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Abstract. In this review we focus on non-linear phenomena in pulsating stars: mode selection
and amplitude limitation. Of many linearly excited modes, only a fraction is detected in pul-
sating stars. Which of them are excited, and why (the problem of mode selection), and to what
amplitude (the problem of amplitude limitation) are intrinsically non-linear and still unsolved
problems. Tools for studying these problems are briefly discussed and our understanding of mode
selection and amplitude limitation in selected groups of self-excited pulsators is presented. We
focus on classical pulsators (Cepheids and RR Lyrae stars) and main-sequence variables (δ Scuti
and β Cephei stars). Directions of future studies are briefly discussed.
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1. Introduction
Models of pulsating stars typically predict more unstable modes than are observed.

Which of the linearly unstable modes are excited and why – the problem of mode selec-
tion – is a difficult non-linear problem, still lacking a satisfactory solution. Closely related
is the problem of amplitude limitation, which is non-linear as well. Intrinsic non-linearity
of these two problems is a major challenge. Our tools to analyse non-linear pulsation
are either restricted to large amplitude radial pulsation, e.g. in Cepheids and RR Lyrae
stars (hydrodynamical modelling) or are based on simplified assumptions and depend
on unknown parameters (amplitude equation formalism). Therefore these problems re-
ceived only scant theoretical attention in the past, and the dated but excellent review of
Dziembowski (1993) is still mostly up-to-date.

For ground-based observations, the basic mode selection mechanism is of an obser-
vational nature. Because of geometric cancellation, modes of degree l > 2 are hard to
detect from the ground (Dziembowski 1977). For space-based photometry, mode degrees
above 10 are reported (e.g. Poretti et al. 2009) and since geometrical cancellation is very
similar for large l it is hard to point to any obvious limit for maximum l, except that
even-l modes are less affected by cancellation and thus more likely to be detected. In this
review we focus on intrinsic non-linear mechanisms acting in pulsating stars.

In the next section the tools for studying the non-linear phenomena are briefly dis-
cussed. Then we discuss the mode-selection mechanisms: mode trapping (Section 3),
non-resonant and resonant mode interaction (Section 4). We next turn to the discussion
of amplitude-limiting effects: collective saturation of the driving mechanism (Section 5)
and resonant mode coupling (Section 6). A discussion and outlook for the future studies
end this review.

2. Tools for mode selection analysis
Linear stability analysis. A linear stability analysis tells us nothing about the mode

selection or amplitudes of the excited modes – these are non-linear problems. It is, how-
ever, a necessary starting point, as it provides the information on mode eigenfunctions,
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Figure 1. Linear growth rates, γ (top) and Stellingwerf’s growth rates, η (bottom) for two
models of δ Sct stars at different evolutionary stages: post-main sequence (MS) expansion (left)
and post-MS contraction phase (right). In the top panels, frequencies detected in 44 Tau are
marked. Models from Lenz et al. (2008, 2010).

mode frequencies, σ, and on mode stability through the linear growth rate, γ:

γ =
∫

dW

2σI
, (2.1)

where

dW = �
[
δP

(
δρ

ρ

)∗]
, I =

∫
M

|ξ|2dm, (2.2)

are local contribution to the work integral (dW , with pressure, δP , and density, δρ,
perturbations) and mode inertia (I, with radial displacement, ξ). Plots of growth rates for
low degree modes in δ Sct-type models are shown in the top panels of Fig. 1. The growth
rates of non-radial modes are not smooth, but exhibit maxima, particularly pronounced
for the evolved model (left panel) and modes of l=1. This peculiar frequency dependence
of the growth rates reflects the behaviour of mode inertia. Modes trapped in the external
layers of the model with small amplitudes in the interior have the smallest inertia and
the largest growth rates. The inference that the most unstable, trapped modes will be
most easily driven to high amplitude is precarious, however (see Section 3). The maxima
of the growth rates do not reflect the properties of the driving region, which is clear if
Stellingwerf’s (1978) growth rates are considered instead:

η =
∫

dW∫
|dW | , (2.3)

with η ∈ (−1, 1). These growth rates are plotted in the bottom panels of Fig. 1 and they
smoothly vary with the mode frequency.

