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Abstract

We discuss the internal structure of graph products of right LCM semigroups and prove that there is
an abundance of examples without property (AR). Thereby we provide the first examples of right LCM
semigroups lacking this seemingly common feature. The results are particularly sharp for right-angled
Artin monoids.
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1. Introduction

The starting point of a number of recent breakthroughs in the theory of semigroup
C∗-algebras is the seminal work [20, 21], in which a universal C∗-algebra C∗(S ) is
associated to every left cancellative monoid S . In the last years, a particular line
of research focused on left cancellative monoids for which the intersection of two
principal right ideals is either empty, or another principal right ideal again. Such
monoids are called right LCM semigroups (right Least Common Multiple), and they
form an intriguing and tractable class of examples in between positive cones in quasi-
lattice ordered groups and general left cancellative monoids, see [3, 4, 6] for details.

Inspired by the treatment of the quasi-lattice ordered case in [10], a boundary
quotient Q(S ) of C∗(S ) was introduced for right LCM semigroups S in [5]. Soon
thereafter, Starling provided an in-depth analysis of Q(S ) in [24], relying on major
advances in the understanding of the connections between inverse semigroups,
groupoids and C∗-algebras stemming from [13, 14, 25]. In [6], it was shown that the
boundary quotient has a more accessible presentation if the right LCM semigroup has
the so-called accurate refinement property, henceforth abbreviated to property (AR).
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[2] Graph products without property (AR) 275

This property is an analogue of 0-dimensionality for topological spaces in the
context of semigroups, and is enjoyed by various examples, see [6, Section 2 and
Corollary 3.11].

The presence of property (AR) was found to be useful in the construction of a
boundary quotient diagram for right LCM semigroups in the spirit of [2], see [23]. This
diagram sets the grounds for a unifying approach for the study of equilibrium states
(KMS-states) on C∗-algebras in [1], where remarkable results were obtained for C∗-
algebras of right LCM semigroups satisfying an admissibility condition which implies
property (AR), see Section 2.1. Working with abstract right LCM semigroups as
opposed to explicit classes of examples allowed for a unification of the inspiring case
studies [2, 8, 17–19], and also for coverage of a substantial number of new examples,
most notably, algebraic dynamical systems. Moreover, the techniques in [1, 6, 23] raise
several questions on the structure of right LCM semigroups, perhaps most notably:

(a) Are there right LCM semigroups without property (AR)?
(b) Which right LCM semigroups are admissible?

The aim of the present work is to investigate to what extent graph products
of right LCM semigroups as considered in [15, 26] provide answers to these two
questions. In addition, we also address structural aspects related to the distinguished
subsemigroups S ∗, Sc and Sci. We apply our results to the classical case of right-
angled Artin monoids A+

Γ
given by a undirected graph Γ, since many graph related

phenomena can already be witnessed here. Indeed, the explicit presentation of the
boundary quotient in [10, Corollary 8.5] involving only the vertex sets of the finite
coconnected components of the graph Γ may be regarded as an indication for a
particularly accessible structure of foundation sets. Another motivation comes from
the elegant solution to the isomorphism problem for C∗(A+

Γ
), see [12].

Since property (AR) is known for various kinds of right LCM semigroups, we were
surprised to find that a right-angled Artin monoid A+

Γ
has property (AR) if and only if

all of its finitely generated direct summands are free, see Corollary 4.6. In terms of the
Γ, this means that all finite coconnected components Γi do not contain any edges. The
result follows from more general graph product considerations in Corollary 4.5 that
rely on Theorem 4.3, where we show that graph products over infinite coconnected
graphs have no foundation set other than the obvious ones containing an invertible
element, while the analogous statement holds in the finite case for accurate foundation
sets.

The characterisation of property (AR) for right-angled Artin monoids A+
Γ

in
Corollary 4.6 allows us to determine when A+

Γ
is admissible in the sense of [1]. It turns

out that admissibility and the existence of a generalised scale coincide for right-angled
Artin monoids, see Corollaries 4.9 and 4.10. If existent, the generalised scale on A+

Γ

is unique and arises as the product of the unique generalised scales on its nonabelian
direct summands A+

Γi
, see Proposition 4.8 and Corollary 4.9.

Thus, we are led to the conclusion that graph products of right LCM semigroups
mostly lack property (AR), and are therefore not admissible in the sense of [1]. While
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this rules out the possibility of applying [1] to graph products of right LCM semigroups
in great generality, we obtain a fairly detailed description of the behaviour of graph
products with respect to the subsemigroups Sc and Sci, see Theorem 3.4. These results
show that the graph product represents a useful tool to construct new, and potentially
very interesting examples of right LCM semigroups that are well-behaved to some
degree, but demand more sophisticated techniques then those applicable to right LCM
semigroups that have property (AR) or even a generalised scale. That is why we feel
that this work might stimulate further research in the direction of inverse semigroups
and groupoids related to (right LCM) semigroups and their C∗-algebras.

2. Preliminaries

Here, we provide the prerequisites we shall need concerning right LCM semigroups
and graph products.

2.1. Right LCM semigroups. A left cancellative semigroup S is called right LCM
if the intersection of two principal right ideals in S is either empty or a principal right
ideal. We will appeal to Baumslag–Solitar monoids as our demonstrational class of
examples, see Example 2.1, while we refer to [1, Section 5] for a more detailed and
extensive discussion. For s, t ∈ S , we say that s and t are orthogonal and write s ⊥ t
if sS ∩ tS = ∅. Unless specified otherwise, we will always assume that a right LCM
semigroup S has an identity, that is, S is a monoid.

