SHOCK EXCITATION OF EMISSION LINES IN RADIO GALAXIES

A. M. KOEKEMOER¹, AND G. V. BICKNELL²

¹ Institut d'Astrophysique de Paris
98bis Bd. Arago, 75014 Paris, France
²ANU Astrophysical Theory Centre
Australian National University, Canberra, ACT 0200, Australia

1. Introduction

We present evidence for the viability of "auto-ionizing" shocks as the dominant ionization mechanism in extended emission-line regions (EELRs) in two radio galaxies, PKS 0349-27 and PKS 2356-61. The application of this model, rather than the nuclear photoionization hypothesis of unified schemes (Barthel 1989), is motivated by observed EELR properties: large line-of-sight velocity widths (up to $\Delta v \sim 500 \text{ km s}^{-1}$ for nearby objects and $\gtrsim 1000 \text{ km s}^{-1}$ at higher z); kinematics/excitation relationships (Baum *et al.* 1992); the EELR/radio axis alignment (Chambers *et al.* 1987, McCarthy *et al.* 1987); and the correspondence between the brighter EELR and the shorter radio lobe (McCarthy *et al.* 1991), suggestive of jet/gas interactions. We show that the flux, excitation *and* kinematics across the gas is self-consistently accounted for in terms of shocks as a single physical mechanism, requiring fewer unknown parameters than nuclear photoionization.

2. Shock Model Compared with Observations

The physical basis for auto-ionizing shocks (Sutherland *et al.* 1993, Dopita and Sutherland, 1995) involves cloud-cloud collisions producing strong shocks with temperature $T \propto v^2$. Shocks with $v \gtrsim 200 \,\mathrm{km \, s^{-1}}$ produce substantial UV / soft X-rays and photoionize the precursor, which then contributes to the spectrum; the resulting flux and excitation increase with v.

In Figure 1 we plot [OIII]5007/H β vs. Δv for all pixels sampling the EELR in PKS 0349-27 (from a "datacube" of longslit spectra taken with

473

R. Ekers et al. (eds.), Extragalactic Radio Sources, 473–474. © 1996 IAU. Printed in the Netherlands.

Line / $H\beta$	Obs	<i>B</i> =0	B =1	<i>B</i> =4
[OII]3726,29	6.27	1.73	4.90	6.97
[NeIII]3869	1.51	0.71	0.92	1.13
[OIII] 4363	0.15	0.08	0.07	0.08
HeII4686	0.39	0.28	0.33	0.37
[OIII]5007	11.9	8.26	8.00	9.07
[OI]6300	0.43	2.11	2.36	1.67
[NII]6583	2.54	0.98	2.24	2.40
[SII]6716,31	2.00	2.11	1.89	1.42

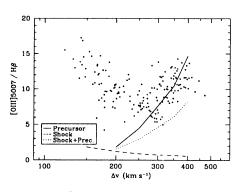


Figure 1. [OIII]5007/H β : PKS 0349-27.

the AAT / RGO spectrograph). The curves are model predictions for the shock, precursor and combined spectrum (low-density-limit photon-bounded precursor, transverse magnetic field parameter $B/n^{1/2} = 0 \,\mu \text{G cm}^{3/2}$). Gas with $\Delta v \gtrsim 250 \,\text{km s}^{-1}$ (*ie.* the kinematically disturbed central region) shows a clear trend in excitation, consistent with shock-related precursors. The high ionization of gas with lower Δv implies that it is also photoionized but not physically associated with shocks; its flux and excitation are accounted for by $\sim 5-10\%$ of ionizing flux escaping from shocks in the central region.

In Table 1 we present the low-dispersion line ratios for the central EELR of PKS 2356-61, compared with a single-velocity shock+precursor model (the velocity $\Delta v \sim 400 \,\mathrm{km \, s^{-1}}$ corresponds to that observed, while the $B/n^{1/2}$ values represent that of the Galactic ISM, $\sim 3 \,\mu\mathrm{G \, cm^{3/2}}$). Almost all the lines (*incl.* [OIII]4363) are accounted for to within 30 - 50% or better.

3. Conclusions

Using simple assumptions about shock properties, we have shown that the fluxes, excitation *and* kinematics of gas in PKS 0349-27 and PKS 2356-61 can be self-consistently described by auto-ionizing shocks. This robustness suggests that shocks may play an important role in a wide range of EELRs.

References

Barthel, P. D.: 1989, *Ap.J.* **336**, 606 Baum, S. A., Heckman, T. M. and van Breugel, W. J. M.: 1992, *Ap.J.* **389**, 208 Chambers, K. C., Miley, G. K. and van Breugel, W. J. M.: 1987, *Nature* **329**, 604 Dopita, M. A. and Sutherland, R. S.: 1995, *Ap.J.*, in press McCarthy, P. J., van Breugel, W. and Kapahi, V. K.: 1991, *Ap.J.* **371**, 478 McCarthy, P. J., van Breugel, W., Spinrad, H. and Djorgovski, S.: 1987, *Ap.J.* **321**, L29 Sutherland, R. S., Bicknell, G. V. and Dopita, M. A.: 1993, *Ap.J.* **414**, 510