Hydrodynamic models. Realistic non-linear hydrodynamic models of radially pulsating
stars have been computed for nearly 50 years now (e.g. Christy 1966). Computations
are done with direct time-integration, one-dimensional codes. The initial static structure
is perturbed with the scaled velocity eigenfunction (initial kick) and the time evolution
of the model is followed until finite-amplitude steady pulsations are reached (limit cy-
cle). As different initializations may lead to different limit cycles for the same static
model (hysteresis), mode selection analysis is time-consuming and requires computation
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of tens of models. The convergence may be sped-up with the use of a relaxation tech-
nique (Stellingwerf 1974), which in addition provides the information about stability of
the limit cycles (even unstable ones) through the Floquet exponents.

The early codes were purely radiative. Currently several codes that include convective
energy transfer are in use. Two prescriptions for turbulent convection are commonly
adopted, either by Stellingwerf (1982) (e.g. in the Italian code, Bono & Stellingwerf
1992) or by Kuhfuß (1986) (e.g. in the Warsaw codes of Smolec & Moskalik (2008a) or in
the Florida-Budapest code, e.g. Kolláth et al. (2002), with the modified Kuhfuß model).
Both models include several free parameters, values of which must be adjusted to match
the observational constraints.

Non-linear pulsation codes were successfully used to model the light and radial velocity
curves in single-periodic classical pulsators. Understanding of the dynamical phenomena
shaping these curves would not be possible however without the insight provided by the
analysis of amplitude equations.

Amplitude equations (AEs). If the growth rates of the dominant modes are small com-
pared to their frequencies (weak non-adiabaticity), and assuming weak non-linearity, the
hydrodynamic equations governing the stellar pulsation may be reduced to ordinary dif-
ferential equations for the amplitudes of the excited modes, Ai (e.g. Dziembowski 1982,
Buchler & Goupil 1984). In the case when no resonances are present among pulsation
modes, the form of the AEs (usually truncated at the cubic terms) is the following:

dAi

dt
= γi

(
1 +

∑
j

αijA
2
j

)
Ai, (2.4)

where αii and αij are negative self- and cross-saturation coefficients, respectively.
In the case of resonant mode coupling, the exact form of the amplitude equations

depends on the resonance considered. Here we present the complex equations for the
parametric resonance σa = σb + σc + Δσ:

dAa

dt
= γaAa − i

C

2
AbAce−iΔσt ,

dAb,c

dt
= γb,cAb,c − i

C

2
AaA∗

c,be
iΔσt . (2.5)

C is a resonant coupling coefficient.
With reasonable approximations the amplitude equations may be solved analytically.

Of particular interest are time-independent solutions (fixed points) which correspond to
limit cycles in hydrodynamic computations. Analysis of a fixed point’s stability provides
direct insight into mode selection. For non-resonant AEs the single-mode fixed points are
given by Ai = 1/

√−αii and are stable if αji/αii > 1 for each j. For the interesting case
of non-resonant two-mode interaction, the double-mode solution, with finite amplitude
of the two excited modes, is possible once α00α11 − α01α10 > 0 (analysis of cubic AEs),
i.e. when the self-saturation exceeds the cross-saturation. A detailed discussion of mode
selection scenarios for both non-resonant and resonant mode interaction may be found
e.g. in Dziembowski & Kovács (1984) or Buchler & Kovács (1986).

The described mode selection analysis is possible only when the values of the satura-
tion/coupling coefficients are known. These, however, are very difficult to compute. Only
with simplistic approximations some analytical estimates are possible. Therefore, most
of the work on AEs has been parametric studies. This problem may be overcome for
large-amplitude radial pulsators for which hydrodynamic computations may be coupled
with the analysis of AEs. For time integration of the same model, but initialized with
different initial conditions, the evolution of mode amplitudes may be followed with the
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help of the analytical signal method (e.g. Kolláth et al. 2002). The resulting trajectories
are then fitted with the appropriate AEs and the resulting saturation/coupling coeffi-
cients may be used to compute all the fixed points and their stability, i.e. to analyse the
mode selection. Repeating the procedure for a discrete set of models located at different
parts of the HR diagram, and interpolating in-between, yields a consistent picture of
mode selection in the full instability strip (Szabó et al. 2004). Results of such analysis
for Cepheids are reported in Section 4.