Let us first discuss property (AR). A finite subset F ⊂ S is called a foundation set
for S if for every s ∈ S there is f ∈ F such that f 6⊥ s, see [5, Section 5]. A subset
F ⊂ S is accurate if f ⊥ f ′ for all f , f ′ ∈ F, f , f ′, see [6, Definition 2.1]. If F, F′ are
foundation sets such that F′ ⊂ FS , then F′ is called a refinement of F. We then say
that S has the property (AR) if every foundation set for S has an accurate refinement,
see [6, Definition 2.3].

We will now discuss core structures of a right LCM semigroup S that became
relevant in the course of [1, 23]. The subgroup of invertible elements of S shall be
denoted by S ∗. It lies inside the core subsemigroup

Sc := {a ∈ S | a 6⊥ s for all s ∈ S },

which was first considered for right LCM semigroups in [24], but stems from [10,
Definition 5.4]. We remark that Sc is again a right LCM semigroup. It induces the
core equivalence relation ∼ on S × S , where s is equivalent to t if there are a, b ∈ Sc

satisfying sa = tb. In contrast to Sc, we also consider the subsemigroup Sci of core
irreducible elements, that is, the collection of all elements s ∈ S \Sc for which every
factorisation s = ta with t ∈ S , a ∈ Sc satisfies a ∈ S ∗. While Sci does not have an
identity by construction, its unitisation S 1

ci := Sci ∪ {1} and S ′ci := Sci ∪ S ∗ do.
A right LCM semigroup S is called core factorable if S = S 1

ciSc. We say that
Sci ⊂ S is ∩-closed if sS ∩ tS = rS implies r ∈ Sci whenever s, t ∈ Sci. To provide
some indication why this property is of interest, let us mention that Sci ⊂ S is ∩-
closed if and only if S ′ci is right LCM and its inclusion into S is a homomorphism
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of right LCM semigroups, that is, it preserves intersections of principal right ideals,
see [1, Proposition 3.3]. Finally, a nontrivial homomorphism N : S → N× is called a
generalised scale if |N−1(n)/∼| = n and every minimal complete set of representatives
for N−1(n)/∼ forms an accurate foundation set for S for all n ∈ N(S ). Every generalised
scale N satisfies ker N = Sc by [1, Proposition 3.6(i)] and the existence of a generalised
scale entails vital information on the structure of S . For instance, it implies that the
right LCM semigroup has property (AR), see [1, Proposition 3.6(v)].

Finally, we recall from [1, Definition 3.1] that a right LCM semigroup S is called
admissible, if it is core factorable, Sci ⊂ S is ∩-closed, and S admits a generalised scale
N such that N(S ) ⊂ N× is freely generated by its irreducible elements.

Example 2.1. The Baumslag–Solitar monoid

BS (c, d)+ := 〈a, b | abc = bda〉

for positive integers c,d is a right LCM semigroup, see [22, Theorem 2.11]. We remark
that S ∗ is trivial, and that every element s ∈ BS (c, d)+ admits a unique normal form
s = b j0 ab j1 ab j2 · · · ab jn , where 0 ≤ jk ≤ d − 1 for 0 ≤ k < n while jn can be an arbitrary
nonnegative integer. The family (b ja)0≤ j≤d−1 generate a free monoid F+

d of rank d, so
that two elements bi0 abi1 · · · abim and b j0 ab j1 · · · ab jn are not orthogonal precisely if
bi0 abi1 · · · abim−1 a is an extension of b j0 ab j1 · · · ab jn−1 a or the other way round. In the
case where d = 1, this is always possible, so that S = Sc and thus S is left reversible.
More concretely, S = Nc n N and this semidirect product is rather well-understood.
Let us therefore assume that d > 1. Then we arrive at Sc = 〈b〉 � N and

S 1
ci = {s = b j0 ab j1 · · · ab jn | 0 ≤ jk ≤ d − 1 for 0 ≤ k < n, jn = 0} � F+

d ,

that is, an element is core irreducible if and only if it is equal to its stem in the sense
of [8]. Therefore, the properties of the normal form show:

(a) For s, t ∈ S , s ∼ t holds if and only if sbi = tb j for some i, j ∈ N.
(b) The right LCM semigroup S is core factorable and Sci ⊂ S is ∩-closed.

Finally, we remark that the homomorphism N : S → N× defined by a 7→ d and b 7→ 1
constitutes a generalised scale for which S is admissible. This map is a version of the
height map from [8, Section 2.2].

2.2. Graph products. Within this work, a graph will mean a countable, undirected
graph Γ = (V, E) without loops or multiple edges. The concept of a graph product of
groups emerged in [16] as a generalisation of graph groups and has been transferred to
the setting of monoids in [26]: for a graph Γ = (V, E) and a family of monoids (Sv)v∈V ,
the graph product is the monoid S Γ obtained as the quotient of the direct sum

⊕
v∈V Sv

by the congruence generated by the relation (st, ts) if s ∈ Sv, t ∈ S w with (v,w) ∈ E,
see [26, Section 2] and [15, Section 1]. Given a graph Γ, its right-angled Artin monoid
A+

Γ
is the graph product with Sv = N for all v ∈ V . These monoids have also been

studied under the names of graph monoids, free partially commutative monoids and
trace monoids, see for instance [11]. If one switches the vertex monoids from the
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natural numbers to the integers, the resulting graph product is the right-angled Artin
group AΓ associated to Γ, see [7] for more.

