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This paper is largely an expository account of known facts, 
but it contains at least one result believed to be new, Proposition 6. 

Our main technique is the method of lifting idempotents 
developed in Par t I. This has been treated in the l i te ra ture , but 
not quite in the generality required here . It turns out that much 
of c lass ical artinian ring theory can be done for the semi-perfect 
r ings introduced by Bass , as will have been noticed by many 
other people. 

In Par t II we consider Johnson1 s extended centra i izer and 
Utumi' s maximal ring of right quotients of a right noetherian ring. 
The former is semi-perfect and the lat ter is almost as nice. 

Finally I have yielded to the temptation to apply these 
resu l t s to prime rings. While this is old hat, I have included 
a proof of the crucial lemma for Goldie1 s Theorem which 
appears to be shorter than any in the l i terature . 

Throughout this paper rings are assumed to be associative 
with unity element, and all modules a re taken to be unitary. 

Par t I 

In what follows, N will be an ideal of R, usually assumed 
to be contained in the Jacobson radical of R, here denoted 
Rad R. We say that idempotents modulo N can be lifted 
provided for every element u of R such that u^ - u € N 
there exists an idempotent e^ = e € R such that e - u € N. 
In other words, if u is an idempotent modulo N then there 
shall exist an idempotent of R to which it is congruent modulo N. 
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LEMMA 1. Assume that idempotents can be lifted module 
N vT Rad R. If g is a given idempotent of R, and if u is an 
i dempoten t modu lo N such tha t ug and gu * N, then t h e r e 
e x i s t s an i dempo ten t e of R such tha t e - u e N and 
eg = ge = 0. 

2 
Proof. By a s s u m p t i o n we m a y find £ =f € R such tha t 

f - u« N. It fol lows tha t fg and gf * N. In p a r t i c u l a r , 1 - fg 
is a unit of R, and we m a y put 

f = (1 - f g ) " 1 f(l - fg) . 

C l e a r l y f1 i s an idempoten t and ff g = 0. Mul t ip ly ing by 1 - fg 
on the left, we see tha t f - f c N. 

2 
Now put e = f' - gV . Then c l e a r l y ge = 0 = eg , e = e , 

and e = (1 - g)f = f = u modu lo N. 

A se t of i d e m p o t e n t s i s sa id to be o r thogona l if the p r o d u c t 
of any two of t h e m i s z e r o . 

PROPOSITION 1. A s s u m e tha t i d e m p o t e n t s can be lifted 
modu lo N C Rad R. Then any countab le o r t h o g o n a l se t of non­
z e r o i d e m p o t e n t s modulo N can be lifted to an o r t h o g o n a l se t 
of n o n - z e r o i d e m p o t e n t s of R. 

Proof. We a r e given u , u , . . . € R such tha t 

u. = u. ^ 0 and u. u. = 0 for i 4 j . Suppose we have a l r e a d y 

lifted u , u * . . . , u to the o r thogona l se t of i d e m p o t e n t s 
1 2 k - 1 

e , e , . . . , e . Put g = e + . . . + e , t hen s u r e l y u g 

and gu € N. By the l e m m a , we can find an i d e m p o t e n t e = u 
K. .K .K 

modulo N which i s o r thogona l to g, and hence to e , e_, . . . , e, 
1 2 k - 1 

F ina l ly e. 4 0 s ince u j- N. 
i i 

Th i s r e s u l t a p p e a r s in the book by J p c o b s o n (Chap t e r III, 
§ 8 , P r o p o s i t i o n 5), but i t s va l id i ty t h e r e i s r e s t r i c t e d to the 
s o - c a l l e d l fSBI r i n g s ' 1 . . The exac t defini t ion of t h i s t e r m need 
not c o n c e r n us h e r e , s ince we p r o p o s e to r e p l a c e it by the 
a p p a r e n t l y m o r e g e n e r a l concep t " r i n g s in which i d e m p o t e n t s 
can be l i f ted" in a n u m b e r of o the r r e s u l t s a s we l l . 

280 

https://doi.org/10.4153/CMB-1965-019-6 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1965-019-6


For completeness we include the following: 

LEMMA 2. If e and f are idempotents of R and if 
u1 u - e and uu' - f « Rad R, then there exist elements v and 
v1 such that v ' v = e and w f = f. 

This is proved essentially like III, §8, Proposition 1 of 
Jacobson1s book. 

