i.d. observations from a distribution which is NWUE
with mean µX. Then, for n ≥ 4,

ρTV

(
SX

n , G

(
n,

1

µX

))
≤

(
8D2

X + 2hnAX + hnAX

4DX

)
(1 + 4DX)n−2 − hnAX

4DX

,

ρK

(
SX

n , G

(
n,

1

µX

))
≤

(
4D2

X + 2mnAX + mnAX

4DX

)
(1 + 4DX)n−2 − mnAX

4DX

,
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where DX := (A2
X + AX)1/2 − AX and AX, hn, and mn are given by (25), (26), and (27),

respectively.

The error estimates of Propositions 2 and 3 are useful both in theory and practice for fixed n,
in cases where we cannot invoke central limit theory to approximate the distribution of the sum
SX

n by the normal distribution.

Remark 5. As the coefficient of variation of X tends to 1, AX tends to 0 and, consequently, the
upper bounds of Propositions 2 and 3 tend to 0. This is reasonable, given that the coefficient
of variation of an exponential random variable is equal to 1.

Remark 6. Clearly, Propositions 2 and 3 provide bounds for theWeibull distribution considered
in Subsection 3.1 with

AX =
∣∣∣∣1 − 
(1 + 2/α)

2
2(1 + 1/α)

∣∣∣∣.
3.3. Distance between the distribution of the sum of i.i.d. Student random variables and

a normal distribution

Assume that T1, T2, . . . , Tn are i.i.d. random variables following the Student t-distribution
with k degrees of freedom, k > 2. In this case we have µT = 0 and σ 2

T = k/(k − 2).
Furthermore, let Z1, Z2, . . . , Zn be i.i.d. normally distributed random variables with µZ = 0
and σ 2

Z = 1. Obviously, the sum SZ
n follows the normal distribution N(0, n) and, consequently,

SZ
n /

√
n ∼ N(0, 1). We also have Ti ≥cx Zi for all i = 1, 2, . . . , n.

Let fn−1 denote the density of N(0, n − 1). Clearly,

|σ 2
Z − σ 2

T | = k

k − 2
− 1 = 2

k − 2
, k > 2.

In addition, the norms ‖f (1)
n−1‖∞ and ‖f (2)

n−1‖1 of the normal distribution N(0, n − 1) are given
by

‖f (1)
n−1‖∞ = 1

(n − 1)
√

2πe
and ‖f (2)

n−1‖1 = 4

(n − 1)
√

2πe
. (32)

Let h and φ denote the densities of Ti and Zi , respectively. Then h and φ cross each other
at exactly two (symmetric) points, say −r and r , since Ti ≥cx Zi . Thus, it is easy to see that

ρtv = ρTV(Ti, N(0, 1))

= 1

2

∫ ∞

−∞
|h(t) − φ(t)| dt

= 1

2

∫ −r

−∞
(h(t) − φ(t)) dt + 1

2

∫ r

−r

(φ(t) − h(t)) dt + 1

2

∫ ∞

r

(h(t) − φ(t)) dt

= 2(FT (r) − �(r)),

where FT is the CDF of the Student t-distribution with k degrees of freedom and � is the CDF
of N(0, 1).

Here, it is important to note that Papadatos and Papathanasiou (1995, relation (5.2)) provided
the following simple upper bound for the distance ρTV(Ti, N(0, 1)):

ρTV(Ti, N(0, 1)) ≤ 4

k − 2
, (33)
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which establishes that the rate of convergence is at least O(1/k). Therefore, since ρK and ρTV
are stable under scale changes and by taking into consideration (16), (18), Corollary 1, (32),
and (33), we obtain the following error estimates.

Proposition 4. Let T1, T2, . . . , Tn be i.i.d. random variables which follow the Student t-distri-
bution with k degrees of freedom, k > 2. For n ≥ 2, we have

ρTV

(
ST

n√
n

, N(0, 1)

)
≤ BN

TV

:=
(

32

(k − 2)2 + 1 + 16(k − 2)−1

4(n − 1)
√

2πe

)(
1 + 8

k − 2

)n−2

− 1

4(n − 1)
√

2πe
,

ρK

(
ST

n√
n

, N(0, 1)

)
≤ BN

K

:=
(

32

(k − 2)2 + 1 + 16(k − 2)−1

8(n − 1)
√

2πe

)(
1 + 8

k − 2

)n−2

− 1

8(n − 1)
√

2πe
.

We note that in Proposition 4, for the distance ρK, we used δ = min{ρtv, 3M2/3ζ 1/3} with

M = sup
y∈R

f (y) = sup
z∈R

(
exp{−z2/2}√

2π

)
= 1√

2π

(recall (8)). Thus, we obtain δ ≤ min{4/(k−2), 3/(2π(k−2))1/3} and the minimum is always
equal to 4/(k − 2) for k ≥ 6.

Theorem 2.1 of Cacoullos et al. (1997) combined with Theorem 2.1 of Cacoullos et al.
(2001) yields the following upper bound for the total variation distance:

ρTV

(
ST

n√
n

, N(0, 1)

)
≤ BCPP

:= 3√
2n(k − 1)(k − 4)

+ 4

k − 2
(34)

∼
(

2.121 32√
n

+ 4

)
1

k
(35)

for fixed n and k → ∞ (the notation ak ∼ bk implies that limk→∞(ak/bk) = 1). The bounds
BN

TV and BN
K provided by Proposition 4 are asymptotically equal to

BN
TV ∼ 2n

(n − 1)
√

2πe

1

k
, (36)

BN
K ∼ n

(n − 1)
√

2πe

1

k
,

for fixed n and k → ∞. Both error estimates (35) and (36) are of order O(1/k), but,
asymptotically, (36) is obviously smaller than (35) due to the existence of the constant

√
2πe �

4.132 73 in the denominator of (36).
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Table 2.

n = 3 n = 5 n = 10

k BCPP BN
TV k BCPP BN

TV k BCPP BN
TV

25 0.228 468 0.120 412 30 0.177 406 0.122 136 35 0.141 875 0.216 775
30 0.187 460 0.083 342 35 0.150 434 0.084 298 40 0.123 166 0.139 503
35 0.158 937 0.062 061 40 0.130 582 0.062 309 45 0.108 817 0.097 159
40 0.137 949 0.048 610 45 0.115 359 0.048 372 50 0.097 463 0.071 707
45 0.121 859 0.039 502 50 0.103 316 0.038 952 55 0.088 254 0.055 300
50 0.109 130 0.033 007 55 0.093 549 0.032 263 60 0.080 636 0.044 132
55 0.098 810 0.028 186 60 0.085 470 0.027 325 65 0.074 228 0.036 191
60 0.090 273 0.024 491 65 0.078 675 0.023 562 70 0.068 764 0.030 342
65 0.083 094 0.021 584 70 0.072 882 0.020 620 80 0.059 939 0.022 455
70 0.076 972 0.019 247 80 0.063 525 0.016 355 90 0.053 122 0.017 501

In Table 2, numerical comparisons between the bounds BN
TV of Proposition 4 and BCPP of

(34) are presented for several values of k and n. Obviously, for fixed n, both error estimates
tend to 0 when k → ∞, as expected. The bounds were computed using MATHEMATICA
software. Here, it is important to note that, for the calculations, we used the exact values of the
bounds given by Proposition 4 and (34), and not the asymptotic error estimates (35) and (36).
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