Set-shifting-related basal ganglia deformation as a novel familial marker of obsessive–compulsive disorder

Masanori Isobe, Matilde Vaghi, Naomi A. Fineberg, Annemieke M. Apergis-Schoute, Edward T. Bullmore, Barbara J. Sahakian, Trevor W. Robbins and Samuel R. Chamberlain

The symptoms of obsessive–compulsive disorder (OCD) are suggestive of cognitive rigidity, and previous work identified impaired flexible responding on set-shifting tasks in such patients. The basal ganglia are central to habit learning and are thought to be abnormal in OCD, contributing to inflexible, rigid habitual patterns of behaviour. Here, we demonstrate that increased cognitive inflexibility, indexed by poor performance on the set-shifting task, correlated with putamen morphology, and that patients and their asymptomatic relatives had common curvature abnormalities within this same structure. The association between the structure of the putamen and the extradimensional errors was found to be significantly familial in OCD proband–relative pairs. The data implicate changes in basal ganglia structure linked to cognitive inflexibility as a familial marker of OCD. This may reflect a predisposing heightened propensity toward habitual response patterns and deficits in goal-directed planning.

Keywords
Obsessive–compulsive disorder; vulnerability; frontostriatal; basal ganglia; compulsivity.

Copyright and usage
© The Author(s), 2021. Published by Cambridge University Press on behalf of the Royal College of Psychiatrists. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Participants
The pooled data-set included participants from two studies, where participants underwent conventional imaging measures, reported previously1,2 (technical details of the scans are provided in Supplementary File 1 available at https://doi.org/10.1192/bjp.2021.45). The first sample comprised 32 pairs of unaffected first-degree relatives and OCD probands, and 32 age- and gender-matched healthy controls. The second sample comprised 44 patients with OCD and 43 age- and gender-matched healthy controls.6

Participants were screened for mental disorders by extended clinical interview conducted by a psychiatrist, supplemented with the Mini International Neuropsychiatric Inventory (MINI).10 OCD severity was quantified with the Yale-Brown Obsessive Compulsive Scale (Y-BOCS).14 IQ was measured by the

Method
National Adult Reading Test. Patients with OCD were excluded if they had any comorbidities, including depression. Controls and first-degree relatives of patients were excluded if they had any history of mental disorders. Controls were excluded if they reported any known history of OCD in first-degree family members. History of serious head injury, substance misuse, epilepsy or magnetic resonance imaging contraindications was exclusionary across all groups.

The study was approved by the Addenbrooke’s NHS Trust Local Research Ethics Committee (Cambridge, UK) and Local Research Ethical Committee at the University of Cambridge (Cambridge, UK). The research complied with relevant ethical standards including the Declaration of Helsinki. All participants provided written informed consent after reading information sheets about the study and having the opportunity to ask questions.

Behavioural testing

Before scanning, all participants undertook the computerised IDED set-shift task from the Cambridge Neuropsychological Test Automated Battery (Cambridge Cognition, Cambridge, UK; see [https://www.cambridgecognition.com/cantab/]). Two stimuli were displayed on-screen for each trial, and participants attempted to learn underlying rules governing which stimulus was correct, based on computerised feedback. Set-shifting performance on the task was indexed by errors on the crucial extradimensional attentional shift stage. Of the different stages of the task (i.e. learning, extradimensional set-shifting, etc.) extradimensional attentional shift stage was previously found to be selectively impaired in OCD, in meta-analysis. Extradimensional shifting is widely regarded as the archetypal form of set-shifting on such tasks. A more detailed task description is provided in Supplementary File 1.

Data analysis

To address the two study hypotheses, our overall *a priori* analytic approach was first, to identify morphological regions of basal ganglia structures related to set-shifting performance; and second, to examine whether morphology in these set-shifting-related areas had common abnormalities in this set-shifting-related region. Patients with OCD who were receiving psychotropic medication, in terms of curvature in the identified clusters, and between randomly permuted pairs of participants, to identify whether the extradimensional-related structural changes were significantly familiar. Statistical significance was defined as $P < 0.05$ (uncorrected).

Results

The groups did not differ significantly from each other in terms of age, gender and estimated verbal IQ (all $P > 0.10$; Supplementary Table 1). A total of 51 (67.1%) patients in the OCD group were receiving psychotropic medication. The mean total Y-BOCS score in the OCD group was 21.89 (s.d. 5.30).

Two significant brain clusters were identified in which curvature was significantly associated with the number of extradimensional errors on the IDED task across all study participants (Fig. 1, a and b, left panel). One cluster (overall $P = 0.0380$) was in the left putamen, maximal at $[X = −32, Y = −8, Z = −3]$ and of extent 363 voxels. The other cluster (overall $P = 0.0252$) was in the left pallidum, maximal at $[X = −21, Y = −15, Z = −2]$ and of extent 216 voxels. The scanner type did not significantly affect curvature in these clusters (each $P > 0.50$ by Wilcoxon test, comparing cluster parameters between sites).

Groups differed significantly in curvature in the left putamen cluster (Kruskal–Wallis test, $10.001; P = 0.007$), but not significantly in the left pallidum cluster (Kruskal–Wallis test, 2.308; $P = 0.315$). As shown in Fig. 1a and b (right panel), patients with OCD had significant inward curvature deformation in the left putamen cluster versus controls ($P = 0.008$), as did their relatives ($P = 0.008$). The group difference in the left putamen cluster was also significant in each study data-set considered separately: study 1, $P = 0.0270$; study 2, $P = 0.0353$. Patients did not differ significantly from relatives on this measure ($P = 0.3661$).