A non-zero idempotent is called primitive if it cannot be 
written as the sum of two orthogonal non-zero idempotents. 
It is easily seen that the idempotent e« R is primitive if and 
only if the ring eRe contains no idempotents other than 0 and e. 

LEMMA 3. Assume that idempotents can be lifted modulo 
N C Rad R. Then any primitive idempotent of R remains 
primitive modulo N. 

Proof. Suppose e is a primitive idempotent and 
e = u + v, where u and v are orthogonal idempotents modulo 
N. Then u is orthogonal modulo N to 1 - e. By Lemma 1, 
u may be lifted to an idempotent f of R which is orthogonal 
to 1-e, thus f € eRe. By primitivity of e, f = 0 or e, 
hence u = 0 or e modulo N. Thus e is primitive modulo N. 

We follow Bass in calling the ring R semi-perfect if 
idempotents can be lifted modulo Rad R and R/Rad R is 
completely reducible (that i s , artinian semi-s imple) . 

PROPOSITION 2. Any semi-perfect ring contains a 
finite orthogonal set of primitive idempotents whose sum is 1. 

This is stated in Jacobson III, §9, Theorem 4 for semi-
pr imary SBI r ings . The proof there is left as an exercise to 
the reader . Well, the same proof will yield the present resul t . 

A ring R is called local if R/Rad R is a division ring, 
or equivalently, if the non-units of R form an ideal. 
(Jacobson calls such a ring "completely primary11. ) 

LEMMA 4. If e is a primitive idempotent in a semi-
perfect ring R then eRe is a local r ing. 
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Proof. F i r s t let us observe that e is the unity element 
of eRe. Fur the rmore , if R a d R = N , then Rad (eRe) = eNe 
= eRe ^ N (see Jacobson III, §7, Proposition 1). 

Next consider any element u * eRe. Since R/N is a 
regular ring (in the sense of Von Neumann), there exists 
u! * R such that uu! u = u modulo N. Since we can always 
replace u1 by eu1 e in th i s , we may as well assume that 
u* € eRe also. 

Now uu1 is an idempotent modulo N orthogonal to 1-e. 
By Lemma 1, we can lift it to an idempotent f of R orthogonal 
to 1 - e. Thus f € eRe, and f and e - f a re two orthogonal 
idempotents. Since e is pr imit ive, one of them must be 0. 

We shall now assume that u i 0 modulo N. Since 
fu = uu1 u = u modulo N, it follows that f ^ 0. Therefore 
f = e, and so uu1 = e jmodulo N. Similarly u ! u = e modulo N, 
hence u is a unit of eRe modulo N r\ eRe = Rad (eRe). 
Thus eRe is a local r ing. 

PROPOSITION 3. If R is semi-perfect and R/Rad R 
is simple, then R is isomorphic to the ring of all endomorphisn 
of a finitely generated free module over a local r ing. 

This may be proved as in Jacobson, III, § 8, Theorem 1 
or as Proposition 6 in Par t II below. 

Par t II 

To set the stage for our main resul t , we introduce some 
notation and review some known facts. 

Let L, be an R-submodule of the R-module M, and 
suppose that L« has non-zero intersection with every non-zero 
submodule of M. Then L is called a large submodule of M, 
or M is called an essential extension of L. 

Given any R-module M . As Eckmann and Schopf have 
R 

shown, M has exactly one (up to isomorphism) essent ia l 
R 

extension which is also infective. It is called the injective hull 
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of M , and we denote it by I = I(M ). It is both a maximal 
R R R 

essent ial extension and a minimal injective extension of M 
J R 

We write H = H(M ) = Horn (1,1). Then I becomes a 
R R 

bimodule I . We also write Q(M ) = Horn (I, I). The 
H R R H 

following resul t s are known. 

(A) (Utumi 1959) Rad H consists of all those elements 
which annihil 

to the same, of M 

of H which annihilate a large submodule of I or, what comes 
R 

(B) (Johnson 1951) H/Rad H is a regular ring, called the 
extended central izer of R over M. 

(C) (Lambek 1963) Q = Q(R ) is a faithful extension of R. 
R 

It coincides with Utumi' s (maximal) ring of right quotients of R. 
It is also the largest of Gabriel ' s rings of right quotients which 
faithfully extend R (as expounded in the exerc ises of Bourbaki 
XXVII). 