3. Mode trapping
Mode trapping as a mode selection mechanism was first proposed by Winget et al.

(1981) in the context of white-dwarf (ZZ Ceti) pulsations. Trapping in the strongly
stratified models of white dwarfs is caused by the resonance between the wavelength of
the g-mode and the thickness of one of the compositional layers. The trapped modes have
low amplitude in the core, with most of the mode energy confined in the outer regions,
where pulsation driving takes place. The mode inertia is low and the growth rate is high
(Eq. 2.1). Winget et al. (1981) concluded that the trapped modes are much more likely
to be excited than adjacent, non-trapped modes. The mode trapping is also present in
the models of evolved δ Sct stars, as is clearly visible in Fig. 1 (top, left). In this case, the
frequency separation between the trapped modes corresponds to the separation between
the consecutive radial overtones. Dziembowski & Królikowska (1990) proposed that mode
trapping might be a mode selection mechanism in evolved δ Sct stars. They commented
however, that this selection rule relies only on linear non-adiabatic theory, and since the
high mode growth rates are not indicators of large amplitude, justification must come
from non-linear theory.

The observations themselves invalidate mode trapping as a mode selection rule. In case
of white dwarfs mode trapping is clearly detected through the characteristic wave shape
of the period spacing vs. period diagram, which allows the identification of the trapped
modes. It turns out that the trapped modes are not the ones that have the highest am-
plitudes. As an example we use the observations of PG 1159-035 – a hot pulsator, but
evolved and stratified enough to show the effects of mode trapping (Costa et al. 2008). In
Fig. 2 we show the frequency spectrum of the star from the 1983 season. The dashed lines
mark the location of the trapped modes derived from the period spacing diagrams con-
structed using six seasons of observations. Although the two highest-frequency trapped
modes have high amplitudes, the neighbouring non-trapped mode has the highest ampli-
tude. For the three low-frequency trapped modes, no signal was detected in 1983 season.
For two of these modes, a significant detection was made only during one out of the six
observing seasons.

In the case of δ Sct stars, regularities observed in the frequency spectra are also in-
terpreted as a result of mode trapping. Breger et al. (2009) show that, in the cases of
FG Vir, BL Cam, and 44 Tau, there is a preferred frequency spacing between the excited
modes, which corresponds to the spacing between radial modes. The asteroseismic model
of Lenz et al. (2008) showed that mode trapping may be indeed operational in 44 Tau.
The growth rates for their best asteroseismic model, located in the post-MS expansion
phase, are reproduced in Fig. 1 (top left). Observed modes seem to cluster around the
growth rate maxima. However, this model fails to reproduce all of the observable param-
eters satisfactorily. In their later analysis, Lenz et al. (2010) constructed asteroseismic
models at an earlier evolutionary phase, the post-MS contraction, and obtained a bet-
ter model with an excellent fit to all the observed modes (Fig. 1, top right). The mode
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Figure 2. Frequency spectrum of PG 1159-035 (Costa et al. 2008) from the 1983 season.
Frequencies of trapped modes are marked with dashed lines.

trapping is only barely noticeable for this model and cannot represent a valid mode
selection mechanism.

4. Resonant and non-resonant mode coupling
The analysis of mode selection and amplitude limitation is most feasible for large-

amplitude radial pulsators, Cepheids and RR Lyrae stars, as direct hydrodynamic models
may be computed and complementary analysis of amplitude equations is feasible. Most
of these stars are singly-periodic, pulsating either in the fundamental (F) mode or in the
first overtone (1O). In many stars double-mode pulsation either of the F+1O or 1O+2O
type is detected (see Moskalik 2013 and these proceedings for a review). Already, with
the first purely radiative hydrocode, Christy (1966) showed that in the single-periodic
models amplitude growth is limited by saturation of the driving mechanism. The selection
between fundamental and first overtone pulsation is however still an unsolved problem.
The analysis of radiative models yielded the following picture (e.g. Stellingwerf 1975):
If only one mode is linearly unstable, then this mode reaches a finite amplitude: first
overtone at the blue side of the instability strip and fundamental mode at the red side. If
two modes are simultaneously unstable, then either only one limit cycle is stable (F-only
or 1O-only domains) or two limit cycles are simultaneously stable, and which is selected
depends on the initial conditions (E/O, either-or domain). A star entering the E/O
domain from the blue side will continue to pulsate in the 1O mode, while a star entering
from the red side will continue to pulsate in the F mode. No double-mode pulsation was
found in realistic radiative models of Cepheids and RR Lyrae stars.