It was shown in [9] that the graph product is well-behaved with respect to quasi-
lattice orders. Invoking a characterisation of the right LCM property via the inverse
hull semigroup, Fountain and Kambites showed that this can be generalised to right
LCM semigroups, see [15, Theorem 2.6], where we note that we can move back
and forth between right cancellative, left LCM semigroups (used in [15]) and left
cancellative, right LCM semigroups by passing to the opposite semigroup.

According to [15, Theorem 1.1], which is an adaptation of the corresponding result
in [16], every element s in a graph product S Γ is represented by an essentially unique
reduced expression sv(1)sv(2) · · · sv(n), that is, sv(k) ∈ Sv(k), v(k) , v(k + 1), and whenever
there are 1 ≤ k < m ≤ n such that v(k) = v(m), then there exists k < ` < m such that
(v(k), v(`)) < E. The analogous result had been proven in the quasi-lattice ordered case
before, see [9, Theorem 2]. The reduced expression is unique in the sense that any two
reduced expressions for the same element are shuffle equivalent, that is, we can move
from one to the other by a finite number of switches of neighbouring factors whose
vertices are adjacent in Γ. Thus, there exists a subadditive function ` : S Γ → N that
assigns the length of any reduced expression to the element in question.

A graph Γ is said to be coconnected if it does not admit a partition V = V1 t V2
with Vi , ∅ and V1 × V2 ⊂ E. Equivalently, Γ is coconnected if the opposite graph
Γopp := (V,V × V\(E ∪ {(v, v) | v ∈ V})) is connected. The decomposition of Γ into its
coconnected components is the initial step in the analysis of S Γ, see for instance [12],
where the synonym co-irreducible is used. Every graph Γ has a unique decomposition
into coconnected components, which we denote by (Γi)i∈I with Γi = (Vi, Ei). The
original graph can be recovered from (Γi)i∈I as V =

⊔
i∈I Vi and

E = {(v,w) ∈ V × V | (v,w) ∈ Ei or w < Vi 3 v for some i ∈ I}.

It follows from this observation that S Γ coincides with
⊕

i∈I S Γi .
A vertex v ∈ V is called isolated if v does not emit any edge and universal if v

is connected to every other vertex in Γ. We note that the only coconnected graph
with a universal vertex v is V = {v} and that any graph containing an isolated edge
is necessarily coconnected. For convenience, we let Vu denote the set of universal
vertices and I2 := {i ∈ I | |Vi| ≥ 2}.

We will make use of the following notion of a blocking path, that is actually a path
in the opposite graph.

Definition 2.2. Let Γ = (V, E) be a graph and C ⊂ V . A blocking path for C is a finite
sequence of vertices w(1), . . . ,w(n) ∈ V such that:

(a) w(1) < C, (w(k),w(k + 1)) < E for all 1 ≤ k ≤ n − 1; and
(b) for every u ∈ C there exists 1 ≤ k ≤ n such that (w(k), u) < E.

It turns out that blocking paths are almost always available whenever the graph is
coconnected and we will frequently make use of this elementary observation in the
course of this work.
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Lemma 2.3. If Γ is a coconnected graph with at least two vertices, then every finite
proper subset C of V admits a blocking path ending in any prescribed vertex.

Proof. Let C = {v(1), . . . , v(m)} ⊂ V be finite and proper, that is, V\C , ∅. If (v, u) ∈ E
for all v ∈ C,u ∈ V\C, then we would get a contradiction to Γ being coconnected. Thus,
there exists w(1) ∈ V\C such that (v(k),w(1)) < E for some 1 ≤ k ≤ m. Without loss of
generality, we can assume k = 1. Since Γ is coconnected, we can choose w′(k) ∈ V for
2 ≤ k ≤ m such that (v(k),w′(k)) < E. Again by coconnectedness, there exists a finite
path w(1), . . . ,w(n) in Γopp that visits every w′(k), 2 ≤ k ≤ n. This is a blocking path
for C, and since Γopp is connected, we can attach to this blocking path a path leading
to any prescribed vertex without losing the blocking property for C. �

Remark 2.4. Let Γ = (V, E) be a graph and (Sv)v∈V a family of right LCM semigroups.
Suppose w(1), . . . ,w(n) is a blocking path for some nonempty C and we can choose
sn, tn ∈ S w(n)\S

∗
w(n). Then for all s0, t0 whose reduced expressions only contain parts

from vertex semigroups of vertices in C and all sk, tk ∈ S w(k), 1 ≤ k < n, `(s0s1 · · · sn) =

`(s0) + n and s0s1 · · · sn ⊥ t0t1 · · · tn, unless sk = tk for 0 ≤ k < n and sn 6⊥ tn. Thus,
blocking paths allow for the construction of shuffle inert elements in graph products,
which turns out to be quite useful.

3. The internal structure of graph products

In this section, we show that many of the properties of S Γ that are of interest
to us, for example in connection with [1], can be understood from a study of the
corresponding graph products for the coconnected components (Γi)i∈I of Γ. The reason
is S Γ =

⊕
i∈I S Γi and the following list of straightforward observations, where we write

s =
⊕

i∈I si for s ∈
⊕

i∈I Si:

Proposition 3.1. Let (Si)i∈I be a family of right LCM semigroups. Then S :=
⊕

i∈I Si

has the following features:

(i) The subgroup of invertible elements is S ∗ =
⊕

i∈I S ∗i , the core is given by
Sc =

⊕
i∈I(Si)c and S ′ci =

⊕
i∈I(Si)′ci.

(ii) Two elements s, t ∈ S are core related if and only if si and ti are core related in
Si for all i ∈ I.