No use of Q(M ) for M 4 R will be made here . 
R 

PROPOSITION 4. In H = Horn (I, I) idempotents modulo 
R 

Rad H can be lifted. 

Both Utumi and Chase have mentioned to me in conversation 
that they have proved this resul t . A proof attributed to the latter 
appears in the notes by Faith. The following proof was obtained 
independently and differs from that by Chase. 

2 
Proof. Let u € H, u - u€ Rad H. Then there exists a 

large submodule JL of I such that (u - u) L = 0. The 
R 

injective hull of uL, being its minimal injective extension, can 
be embedded in the injective module I , hence it has the form 

2 R 

el, where e = e € H. Since e induces the identity mapping 
on uL, we have (eu - u) L, = 0, hence eu = u modulo Rad H. 
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Next, put f = e + eu (1 - e). Then ef = f, fe = e and 
2 

f = f. Let L' = (1 - e)I 4- uL. A routine computation shows 
that L' is a large submodule of I and that (£ - eu) L' = 0. 

R 
T h e r e f o r e f = eu = u modu lo Rad H, a s r e q u i r e d . 

i 

We follow Goldie in ca l l ing the module M f in i te -
B R __ 

d i m e n s i o n a l if t h e r e do not ex i s t infini tely many n o n - z e r o 
submodu le s whose s u m is d i r e c t . C l e a r l y , a l l n o e t h e r i a n and 
a l l a r t i n i a n m o d u l e s a r e f i n i t e - d i m e n s i o n a l . 

PROPOSITION 5. Let M be f i n i t e - d i m e n s i o n a l . Then 
R 

( 1 ) 1 is the d i r e c t s u m of a finite n u m b e r of i n d e c o m p o s -
R 

able infect ive m o d u l e s , 

(2) H / R a d H is comp le t e ly r e d u c i b l e , 

(3) H i s s e m i - p e r f e c t . 

Proof . (1) C o n s i d e r any o r thogona l set E of n o n - z e r o 
i d e m p o t e n t s of H. Then S _ e l o M is a d i r e c t s u m of v e e E 
n o n - z e r o s u b m o d u l e s of M . By a s s u m p t i o n , E m u s t be 

R 
f ini te . One a p p l i e s t h i s p r i n c i p l e tw ice . F i r s t , one shows tha t , 
for any n o n - z e r o idempoten t e of H, eHe con ta ins a p r i m i t i v e 
idempoten t . (If e i s not p r i m i t i v e , eHe con ta ins an i dempo ten t 
e ^ e , 0. If e i s not p r i m i t i v e , e He con t a in s an i d e m -

1 1 1 1 
potent e^ i e , 0, and so on. The i d e m p o t e n t s e - e , e - e , . . . 

Z 1 1 1 Z 
f o r m an o r thogona l se t , wh ich m u s t be f in i te . ) Secondly , to 
show tha t t h e r e e x i s t s a m a x i m a l o r thogona l se t e . e . . .. , e 

1 2 n 
of p r i m i t i v e i d e m p o t e n t s in H, let e be t h e i r s u m and suppose 
tha t e i 1, then (1-e) R ( l - e ) would con ta in a p r i m i t i v e i d e m -
potent o r thogona l to e , hence to a l l e . , a c o n t r a d i c t i o n . 

(2) By the above , t h e r e i s a finite o r thogona l se t of 
p r i m i t i v e i d e m p o t e n t s whose sum is 1. By L e m m a 3, the s a m e 
is t r u e modu lo Rad H, hence H = H / R a d H is a d i r e c t s u m of 
i ndecomposab l e r igh t i d e a l s . Since H is r e g u l a r , t h e s e a r e 
m i n i m a l r igh t i d e a l s . T h e r e f o r e H is c o m p l e t e l y r e d u c i b l e . 
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(3) Th i s follows i m m e d i a t e l y f rom (2) and P r o p o s i t i o n 4. 

COROLLARY. Let M be f i n i t e - d i m e n s i o n a l and suppose 
R ^ 

the i n d e c o m p o s a b l e componen t s of I a r e a l l i s o m o r p h i c . Then 
R 

H / R a d H and H a r e i s o m o r p h i c to the r i n g s of a l l e n d o m o r p h i s m s 
of f ini tely g e n e r a t e d f ree m o d u l e s ove r a divis ion r i ng and a 
loca l r i ng r e s p e c t i v e l y . 

