ON THE RING OF QUOTIENTS OF A NOETHERIAN RING
J. Lambek

(received August 17, 1964)

This paper is largely an expository account of known facts,
but it contains at least one result believed to be new, Proposition 6.

Our main technique is the method of lifting idempotents
developed in Part I. This has been treated in the literature, but
not quite in the generality required here. It turns out that much
of classical artinian ring theory can be done for the semi-perfect
rings introduced by Bass, as will have been noticed by many
other people.

In Part II we consider Johnson's extended centralizer and
Utumi' s maximal ring of right quotients of a right noetherian ring.
The former is semi-perfect and the latter is almost as nice.

Finally I have yielded to the temptation to apply these
results to prime rings. While this is old hat, I have included
a proof of the crucial lemma for Goldie' s Theorem which
appears to be shorter than any in the literature.

Throughout this paper rings are assumed to be associative
with unity element, and all modules are taken to be unitary.

Part 1

In what follows, N will be an ideal of R, wusually assumed
to be contained in the Jacobson radical of R, here denoted
Rad R. We say that idempotents modulo N can be lifted
provided for every element u of R such that ué - ueN
there exists an idempotent el =ee¢ R suchthat e - ue N.
In other words, if u is an idempotent modulo N then there
shall exist an idempotent of R to which it is congruent modulo N.
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LEMMA 1. Assume that idempotents can be lifted modulc
NJ Rad R. If g isa given idempotent of R, and if u is an
idempotent modulo N such that ug and gu€¢ N, then there
exists an idempotent e of R suchthat e - u€¢ N and
eg =ge =0.

Proof. By assumption we may find fZ =fe€ R such that
f-ueN. Itifollows that fg and gfe€ N. In particular, 1 - fg
is a unit of R, and we may put

o= (1- fg)'1 f(1 - fg) .

Clearly f' 1is an idempotent and f'g =0. Multiplying by 1 - fg
on the left, we see that f' - fe N.

Now put e =f' - gf'. Then clearly ge =0 =eg, e2 -e,
and e = (1 - g)f =f = u modulo N.

A set of idempotents is said to be orthogonal if the product
of any two of them is zero.

PROPOSITION 1. Assume that idempotents can be lifted
modulo N C Rad R. Then any countable orthogonal set of non-
zero idempotents modulo N can be lifted to an orthogonal set
of non-zero idempotents of R.

Proof. We are given u1, uz, ... € R such that

2
u, =u # 0 and u, uj =0 for i# j. Suppose we have already

lifted Uys Uys oees 1y to the orthogonal set of idempotents

P = + ...
ut g e1

s 3 ey . + ’
€ € Cx-1 Cr-1 k&

and Y, € N. By the lemma, we can find an idempotent e =u

then surely u

k

modulo N which is orthogonal to g, and henceto e, e_, ..., e

1 2 k-1"

Finally e # 0 since u_ f{ N.
1 1

This result appears in the book by Jacobson (Chapter III,
§ 8, Proposition 5), but its validity there is restricted to the
so-called "SBI rings''.. The exact definition of this term need
not concern us here, sir.ce we propose to replace it by the
apparently more general concept ''rings in which idempotents
can be lifted" in a number of other results as well.
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For completeness we include the following:

LEMMA 2. If e and f are idempotents of R and if
u'u-e and uu' - fe Rad R, then there exist elements v and
v! such that v'v=e and vv' =f{.

This is proved essentially like III, §8, Proposition 1 of
Jacobson' s book.

A non-zero idempotent is called primitive if it cannot be
written as the sum of two orthogonal non-zero idempotents.
It is easily seen that the idempotent e € R is primitive if and
only if the ring eRe contains no idempotents other than 0 and e.

LEMMA 3. Assume that idempotents can be lifted modulo
N € Rad R. Then any primitive idempotent of R remains
primitive modulo N.

Proof. Suppose e is a primitive idempotent and
e=u+v, where u and v are orthogonal idempotents modulo
N. Then u is orthogonal modulo N to1 -e. By Lemma 1,
u may be lifted to an idempotent f of R which is orthogonal
to 1-e, thus fe€ eRe. By primitivity of e, f=0 or e,
hence u=0 or e modulo N. Thus e is primitive modulo N.