(iii) The following statements hold for S if and only if their analogues hold for all Si:

(a) S is core factorable;
(b) Sci ⊂ S is ∩-closed;
(c) α : Sc y S/∼ given by αa([s]) := [as] is faithful; and
(d) S has finite propagation.

(iv) The action α : Sc y S/∼, a.[s] := [as] is almost free if and only if one of the
following conditions holds:
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(a) Every monoid Si is left reversible, that is, S = Sc so that S/∼ is a singleton.
(b) There exists a unique i ∈ I such that Si is not left reversible, αi : (Si)c y

Si/∼ is almost free, and the monoid S j is left reversible for all j ∈ I\{i}.

In view of the direct sum decomposition for graph products over the coconnected
components, we need to understand the behaviour of the graph product in the case of
a coconnected graph with at least two vertices. To do this, we will need to consider
a variant of the action α for S ∗, that is, α∗ : S ∗y S/S ∗, x.[s] := [xs]. Also, we will
assume that all vertex semigroups Sv, v ∈ V are nontrivial in order to avoid pathological
cases. For instance, if Γ is the union of a complete graph and an isolated vertex v, and
Sv is trivial, then the graph product will be the direct sum of the right LCM semigroups
attached to the vertices of the complete graph, even though the original graph was
larger and coconnected.

Theorem 3.2. If Γ = (V, E) is coconnected, |V | ≥ 2 and (Sv)v∈V is a family of nontrivial
right LCM semigroups, then the following assertions hold:

(i) S ∗
Γ

is the graph product of (S ∗v )v∈V , (S
Γ
)c = S ∗

Γ
, and (S

Γ
)ci = S

Γ
\S ∗

Γ
.

(ii) For s, t ∈ S Γ, s ∼ t is equivalent to s ∈ tS ∗
Γ
.

(iii) S Γ is core factorable and (S Γ)ci ⊂ S Γ is ∩-closed.
(iv) The action α : S ∗

Γ
y S Γ/∼ is faithful if and only if S Γ is not a group.

(v) The action α is almost free if and only if:

(a) α∗v : S ∗v y Sv /S
∗
v is almost free for every isolated vertex v ∈ V; and

(b) for every connected component U ⊂ V with |U | ≥ 2, either S u is a group
for all u ∈ U or S ∗u is trivial for all u ∈ U.

Proof. For (i), let sv(1)sv(2) · · · sv(n) be a reduced expression for s ∈ S Γ. Clearly, s is
invertible in S Γ if and only if sv(k) ∈ S ∗v(k) for all k. The homomorphism from the graph
product of (S ∗v )v∈V to S Γ (resulting from the universal property) is bijective, so that S ∗

Γ

is the graph product with respect to Γ and (S ∗v )v∈V . Now assume that there is 1 ≤ m ≤ n
such that sv(k) ∈ S ∗v(k) for 1 ≤ k < m but sv(m) < S ∗v(m). Since Γ is coconnected, there is
w ∈ V with w , v(m) and (v(m),w) < E. For every t ∈ S w\{1},

sv(m)sv(m+1) · · · sv(n) ⊥ tsv(m)sv(m+1) · · · sv(n).

By left cancellation, this yields

s ⊥ sv(1)sv(2) · · · sv(m−1)tsv(m)sv(m+1) · · · sv(n),

so that s < (S Γ)c. This proves (S Γ)c = S ∗
Γ
, and the claims (S

Γ
)ci = S

Γ
\S ∗

Γ
, (ii) and (iii)

are immediate consequences of this.
For (iv), we note that α is not faithful if Sv is a group for all v ∈ V , because then

S Γ/∼ is a singleton while S ∗
Γ

= S Γ is nontrivial. So let us assume that there exists
v ∈ V with Sv , S ∗v . Every x ∈ S ∗

Γ
\{1} has a reduced expression xu(1)xu(2) · · · xu(m) with

xu(k) ∈ S ∗u(k)\{1}. Since Γ is coconnected and |V | ≥ 2, there exists a blocking path
w(1), . . . ,w(n) for {u(m)} with w(n) = v, see Lemma 2.3. Choose sw(k) ∈ S w(k)\{1} for
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1 ≤ k < n and sw(n) ∈ S w(n)\S
∗
w(n). Then s := sw(1)sw(2) · · · sw(n) ∈ S Γ satisfies xu(m)s ⊥ s.

If 1 ≤ k ≤ m − 1 satisfies (u(k), u(`)) ∈ E for all k < ` ≤ m, then (u(k), u(m)) ∈ E in
particular implies u(k) , v(1). For the same reason, (u(k), v(1)) ∈ E implies u(k) , v(2),
and so on. Thus,

xu(1)xu(2) · · · xu(m)sw(1)sw(2) · · · sw(n)

is a reduced expression for xs and we conclude that orthogonality is not destroyed by
xu(1)xu(2) · · · xu(m−1), that is, xs ⊥ s. In particular, [xs] , [s] and therefore α is faithful.

To prove (v), we first observe that (a) is necessary for α to be almost free: if v ∈ V
is isolated, then [xs] = [s] for x ∈ S ∗v \{1} and [s] ∈ S Γ implies s ∈ Sv. Suppose next
that (b) does not hold, that is, there exists a connected component U ⊂ V of Γ with
|U | ≥ 2 such that there are u, v ∈ U with Sv , S ∗v and S ∗u , {1}. If u = v, then we can
pick w ∈ U\{v} with (v,w) ∈ E. If there is x ∈ S ∗w , {1}, then [xs] = [sx] = [s] for all
s ∈ Sv, and since Sv /S

∗
v is infinite, α fails to be almost free for x. On the other hand,

S w is nontrivial, so S ∗w = {1} implies that S w/S
∗
w is infinite and then almost freeness

fails for every x ∈ S ∗v , {1}.
Now suppose u , v. As U is connected, we can find a path from u to v inside U,

say v(0) := u, v(1), . . . , v(n) := v with (v(k), v(k + 1)) ∈ E for all 0 ≤ k < n. Then there
exists 0 ≤ k < n such that S ∗v(k) , {1} and Sv(k+1) , S ∗v(k+1), and we can apply the above
argument to deduce that α is not almost free. We have thus proven that almost freeness
of α implies both (a) and (b).