The proofs use the c l a s s i c a l A r t i n - W e d d e r b u r n T h e o r e m 
and P r o p o s i t i o n 3 r e s p e c t i v e l y . 

COMMENT. P r o p o s i t i o n 5 i s not new. (1) m a y e a s i l y be 
deduced f rom a t h e o r e m of M a t l i s , and (2) a p p e a r s in the p a p e r 
" C o e u r d' un module1 1 by L e s i e u r and C r o i s o t ( T h e o r e m 2. 2). 

PROPOSITION 6. Let R be f i n i t e - d i m e n s i o n a l and 
R 

suppose the i ndecomposab l e componen t s of i t s in ject ive hull 
I(R ) a r e a l l i s o m o r p h i c . Then Utumi ' s r i ng of r igh t quo t ien t s 

R 
Q(R ) is i s o m o r p h i c to the r i n g of a l l e n d o m o r p h i s m s of a 

R 
f ini te ly g e n e r a t e d module ove r a local r i ng . 

Proof. By (1) of P r o p o s i t i o n 5, the unity e l e m e n t of H is 
the s u m of p r i m i t i v e i dempo ten t s e = e , e , .. . , e . It is 

1 2 n 
a s s u m e d tha t a l l e l a r e i s o m o r p h i c to e l . Hence t h e r e 

e x i s t u, and v € H such tha t v u - e, and u , v = e . 
k k k k k k k 

Now c o n s i d e r Q = Horn (1,1). By a wel l -known a r g u m e n t , 
H 

t h i s i s i s o m o r p h i c to Horn (el , e l ) . Indeed, let q c Q , 
eHe 

and define q' : el-*el by (ei)qf = (ei)q = e(ei)q. Compute 
2 ,_, . ^ n 

v_ eu = v u v u = e , = e . F o r any î = S e î = 
k k k k k k k k y k = l k 
n 

S v eu i € I we then have 
k = l k k 

iq = 2 v, eu iq = 2 v (eu i)q' 
k k k k 

F r o m th i s fo rmu la one r e a d i l y in fe r s that the c o r r e s p o n d e n c e 
q -*• q' i s an i s o m o r p h i s m . 
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Next , o b s e r v e tha t eH = Z, eHe, = 1, " t eHeu , s ince 
k- 1 k k -1 k 

eu = u e and e = v e u Since the e a r e o r thogona l 
k k k k k k k k 

i d e m p o t e n t s , one eas i ly s e e s tha t t h i s is a d i r e c t sum. Thus 
eH is a finitely g e n e r a t e d f ree e H e - m o d u l e . Now, if 1 deno te s 
the unity e l e m e n t of R, h -* hi i s an e p i m o r p h i s m of H onto 

H 
I. Hence I = e H l , and so e l is a l s o a f ini tely g e n e r a t e d e H e -

H 
m o d u l e , a l though t h e r e is no longer any r e a s o n for it to be f r e e . 

F ina l ly , eHe is a local r i n g by L e m m a 4, and so our 
proof is c o m p l e t e . 

It would be p l e a s a n t if we could r e p l a c e the condi t ion 
Mall i n d e c o m p o s a b l e componen t s of I(R ) a r e i s o m o r p h i c 1 1 

R 
by a nea t i n t e r n a l c h a r a c t e r i z a t i o n of R. Th i s can be done 
for n o e t h e r i a n R in view of a r e s u l t by L e s i e u r and C r o i s o t 
(see the v e r y l as t i t a l i c i zed s t a t e m e n t in t h e i r book) . F o r 
c o m p l e t e n e s s , we r e p e a t it h e r e in our own w o r d s . 

PROPOSITION 7. Let R be both r igh t and left n o e t h e r i a n . 
Then the i n d e c o m p o s a b l e componen t s of I(R ) a r e a l l i s o m o r p h i c 

R 
if and onlv if R i s t e r t i a r y in the s e n s e tha t for e v e r y idea l 

R J 

A of R the left ann ih i l a to r { r € R | r A = 0} i s e i t h e r 0 or 
l a rge a s a r igh t idea l . 

P a r t III 

Johnson in t roduced the s ingu la r submodule J (M ) of a 
: : : , f̂  

module M a s the set of a l l e l e m e n t s of M which ann ih i l a t e 
R 

some l a rge r igh t idea l of R. Th i s can a l s o be defined a s the 
i n t e r s e c t i o n of M with the r a d i c a l of I, in v iew of (A) above . 