Inclusion of turbulent convection in the models seemed to solve the problem. Feuchtin-
ger (1998) reported one double-mode RR Lyrae model and the Florida-Budapest group
found double-mode Cepheids and RR Lyrae models in their surveys (Kolláth et al. 1998,
2002, Szabó et al. 2004, Buchler 2009). Regrettably, how the inclusion of turbulent convec-
tion caused the stable double-mode pulsation in these models was not analysed. Smolec
& Moskalik (2008b) were able to show that the double-mode pulsation was caused by
unphysical neglect of buoyant forces in convectively stable regions of the model. In the
absence of a restoring force, the turbulence is not damped effectively below the envelope
convective zone and resulting strong eddy-viscous dissipation reduces the amplitudes of
fundamental and first overtone modes differentially, favouring the occurrence of double-
mode pulsation. With the correct treatment of the buoyant forces, Smolec & Moskalik
(2008b) were not able to find satisfactory double-mode Cepheid models. Also computa-
tions with the Italian code, adopting Stellingwerf’s model of convection, yielded a null
result (see Smolec & Moskalik 2010).
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Although resonant mode interaction cannot explain the double-mode pulsation for
most of the observed variables, it may be operational in some limited parameter ranges.
In particular the 2:1 resonance between the fundamental mode and the linearly damped
second overtone may decrease the amplitude of the former mode, allowing the growth of
the first overtone, as pointed out by Dziembowski & Kovács (1984). Some hydrodynamic
resonant double-mode models were in fact found (Smolec 2009, Buchler 2009) and the
two long period double-periodic Cepheids discovered recently in M31 by Poleski (2013)
are the first good candidates for resonant double-periodic pulsation. For the majority of
double-periodic pulsators, an explanation is still missing.

5. Collective saturation of the driving mechanism
Among δ Sct stars and β Cep stars there are variables with one or two dominant radial

modes, with amplitudes of the order of 0.1 mag. The attempts to model these stars with
hydrodynamic codes failed however. Stellingwerf (1980) computed δ Sct models and got
pulsation amplitudes exceeding 1 mag (which he called the main-sequence catastrophe).
Clearly, the instability cannot be saturated with a single pulsation mode in these stars,
as is the case for Cepheids or RR Lyr stars, occupying the high luminosity part of the
same instability strip. Similar results were obtained for models of singly-periodic β Cep
pulsators computed by Smolec & Moskalik (2007). Linear stability computations predict
that many non-radial acoustic modes are unstable in these stars. Smolec & Moskalik
(2007) assumed that the instability is collectively saturated not by a single mode, but
by tens (n) of acoustic modes simultaneously (and that because of the assumed large l
these modes are not detected). Using amplitude equations and assuming that the prop-
erties of acoustic modes (saturation coefficients) are the same, one may show that in
this case the amplitude drops by a factor

√
n as compared to the single-mode saturation

amplitude predicted by a hydrodynamic model. The agreement with the pulsation am-
plitudes of multi-periodic β Cep stars is obtained with only a fraction of the available
(linearly unstable) modes. In principle, the collective saturation of the instability mech-
anism explains the amplitudes of β Cep stars (and of δ Sct stars as well); however, there
is a serious difficulty with such an explanation. The resulting macroturbulence velocities
(and hence the line widths) are too high compared to observations, indicating that other
amplitude-limiting mechanisms must be operational.

6. Amplitude limitation in δ Scuti stars
An alternative scenario to collective saturation of the driving mechanism is resonant

mode coupling investigated by Dziembowski (1982), who considered the coupling of an
unstable acoustic mode to a pair of stable g modes. The AEs appropriate for this case
were given in Section 2. The parametric excitation of the g modes starts once the am-
plitude of the acoustic mode exceeds a critical value, Aa >Acrit . A steady-state solution
is then possible in a limited range of mismatch parameter, and provided that damp-
ing of the gravity-mode pair exceeds the acoustic-mode driving. The amplitude of the
acoustic mode is then close to the critical amplitude, while amplitudes of the g-modes
are much lower, making their detection from the ground impossible. The exact formulae
for the stability condition and critical/equilibrium amplitudes may be found in Dziem-
bowski (1982). Dziembowski & Królikowska (1985) applied the formalism for realistic
δ Sct models. Strong coupling arises only if the radial orders of the gravity modes are
similar, which implies σb ≈σc ≈σa/2 and for close and large l values. Because of a large
number of potential resonant pairs, Dziembowski & Królikowska (1985) computed the
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probability distribution for the critical amplitude. Their results showed that, indeed, res-
onant mode coupling may be a promising amplitude-limitation mechanism. The typical
critical amplitude they found is of order of 0.01 mag. Moreover, if rotation is taken into
account the critical amplitude drops even further, as the denser g-mode spectrum allows
for fine tuning of the resonance condition (Dziembowski et al. 1988). Thus, resonant
mode coupling nicely explains the observational fact that high amplitude δ Sct stars are
slow rotators.