Conversely, assume that (a) and (b) hold. If S Γ is a group, then there is nothing
to show, so we may suppose that S

Γ
, S ∗

Γ
. Let x ∈ S ∗

Γ
\{1} be presented by a

reduced expression xu(1)xu(2) · · · xu(m) with xu(k) ∈ S ∗u(k)\{1}. Fix s ∈ S
Γ
\S ∗

Γ
with reduced

expression sv(1) · · · sv(n), sv(k) ∈ Sv(k). Let 1 ≤ j ≤ n be the smallest number such that
sv( j) < S ∗v( j). By (b), j is invariant under shuffling and we know that v( j) does not belong
to the connected component of any u(k) that emits an edge. Therefore, xs ⊥ s and then
[xs] , [s], unless j = m = 1 and u(1) = v(1) = v for some isolated vertex v ∈ V . In this
case, (a) says that there are only finitely many fixed points for x in Sv /S

∗
v . Thus, we

conclude that α is almost free if (and only if) (a) and (b) hold. �

Remark 3.3. The graph product S Γ for a coconnected graph Γ with |V | ≥ 2 has finite
propagation if S ∗v is a finite group for all v ∈ V .

Let us now summarise what Proposition 3.1 and Theorem 3.2 imply for graph
products of right LCM semigroups.

Theorem 3.4. Let Γ = (V, E) be a graph and (Sv)v∈V a family of nontrivial right LCM
semigroups. Then the following assertions hold:

(i) The subgroup of units is given by S ∗
Γ

=
⊕

v∈Vu
S ∗v ⊕

⊕
i∈I2

S ∗
Γi

.
(ii) The core is given by (S Γ)c =

⊕
v∈Vu

(Sv)c ⊕
⊕

i∈I2
S ∗

Γi
.

(iii) The core irreducibles are given by (S Γ)′ci =
⊕

v∈Vu
(Sv)′ci ⊕

⊕
i∈I2

S Γi .
(iv) Two elements s, t ∈ S Γ are core related if and only if sv ∼v tv for all v ∈ Vu and

si ∈ tiS ∗Γi
for all i ∈ I2.
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(v) S Γ is core factorable if and only if Sv is core factorable for every v ∈ Vu.
(vi) (S Γ)ci ⊂ S Γ is ∩-closed if and only if (Sv)ci ⊂ Sv is ∩-closed for every v ∈ Vu.
(vii) The action α : (S Γ)c y S Γ/∼ is faithful if and only if the vertex action

αv : (Sv)c y Sv/∼ is faithful for every v ∈ Vu and for every i ∈ I2 there exists
w ∈ Vi such that S w is not a group.

(viii) The action α : (S Γ)c y S Γ/∼ is almost free if and only if one of the following
conditions holds:

(a) (Sv)c = {1} for all v ∈ Vu and S ∗w = {1} for all w ∈ V\Vu.
(b) (Sv)c , {1} for a unique v ∈ Vu with αv : (Sv)c → Sv/∼ almost free, while

S w = (S w)c for all w ∈ Vu\{v} and S w′ = S ∗w′ for all w′ ∈ V\Vu.
(c) S ∗

Γi
, {1} for a unique i ∈ I2 with αi : S ∗

Γi
→ S

Γi
/∼ almost free, while

S w = (S w)c for all w ∈ Vu and S
Γ j

= S ∗
Γ j

for all j ∈ I2\{i}.

(ix) S Γ has finite propagation if Sv has finite propagation for every v ∈ Vu and S ∗w is
a finite group for all w ∈ V\Vu.

The conditions for almost freeness in Theorem 3.4 correspond to the conditions
(S Γ)c = {1}, (S Γ)c = (Sv)c and S

Γ
/∼ �= S Γi/∼, respectively. Hence, they are quite

restrictive and we view this as an indication that finite propagation might be much
more useful for graph products than almost freeness of α, see [1, Theorem 4.2(2)]
for details. When applied to right-angled Artin monoids, Theorem 3.4 takes a simpler
form:

Corollary 3.5. For a graph Γ = (V, E), the right-angled Artin monid A+
Γ

satisfies:

(i) (A+
Γ
)∗ = {1}, (A+

Γ
)c =

⊕
v∈Vu
N and (A+

Γ
)1
ci =

⊕
i∈I2

A+
Γi

.
(ii) Two elements s, t ∈ A+

Γ
are core related if and only if si = ti for all i ∈ I2.

(iii) A+
Γ

is core factorable, (A+
Γ
)ci ⊂ A+

Γ
is ∩-closed and A+

Γ
has finite propagation.

(iv) The action α : (A+
Γ
)c y A+

Γ
/∼ is faithful if and only if Γ has no universal vertex.

(v) The action α : (A+
Γ
)c y A+

Γ
/∼ is almost free if and only if Γ has no universal

vertex or all vertices are universal.