We follow Bass in calling the ring R semi-perfect if
idempotents can be lifted modulo Rad R and R/Rad R is
completely reducible (that is, artinian semi-simple).

PROPOSITION 2. Any semi-perfect ring contains a
finite orthogonal set of primitive idempotents whose sum is 1.

This is stated in Jacobson III, -§9, Theorem 4 for semi-
primary SBI rings. The proof there is left as an exercise to
the reader. Well, the same proof will yield the present result.

A ring R is called local if R/Rad R is a division ring,
or equivalently, if the non-units of R form an ideal.

(Jacobson calls such a ring "completely primary'.)

LEMMA 4. If e is a primitive idempotent in a semi-
perfect ring R then eRe is a local ring.
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Proof. First let us observe that e is the unity element
of eRe. Furthermore, if Rad R =N, then Rad (eRe) = eNe
=eRe "N (see Jacobson III, §7, Proposition 1).

Next consider any element u€ eRe. Since R/N is a
regular ring (in the sense of Von Neumann), there exists
u' € R such that uu'u zu modulo N. Since we can always
replace u' by eu'e in this, we may as well assume that
u' € eRe also.

Now uu' is an idempotent modulo N orthogonal to 1-e.
By Lemma 1, we can lift it to an idempotent f of R orthogonal
tod-e. Thus fe eRe, and f and e - f are two orthogonal
idempotents. Since e is primitive, one of them must be O.

We shall now assume that u £ 0 modulo N. Since
fu zuu'u =z u modulo N, it follows that f # 0. Therefore
f=e, and so uu' ze modulo N. Similarly u'u =z e modulo N,
hence u is a unit of eRe modulo N ~ eRe = Rad (eRe).
Thus eRe is a local ring.

PROPOSITION 3. If R is semi-perfect and R/Rad R
is simple, then R is isomorphic to the ring of all endomorphisn
of a finitely generated free module over a local ring.

This may be proved as in Jacobson, III, §8, Theorem 1
or as Proposition 6 in Part II below.

Part I

To set the stage for our main result, we introduce some
notation and review some known facts.

Let L be an R-submodule of the R-module M, and
suppose that L has non-zero intersection with every non-zero
submodule of M. Then L is called a large submodule of M,
or M is called an essential extension of L.

Given any R-module MR. As Eckmann and Schopf have

shown, MR has exactly one (up to isomorphism) essential

extension which is also injective. It is called the injective hull
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of MR, and we denote it by I_ = I(MR). It is both a maximal

R

essential extension and a minimal injective extension of MR.

We write H = H(MR) = HomR (I,I). Then I becomes a

bimodule We also write Q(MR) = HomH (I,I). The

I_.
HR
following results are known.

(A) (Utumi 1959) Rad H consists of all those elements
of H which annihilate a large submodule of IR or, what comes

to the same, of M_.
° R

(B) (Johnson 1951) H/Rad H is a regular ring, called the
extended centralizer of R over M.

(C) (Lambek 1963) Q =Q(RR) is a faithful extension of R.

It coincides with Utumi's (maximal) ring of right quotients of R.
It is also the largest of Gabriel's rings of right quotients which
faithfully extend R (as expounded in the exercises of Bourbaki
XXVII).

No use of Q(MR) for M # R will be made here.

PROPOSITION 4. In H= HomR(I, I) idempotents modulo
Rad H can be lifted.

Both Utumi and Chase have mentioned to me in conversation
that they have proved this result. A proof attributed to the latter
appears in the notes by Faith. The following proof was obtained
independently and differs from that by Chase.

2 .