Mean curvature in the extradimensional-associated putamen cluster was significantly associated with OCD proband–relative pairs ($r = 0.261, P < 0.001$), but not randomly permuted pairs ($P > 0.10$; bootstrap $N = 2500$, 95% confidence interval for the null model P-value was 0.37–0.39).

Patients with OCD who were receiving psychotropic medication did not differ from patients who were not receiving such medication, in terms of curvature in the putamen cluster (Wilcoxon test, $P = 0.78$). Curvature in the putamen cluster did not significantly correlate with Y-BOCS total scores in patients with OCD ($P = 0.233$).

As expected, and previously reported, patients with OCD and their relatives were selectively impaired on the extradimensional stage of the IDED task versus controls (Supplementary File 1).

Discussion

By conducting an analysis of cognitive function and basal ganglia morphology from magnetic resonance imaging data, this study showed that set-shifting performance (extradimensional shifting) correlated with putamen morphology; and demonstrated that patients with OCD and their asymptomatic first-degree relatives had common abnormalities in this set-shifting-related region. Furthermore, the association between the structure of the putamen and the extradimensional errors was found to be significantly familiar in OCD proband–relative pairs. These structural brain changes in patients with OCD and their relatives reflect localised (at the millimetre level) changes in the shape of specific basal ganglia structures.
The implication of these findings is that putamen shape relates to set-shifting performance, and that deformation of this structure constitutes a related candidate familial marker for OCD. The findings may reflect clustering of different groups in separate areas of the bidimensional (i.e. extradimensional shift versus brain structure) variable space. Previous translational research indicate that the putamen plays a cardinal role in learning, habitual behaviour and adapting stimulus-response associations. Extrdimensional errors in OCD were previously found to be associated with reduced frontal connectivity between the dorsal striatum and frontal cortical regions. Thus, predilection toward habitual response patterns and impaired goal-directed control, linked to morphological changes of the basal ganglia, appear to confer familial risk for OCD. The morphological changes do not appear to be diagnostic markers or a consequence of symptoms themselves, and are not secondary to psychotropic medication. Structural abnormalities of the basal ganglia may reflect altered neurodevelopmental trajectories.

Fig. 1 (a and b) Left panel: magnetic resonance imaging of basal ganglia regions in which structural curvature was significantly associated with extradimensional shift performance. Blue indicates regions in which extradimensional errors were associated with greater inward curvature; red indicates regions in which extradimensional errors were associated with greater outward curvature. Green indicates the remainder of the given structure. (a and b) Right panel: violin plots showing curvature distributions, in each study group, for the clusters significantly associated with extradimensional performance. **P < 0.01 significant difference between groups, by Wilcoxon test. Only group differences in the left putamen cluster were significant. OCD, obsessive-compulsive disorder.
associated with the risk of OCD, but to address this would require longitudinal research.

Supplementary material
To view supplementary material for this article, please visit https://doi.org/10.1192/bjp.2021.45.

Data availability
The data are not publicly available as participants did not consent to that.

Acknowledgements
The authors wish to thank all study participants.

Author contributions
All authors contributed to the study design, intellectual content, drafting of the manuscript, interpretation of data, and approved the manuscript for submission.

Funding
This work was funded by a Wellcome Trust clinical fellowship to S.R.C. (UK; reference numbers 104631/Z/14/Z). This work was funded by a grant-in-aid for scientific research on innovative areas (grant number 16K21720) from the Ministry of Education, Culture, Sports, Science and Technology of Japan; and by the Nippon Foundation international fellowship. T.W.R., A.M.A.S. and M.V. are supported by Wellcome Trust grant 104631/2/14/Z.

Declaration of interest
S.R.C. consults for Promentis, and receives stipends from Elsevier for journal editorial work. B.L.S. and T.W.R. consult for, and receive royalties from, Cambridge Cognition. N.A.F. declares that in the past 3 years, she has held research or networking grants from the ECNP, UK NIHR, EU H2020 (COST), MRC and University of Hertfordshire, accepted travel and/or hospitality expenses from the BAP, ECNP, Royal College of Psychiatrists, CNP, International Forum of Mood and Anxiety Disorders, World Psychiatric Association, Indian Association for Biological Psychiatry, Surf; received payment from Taylor and Francis and Elsevier for editorial duties; and accepted a paid speaking engagement in a webinar sponsored by Abbvie. Previously, N.A.F. has accepted paid speaking engagements in various industry-sponsored symposia, and recruited patients for various industry-sponsored studies in the field of OCD treatment. N.A.F. leads an NHS treatment service for OCD; holds Board membership (or similar) for various registered charities linked to OCD; and gives advice on psychopharmacology to the UK MIRA. S.T.B. is a National Institute of Health Research Senior Investigator, is full-time employed by the University of Cambridge and was previously until May 2019 part-time employed by GlaxoSmithKline, is a member of the Scientific Advisory Board of Seiso Heptares; and receives research funding from Janssen, GlaxoSmithKline and Lundbeck as part of the Wellcome Trust Consortium for the Neuroimmunology of Mood Disorders and Alzheimer’s Disease. The other authors report no potential conflicts of interest.

References