The resonant mode coupling scenario has serious shortcomings, however. Only for low
order acoustic modes, which couple to strongly damped global g-modes, there is a large
probability that the equilibrium is stable. Higher order p-modes couple preferentially to
weakly damped inner g-modes which are not able to halt the amplitude growth. The
excitation of many g-mode pairs is then expected, and has to be analysed numerically,
which was done by Nowakowski (2005). His results are disappointing however. A static
multi-mode solution is not possible then, and strong amplitude variability on a γ−1

a

timescale is expected. Moreover, computations for realistic model of the δ Sct star XX Pyx
show that resonant mode coupling cannot be a dominant amplitude-limiting effect, as
the predicted amplitudes are higher than observed. Whether saturation of the driving
mechanism plays a role in δ Sct models has not been investigated in detail yet.

7. Discussion and conclusions
The problems of mode selection and amplitude limitation are some of the most stub-

born, still unsolved problems of stellar pulsation theory. They are important for all groups
of pulsating stars, and for no group do we have a satisfactory solution. Even for large-
amplitude radial pulsators, we do not understand the mechanisms behind the simplest
form of multi-mode pulsation, i.e. double-mode pulsation. Triple-mode pulsation and
excitation of non-radial modes are even more challenging problems. It seems that their
solution must await the development of full 3D hydrodynamic models. Fortunately, such
codes are now being developed (Geroux & Deupree 2013, Mundprecht et al. 2013), but
have not been applied for modelling double-periodic pulsations yet.

For low-amplitude non-radial pulsators our understanding is even poorer, as the use of
the amplitude equation formalism, the only available tool to study non-linear and non-
radial pulsation, is strongly limited by its complexity and unknown saturation/coupling
coefficients.

The most interesting quantities that observations can provide are intrinsic amplitudes
of pulsation modes. For their determination, the mode identification and inclination an-
gle are needed. The robust determination of these quantities is however difficult and
requires combination of multi-band photometric and spectroscopic observations (Uytter-
hoeven, these proceedings). Only for a limited number of main-sequence pulsators and
usually only for a few detected modes robust mode identifications are available. In the
case of stars studied with space telescopes, with hundreds of detected modes, the task
seems even more challenging, if possible at all. The space observations, in particular their
statistical analyses, are however of great importance for our understanding of mode se-
lection (Balona & Dziembowski 1999). The frequency distribution of amplitudes of the
excited modes may be used to infer the probability distribution of intrinsic amplitudes,
assuming some knowledge of the l values, and then compared with model computations.
Kepler observations of thousands of δ Sct stars (Balona & Dziembowski 2011) make such
an analysis feasible.

We stress the need for systematic spectroscopic observations of targets of current and
future space missions. The aim is not only the mode identification, but also precise
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determination of basic stellar parameters, log g and log Teff , which are additional impor-
tant constraints for seismic models and are necessary to study the intriguing problem of
the significant contamination of the δ Sct instability strip with apparently non-pulsating
stars (Balona & Dziembowski 2011).

Acknowledgements

I am grateful to Wojtek Dziembowski, Pawe�l Moskalik and Alosha Pamyatnykh for
many fruitful discussions and to Patrick Lenz for providing data for Fig. 1. I acknowledge
the IAU grant for the conference. This research is supported by the Polish National
Science Centre through grant DEC-2012/05/B/ST9/03932.

References
Balona, L. A. & Dziembowski, W. A. 1999, MNRAS, 309, 221
Balona, L. A. & Dziembowski, W. A. 2011, MNRAS, 417, 591
Bono, G. & Stellingwerf, R. F. 1992, MemSAIt., 63, 357
Breger, M., Lenz, P., & Pamyatnykh, A. A. 2009, MNRAS, 396, 291
Buchler, J. R. 2009, AIP-CP, 1170, 51
Buchler, J. R. & Goupil M.-J. 1984, ApJ, 279, 394
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