Proof. ILet u€ H, u - ue Rad H. Then there exists a

2
large submodule L of IR such that (u - u) L =0. The

injective hull of ul, being its minimal injective extension, can
be embedded in the injective module IR, hence it has the form

2
el, where e =ee€¢ H. Since e induces the identity mapping
on ul,, we have (eu- u) L =0, hence eu=u modulo Rad H.
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Next, put {=e+eu (1 -e). Then ef=f, fe=e and
2
f =f. Let L' =(1-¢e)l+ul. A routine computation shows
that L' is a large submodule of IR and that (f - eu) L' =0.

Therefore f =z eu =u modulo Rad H, as required.

i
We follow Goldie in calling the module MR finite-

dimensional if there do not exist infinitely many non-zero
submodules whose sum is direct. Clearly, all noetherian and
all artinian modules are finite-dimensional.

PROPOSITION 5. Let MR be finite-dimensional. Then

(1) IR is the direct sum of a finite number of indecompos-

able injective modules,
(2) H/Rad H is completely reducible,
(3) H is semi-perfect.

Proof. (1) Consider any orthogonal set E of non-zero

idempotents of H. Then Ze ¢ E el " M 1s a direct sum of

non-zero submodules of MR, By assumption, E must be

finite. - One applies this principle twice. First, one shows that,
for any non-zero idempotent e of H, eHe contains a primitive
idempotent. (If e is not primitive, eHe contains an idempotent
e1 e, 0. If e1 is not primitive, e He1 contains an idem-

1
potent e, # e1, 0, and so on. The idempotents e-e,, e1-e2,. ..
form an orthogonal set, which must be finite.) Secondly, to
show that there exists a maximal orthogonal set €y ez, e

of primitive idempotents in H, let e be their sum and suppose
that e # 1, then (1-e) R(1-e) would contain a primitive idem-
potent orthogonal to e, hence to all e, a contradiction.

i

(2) By the above, there is a finite orthogonal set of
primitive idempotents whose sum is 1. By Lemma 3, the same
is true modulo Rad H, hence H =H/Rad H is a direct sum of
indecomposable right ideals. Since H is regular, these are
minimal right ideals. Therefore H is completely reducible.
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(3) This follows immediately from (2) and Proposition 4.

COROLLARY. Let MR be finite-dirmnensional and suppose
the indecomposable components of IR are all isomorphic. Then

H/Rad H and H are isomorphic to the rings of all endomorphisms
of finitely generated free modules over a division ring and a
local ring respectively.

The proofs use the classical Artin- Wedderburn Theorem
and Proposition 3 respectively.

COMMENT. Proposition 5 is not new. (1) may easily be
deduced from a theorem of Matlis, and (2) appears in the paper
"Coeur d'un module'" by Lesieur and Croisot (Theorem 2. 2).

PROPOSITION 6. Let RR be finite-dimensional and

suppose the indecomposable components of its injective hull
I(RR) are all isomorphic. Then Utumi's ring of right quotients

Q(RR) is isomorphic to the ring of all endomorphisms of a
finitely generated module over a local ring.

Proof. By (1) of Proposition 5, the unity element of H is

the sum of primitive idempotents e = ei, ez, ..., e . Itis
n

assumed that all ekl are isomorphic to el. Hence there

i d € = =-e.
exist uk an vk H such that Vkuk ek and ukvk e

Now consider Q = HomH(I, I). By a well-known argument,
this is isomorphic to Hom He (eI, eI). 1Indeed, let qe Q,
e

and define q': el—»el by (ei)q' ={(ei)q =e(ei)q. Compute
2

v.eu =v_uv u =e =e For an '—En i=
kK k kkkk ‘k °x Y A=A T

= v.eu i€ ] we then have

n

k=1 k k
g = = L ig = .
iq vkeuqu = vk(euk1)q

From this formula one readily infers that the correspondence
q +q' is an isomorphism.
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o

Next, observe that eH = E‘f 1 eHe =72

eHew , sinca
K= K ;

b
1.4 -
=1 2%

NN and € = Vi
idempotents, one easily sees that this is a direct sum. Thus

eH 1is a finitely generated free eHe-module. Now, if 1 denotes
the unity element of R, h - h! is an epimorphism of HH onto

eu Since the e,  are orthogonal

HI, Hence I =eH1, and so el is also a finitely generated eHe-

module, although there is no longer any reason for it to be free.