4. The absence of property (AR)

In this section, we will prove that for many graph products of right LCM semigroups
S Γ, the only accurate foundation sets are given by elements of S ∗

Γ
. In particular, we

obtain an abundance of right LCM semigroups that lack property (AR). Again, the
starting point is a basic observation for direct sums of right LCM semigroups, which
allows us to boil the analysis down to the coconnected case:

Proposition 4.1. Let (Si)i∈I be a family of right LCM semigroups. If
⊕

i∈I Si has
property (AR), then Si has property (AR) for all i ∈ I.

Proof. Fix i ∈ I and let S :=
⊕

i∈I Si. Every foundation set F for Si is a foundation set
for S . Suppose that F has an accurate refinement Fa in S . For s ∈ S Γ, we let s = si + ŝi

https://doi.org/10.1017/S1446788717000192 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788717000192


[10] Graph products without property (AR) 283

with si ∈ Si and ŝi ∈
⊕

j∈I\{i} S j. If s ∈ Fa, then { fi ∈ Si | f ∈ Fa : f̂i 6⊥ ŝi} is an accurate
refinement for F inside Si. �

Corollary 4.2. If a graph product S Γ has property (AR), then S Γi has property (AR)
for each coconnected component Γi of Γ.

Theorem 4.3. Let Γ = (V, E) be a coconnected graph with at least two vertices and
suppose (Sv)v∈V is a family of nontrivial right LCM semigroups.

(i) If Γ is infinite, then every foundation set for S Γ contains an invertible element. In
particular, S Γ has property (AR) and C∗(S Γ) = Q(S Γ).

(ii) If Γ is finite and E , ∅, then the accurate foundation sets for S Γ correspond to S ∗
Γ
.

In particular, S Γ has property (AR) if and only if S Γ does not admit a foundation
set without invertible elements.

Proof. Both (i) and (ii) hold for trivial reasons if S Γ is a group, so we can assume
that there exists w ∈ V with S w , S ∗w. Let F ⊂ S Γ be a finite subset without invertible
elements. For every f ∈ F, we choose a reduced expression f = fv(1) · · · fv(m f ) with
m f ∈ N

× and fv(k) ∈ Sv(k).
Suppose first that Γ is infinite. As f ∈ S

Γ
\S ∗

Γ
, there is a smallest number 1 ≤ k f ≤ m f

such that fv(k f ) < S ∗v(k f ). Then,

C := {v ∈ V | fv(k) ∈ Sv for some f ∈ F, 1 ≤ k ≤ k f }

is a finite set of vertices so that Lemma 2.3 grants us a blocking path w(1), . . . ,w(n)
for C ending in w. If we choose any sk ∈ S w(k)\{1} for 1 ≤ k < n and sn ∈ S w\S

∗
w, then

s1 · · · sn ⊥ f for all f ∈ F as s1 · · · sn ⊥ fv(1) · · · fv(k f ) by construction, see Remark 2.4.
Therefore, F is not a foundation set. We conclude that every foundation set for S Γ

contains an invertible element x, which clearly gives an accurate refinement {x}. So
S Γ has property (AR), but if the only accurate foundation sets come from invertible
elements, then the boundary relation

∑
f∈F e f S Γ

= 1 becomes trivial so that C∗(S ) =

Q(S ).
Now let Γ be finite, E , ∅ and assume F to be accurate as well. We need to show

that F is not a foundation set. Without loss of generality, we can require that fv(m f ) is
not invertible for all f ∈ F because invertible ends do not play a role when it comes to
intersections of right ideals. Since F does not contain any invertibles, `( f ) ≥ 1 for all
f ∈ F. Let L := max f∈F `(F) and choose f ∈ F with `( f ) = L. Then, f = stv for some
v ∈ V, tv ∈ Sv\{1}, and s ∈ S Γ with `(s) = L − 1. We will first show that v is isolated and
then use this together with E , ∅ to conclude that F cannot be a foundation set.

If (v, u) ∈ E for some u ∈ V , we employ Lemma 2.3 to obtain a blocking path
w(1), . . . , w(n) for C := {u} ∪ Nu and set w(0) := u. Next, choose bk ∈ S w(k)\S

∗
w(k)

for each 1 ≤ k ≤ n and let r ∈ S u\{1}. It then follows that srb ⊥ f for b := b1 · · · bn.
Moreover, `(srb) ≥ m + 1. This could be assumed by extending the path w(0), . . . ,w(n)
in Γopp, but actually holds true in any case. It then follows that whenever f ′ ∈ F satisfies
f ′ 6⊥ srb, srb ∈ f ′S Γ. If sr ∈ f ′Γ, then f ′ 6⊥ f , f ′ so that F would not be accurate.
The blocking path then forces f ′ = srb1 · · · bk for some 1 ≤ k ≤ n. However, we then

https://doi.org/10.1017/S1446788717000192 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788717000192


284 N. Stammeier [11]

get f ′ ⊥ sr′b for every r′ ∈ S u\{r}. Since S u is a left cancellative semigroup that is not
a group, it is infinite. Thus, there is r ∈ S u\{1} such that srb ⊥ f ′ for all f ′ ∈ F.

We deduce from this that F cannot be a foundation set if there exists f ∈ F with
`( f ) = L that does not end in a part from an isolated vertex. In particular, if Γ does not
have any isolated vertices, no accurate finite subset F without invertible elements is a
foundation set. Now suppose Γ has an isolated vertex ṽ and let

F′ := { f ∈ F | fv(k) ∈ Sv for some k⇒ v is not isolated},

that is, the subset of F consisting of those elements whose reduced expressions do not
contain any part coming from an isolated vertex. As E , ∅ and the vertex semigroups
are all nontrivial, the finite accurate set F′ is also nonempty.