H 

Rings for which J(R ) = 0 have been e x t e n s i v e l y s tudied 
R 

by Johnson . They a r e ca l led ( r ight) nea t in B o u r b a k i XXVII. 
It is wel l known and not difficult to show tha t for such r i n g s a l s o 
R a d H ^ O . Indeed, let J (R ) = 0, and put K = { h € H | hR = 0} . 

R 
Then KI Z (Rad H)H1 C (Rad H)l = J(I ) = 0. Now it is known 

R 
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tha t 1Q = { i € I JKi = 0} (see for i n s t ance L a m b e k 1963), hence 
1 Q = I . T h e r e f o r e H =Q = I = 1/J(I ) = H / R a d H is a r e g u l a r 

R 
r i ng and so Rad H = 0. 

The following r e s u l t is due to Johnson (see his pape r of 
1961 , T h e o r e m 4.3) , but i s h e r e p r e s e n t e d a s a c o r o l l a r y to 
P r o p o s i t i o n 5 or 6. 

COROLLARY. Let R be nea t and finite d i m e n s i o n a l . 
R 

Then Q =H is c o m p l e t e l y r e d u c i b l e . 

If R is m o r e o v e r s e m i - p r i m e , Goldie showed tha t Q i s 
the c l a s s i c a l r i n g of r igh t quot ien ts of R, in the s ense tha t 
e v e r y n o n - z e r o - d i v i s o r of R i s a unit in Q and tha t e v e r y 
e l e m e n t of Q has the f o r m r s""1 with r and s € R. 

It i s not difficult to show that Q(R ) wil l be c l a s s i c a l 
R 

if e v e r y l a rge r igh t idea l of R conta ins a unit of Q. The 
following c r u c i a l l e m m a goes back to Goldie , but i t s s imp le 
proof o c c u r r e d to m e upon r ead ing ano the r proof by Johnson and 
Wong, p a r t of whose a r g u m e n t it s t i l l con ta in s . 

LEMMA 5. If R is p r i m e and Q i s the r i ng of a l l 
n by n m a t r i c e s ove r a divis ion r ing then e v e r y l a r g e r igh t 
idea l L of R con ta in s a unit of Q. 

Proof. Since Q i s left n o e t h e r i a n , we can find a * L 
so tha t Qa is m a x i m a l . Since Q is r e g u l a r , we can find 
a' € Q such tha t a a ' a = a. Now e = aa ' and f = a' a a r e 
i d e m p o t e n t s ; we sha l l see tha t they a r e both 1. 

C o n s i d e r any b € ( l - e ) Q ~* L. Then e(a + b) = a ; hence 
Qa •-"" Q(a + b ) , with a + b € L. Since Qa was m a x i m a l wi th 
a € L, it fol lows that b € Qa. Thus ( l - e ) Q ^ L C Qa. Now 
a ( l -f) = 0 , hence 

( ( l - e ) Q r\ L) ( ( l - f )Q ^ L) = 0 . 

Since R i s p r i m e , one of the f a c t o r s is 0. Since L i s l a r g e , 
e i t h e r e = 1 or f = 1. Thus a h a s e i t h e r a r igh t i n v e r s e o r a 
left i n v e r s e in Q. Being ju s t a finite m a t r i x with e n t r i e s in a 
d iv i s ion r ing it h a s both. 
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It is not difficult to extend this resul t to semi-pr ime r ings, 
using the fact that the annihilator ideals of a semi-pr ime ring 
form a boolean algebra, but we shall refrain from doing so here. 
Let us also point out that c lassical rings of quotients of noetherian 
rings which are not semi-pr ime have been studied by Fel ler and 
Swokowski and also by Talentyre. 

The above proof of Lemma 5 is very similar to the proof 
of the corresponding resul t for semi-pr ime rings in the lecture 
notes by Faith. Nonetheless it seemed worth pointing out the 
simplification which a r i s e s in the prime case . 

Let me take this opportunity to cor rec t a statement made 
ea r l i e r . In my paper of 1963 I asse r ted that in all known 
examples for which Q is not c lass ica l , R fails to satisfy the 
maximum condition for right ideals . Carl Faith has pointed out 
that the 1958 paper with Findlay does in fact exhibit a finite ring 
R for which Q ^ R (Example 9.3). The non-zero-divisor s of 
R form a finite cancellation semi-group, which must be a group, 
and so R is its own c lass ica l ring of right quotients. 
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