Finally, eHe is a local ring by Lemma 4, and so our
proof is complete.

It would be pleasant if we could replace the condition
"all indecomposable components of I(RR) are isomorphic"

by a neat internal characterization of R. This can be done
for noetherian R in view of a result by Lesieur and Croisot
(see the very last italicized statement in their book). For
completeness, we repeat it here in our own words.

PROPOSITION 7. Let R be both right and left noetherian.
Then the indecomposable components of I(RR) are all isomorphic

if and only if RR is tertiary in the sense that for every ideal

A of R the left annihilator {r ¢ R|rA =0} is either 0 or
large as a right ideal.

Part III

Johnson introduced the singular submodule J(MR) of a

module MR as the set of all elements of M which annihilate

some large right ideal of R. This can also be defined as the
intersection of M with the radical of HI, in view of (A) above.

Rings for which J(RR) =0 have been extensively studied

by Johnson. They are called (right) neat in Bourbaki XXVII.
It is well known and not difficult to show that for such rings also
Rad H =0. Indeed, let J(RR) =0, and put K={he H|hR =0} .

Then KI T (Rad H)H1 C (Rad H)1 = J(IR) = 0. Now it is known
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that 1Q ={ie€ I|Ki =0} (see for instance Lambek 1963), hence
1Q=1. Therefore HT¥Q I =I/J(IR) ¥ H/Rad H is a regular

ring and so Rad H = 0.

The following result is due to Johnson (see his paper of
1961, Theorem 4.3), but is here presented as a corollary to
Proposition 5 or 6.

COROLLARY. Let RR be neat and finite dimensional.

Then Q = H is completely reducible.

If R is moreover semi-prime, Goldie showed that Q is
the classical ring of right quotients of R, in the sense that
every non-zero-divisor of R 1is a unit in Q and that every
element of Q has the form r s~! with r and se€ R.

It is not difficult to show that Q(RR) will be classical

if every large right ideal of R contains a unit of Q. The
following crucial lemma goes back to Goldie, but its simple
proof occurred to me upon reading another proof by Johnson and
Wong, part of whose argument it still contains.

LEMMA 5. If R is prime and Q is the ring of all
n by n matrices over a division ring then every large right
ideal L of R contains a unit of Q.

Proof. Since Q is left noetherian, we can find a € L
so that Qa is maximal. Since Q is regular, we can find

a' € Q suchthat aa'a=a. Now e =aa' and f= a'a are
idempotents; we shall see that they are both 1.

Consider any be (1-e)Q -~ L. Then e(a + b) =a; hence
Qa -’ Q(a+b), with a+be L. Since Qa was maximal with
a€ L, it follows that be Qa. Thus (1-e)Q "N L << Qa. Now
a(1-f) =0, hence

((1-e)Q N L) ({(1-f)Q~ L) =0 .
Since R 1is prime, one of the factors is 0. Since L is large,
either e=1 or f=1. Thus a has either a right inverse or a

left inverse in Q. Being just a finite matrix with entries in a
division ring it has both.
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It is not difficult to extend this result to semi-prime rings,
using the fact that the annihilator ideals of a semi-prime ring
form a boolean algebra, but we shall refrain from doing so here.
Let us also point out that classical rings of quotients of noetherian
rings which are not semi-prime have been studied by Feller and
Swokowski and also by Talentyre.

The above proof of Lemma 5 is very similar to the proof
of the corresponding result for semi-prime rings in the lecture
notes by Faith. Nonetheless it seemed worth pointing out the
simplification which arises in the prime case.

Let me take this opportunity to correct a statement made
earlier. In my paper of 1963 I asserted that in all known
examples for which Q is not classical, R fails to satisfy the
maximum condition for right ideals. Carl Faith has pointed out
that the 1958 paper with Findlay does in fact exhibit a finite ring
R for which Q # R (Example 9.3). The non-zero-divisors of
R form a finite cancellation semi-group, which must be a group,
and so R is its own classical ring of right quotients.
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