Suppose first that there is f̃ ∈ F′ with f̃ ∈ Sv \S
∗
v for some v ∈ V . Since F′ is accurate

and (v, u) ∈ E for some u ∈ V , s < f ′S Γ for all s ∈ S u and f ′ ∈ F′. Thus, str ⊥ f ′ for all
f ′ ∈ F′ whenever s ∈ S u, t ∈ S ṽ and r ∈ S w\S

∗
w, compare Remark 2.4. For f ∈ F\F′,

strtr ⊥ f unless f ∈ strtS Γ because ṽ is isolated and r is not invertible. Since F is finite
while S w\S

∗
w is infinite, we conclude that there are s ∈ S u, t ∈ S ṽ and r ∈ S w\S

∗
w such

that strtr ⊥ f for all f ∈ F. So F is not a foundation set.
On the other hand, if `( f ) ≥ 2 for every f ∈ F′, we pick a vertex v that emits an edge.

Then, s < f S Γ for all s ∈ Sv, f ∈ F′; thus, str ⊥ f for all f ∈ F′ whenever s ∈ Sv, t ∈ S ṽ

and r ∈ S w\S
∗
w. As in the previous case, there are s, t, r such that strtr ⊥ f for all f ∈ F

and thus F is not a foundation set.
Finally, if F is a foundation set for S Γ with F ∩ S ∗

Γ
= ∅, then every refinement F′

of F satisfies F′ ∩ S ∗
Γ

= ∅ as well and thus can never be accurate. On the other hand,
every foundation set F with x ∈ F ∩ S ∗

Γ
has an accurate refinement {x}. �

We point out that the assumptions in Theorem 4.3 are modest means to avoid the
pathological cases: S Γ = Sv, the free product S Γ = ∗v∈VSv and the graph product of
groups.

Remark 4.4. By Theorem 4.3(i), foundation sets of S Γ are governed by parts from
the finite coconnected components in the following sense: let F be a foundation set
for S Γ such that no property subset of F is a foundation set. If s = sv(1) · · · sv(n) ∈ F
with sv(k) ∈ Sv(k), then sv(k) < S ∗v(k) implies that v(k) ∈ Vi for some finite coconnected
component Γi = (Vi, Ei) of Γ.

Corollary 4.5. Let Γ be a graph and (Sv)v∈V a family of nontrivial right LCM
semigroups. If there is i ∈ I2 for which Γi = (Vi, Ei) is finite with Ei , ∅, Sv is not a
group for some v ∈ Vi and there exists a foundation set F for S Γi without invertible
elements, then S Γ does not have property (AR).

Proof. The claim follows from combining Theorem 4.3 with Corollary 4.2. �

The previous results apply nicely to right-angled Artin monoids.
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Corollary 4.6. For graph Γ, the following conditions are equivalent:

(1) Every finite coconnected component Γi of Γ is edge-free.
(2) Every finitely generated direct summand of A+

Γ
is free.

(3) The right-angled Artin monoid A+
Γ

has property (AR).

Proof. The equivalence of (1) and (2) is clear from the direct sum description of A+
Γ

in
Section 2.2. From Remark 4.4, we infer that it suffices to obtain accurate refinements
of foundation sets F for A+

Γ
with F ⊂

⊕
v∈Vu

Sv ⊕
⊕

i∈I2:|Vi |<∞
A+

Γi
. But if (2) holds, then

the latter is just a direct sum of finitely generated free monoids, and clearly admits
accurate refinements. So (2) implies (3). Finally, if (3) is valid and Γi = (Vi, Ei) is a
coconnected component of Γ with 2 ≤ |Vi| <∞, then {av | v ∈ Vi} is a foundation set for
A+

Γi
without invertible elements, so Corollary 4.5 forces Ei = ∅, that is, (1) holds. �

By Corollary 4.6, there exist countably many mutually nonisomorphic, finitely
generated right LCM semigroups without property (AR). As a final part of this
section, we address the existence of a generalised scale for right-angled Artin monoids
associated to finite graphs. The existence of a generalised scale turned out to be
relevant for a standardised approach to study KMS-states on the semigroup C∗-algebra
C∗(A+

Γ
), see [1]. We first note that free monoids have a generalised scale only if they

are finitely generated and nonabelian, in which case it is unique:

Proposition 4.7. The free monoid F+
m in 2 ≤ m < ∞ generators admits a unique

generalised scale N : F+
m→ N

× given by N(w) = m`(w), where ` denotes the word length
of w ∈ F+

m.

Proof. The map N is a generalised scale. On the other hand, let Ñ be a generalised
scale on F+

m = 〈a1, . . . , am〉 and fix 1 ≤ i ≤ m. Then, Ñ(ai) > 1 as ai is not part of
(F+

m)c = {1}. By definition of Ñ and since ∼ is trivial, the set Ñ−1(Ñ(ai)) is an accurate
foundation set for F+

m of cardinality Ñ(ai) that contains ai. If there was 1 ≤ j ≤ m, j , i
such that Ñ(a j) , Ñ(ai), then the foundation set property would give a w ∈ Ñ−1(Ñ(ai))
such that w ∈ a jaiF

+
m. As this forces Ñ(w) ≥ Ñ(ai)Ñ(a j) > Ñ(ai) = Ñ(w), we arrive at

a contradiction. Thus, Ñ(a j) = Ñ(ai) for all j , i. But as {a1, . . . , am} is an accurate
foundation set for F+

m, we conclude that Ñ(ai) = m for all 1 ≤ i ≤ m. �

We call m ∈ (N≥2)I rationally independent if for all distinct k, k′ ∈
⊕

i∈I N, the

supernatural numbers
∏

i∈I mki
i and

∏
i∈I mk′i

i are distinct.

Proposition 4.8. Let M be a free abelian monoid, I a nonempty set and m ∈ (N≥2)I .
Then, S := M ⊕

⊕
i∈I F

+
mi

admits a generalised scale N : S → N× if and only if m is
rationally independent. In this case, N restricts to the unique generalised scales Ni on
F+

mi
and is therefore unique.

Proof. As M = Sc = ker N for any generalised scale N on S , see [1, Proposition 3.6(i)],
we can focus on (F+

mi
)i∈I . Recall that F+

mi
is the free monoid in mi generators, which we

denote by ai,1, . . . , ai,mi . The strategy is to prove that:
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(a) any generalised scale N on S restricts to Ni on F+
mi

; and
(b) the homomorphism N : S → N× arising from (Ni)i∈I is a generalised scale if and

only if m is rationally independent.

For (a), suppose S admits a generalised scale N and fix i ∈ I as well as 1 ≤ k ≤ mi.
Then, N(ai,k) > 1 and there are w1, . . . ,wN(ai,k)−1 ∈ S such that {ai,k,w1, . . . ,wN(ai,k)−1} is
an accurate foundation set for S contained in N−1(N(ai,k)). Let us decompose w` as

w` = ŵ` ⊕ w̌` ∈ F
+
mi
⊕

(
Mn ⊕

⊕
j∈I\{i}

F+
m j

)
.

Then, {ai,k, ŵ1, . . . , ŵN(ai,k)−1} is a foundation set for F+
mi

with ai,k ⊥ ŵ` and N(ŵ`) ≤
N(ai,k) for all `. This forces

{ai,k, ŵ1, . . . , ŵN(ai,k)−1} ⊃ {ai,1, . . . , ai,mi},

and thus N(ai,`) ≤ N(ai,k) for all 1 ≤ ` ≤ mi, just like in the proof of Proposition 4.7.
As k was arbitrary, we deduce N(ai,k) = mi = Ni(ai,k) for all i, k.

In view of (a), the question behind the main claim becomes: under which condition
is the homomorphism N : S → N× arising from the family of generalised scales (Ni)i∈I

itself a generalised scale? If m is rationally independent, then every k ∈ N(S ) has a
factorisation k =

∏
i∈I mki

i with uniquely determined ki ∈ N. This implies

N−1(k) =

{
t ⊕

⊕
i∈I

wi | t ∈ M,wi ∈ F
+
mi

with `i(wi) = ki

}
.

Therefore, |N−1(k)/∼| = k and any transversal of N−1(k)/∼ is an accurate foundation
set for S , that is, N is a generalised scale. On the other hand, if there are k, k′ ∈⊕

i∈I N, k , k′ such that K :=
∏

i∈I mki
i =

∏
i∈I mk′i

i , then both k and k′ yield a set of
K mutually orthogonal elements s1, . . . , sK ∈ S and t1, . . . , tK ∈ S , respectively, with
N(s j) = K = N(t j) for all j. Since there is i ∈ I with ki , k′i , the ith components of s j

and t j′ have different length for all j, j′. Thus, s j / t j′ for all j, j′ and |N−1(K)/∼| ≥ 2K.
Therefore, N is not a generalised scale in this case. �

We can now state our conclusions for right-angled Artin monoids.

Corollary 4.9. For every graph Γ, the right-angled Artin monoid A+
Γ

admits a
generalised scale N if and only if Vu , V, all coconnected components Γi = (Vi,Ei) are
finite and edge-free and (|Vi|)i∈I2 is rationally independent. In this case, N is unique.

Proof. The condition Vu , V is equivalent to saying that A+
Γ

is nonabelian, that is,
I2 , ∅. So if all coconnected components Γi = (Vi, Ei) are finite and edge-free, then
A+

Γ
�

⊕
v∈Vu
N ⊕

⊕
i∈I2
F+
|Vi |

. Hence, Proposition 4.8 implies that A+
Γ

has a (unique)
generalised scale N if and only if (|Vi|)i∈I2 is rationally independent.

Conversely, suppose A+
Γ

admits a generalised scale N. Since N is a nontrivial
homomorphism with ker N =

⊕
v∈Vu
N, we need to have Vu , V so that the set I2

is nonempty. Moreover, A+
Γ

has property (AR) by [1, Proposition 3.6], so Corollary 4.6
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implies that all finite coconnected components Γi of Γ are edge-free. If there was an
infinite coconnected component Γi = (Vi, Ei), then 1 < N(av) < ∞ for all v ∈ Vi and
the defining property of a generalised scale would yield an accurate foundation set of
the form {av, f1, . . . , fN(av)−1} for suitable fk ∈ A+

Γ
. However, this contradicts Remark 4.4

and we conclude that Γi is finite for all i ∈ I2. But then A+
Γ

is covered by Proposition 4.8
and it follows that (|Vi|)i∈I2 is rationally independent. �

Corollary 4.10. For every graph Γ, the right-angled Artin monoid A+
Γ

is admissible if
and only if it admits a generalised scale.

Proof. According to Corollary 3.5(iii), the monoid A+
Γ

is core factorable and (A+
Γ
)ci ⊂

A+
Γ

is ∩-closed, no matter what Γ is. By Corollary 4.9, the conditions characterising
the existence of a generalised scale N include rational independence of

⊕
i∈I2
|Vi|. This

feature allows us to deduce Irr(N(A+
Γ
)) = {|Vi| | i ∈ I2} and that this set freely generates

N(A+
Γ
), which is the last extra condition for admissibility. �
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