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On Fuchs’ relation for linear differential systems

Eduardo Corel

Abstract

In this paper, we give a formal algebraic notion of exponents for linear differential systems
at any singularity as eigenvalues of the residue of a regular connection on a maximal lattice
(that we call ‘Levelt’s lattice’). This allows us to establish upper and lower bounds for
the sum of these exponents for differential systems on P

1(C).

Introduction

Exponents are well known for homogeneous linear differential equations at a regular singularity
since the classical works of Fuchs and Frobenius. Let L ∈ C(z)[d/dz] be a differential operator of
order n with coefficients in C(z). When the differential equation Ly = 0 has regular singularities
over P

1(C), its exponents (es
i )i=1,...,n for all s ∈ P

1(C) obey Fuchs’ relation [Poo60, ch. V, § 20,
p. 77]:

∑
s∈P1(C)

n∑
i=1

(es
i − (i − 1)) = −n(n − 1).

Bertrand and Laumon (see [Ber98], also [BB85]) extended this definition in 1985 at an irregular
singularity. For any linear differential equation Ly = 0, the exponents es

i that they define satisfy
the generalized Fuchs’ relation

∑
s∈P1(C)

( n∑
i=1

(es
i − (i − 1)) − 1

2
irrs(End∇)

)
= −n(n − 1),

where irrs(End∇) denotes the Malgrange irregularity at s of the natural connection End ∇ of
EndC(z) C(z)[d/dz] induced by the operator L.

In 1961, Levelt [Lev61] defined exponents for linear differential systems at a regular singular
point. We extend the notion of exponents for systems at an irregular singularity (cf. Definitions 15
and 16). The main result of this paper is the following.

Theorem 1 (Fuchs’ relation). Let dX/dz = AX be a meromorphic differential system of order n
on P

1(C). The exponents es
1, . . . , e

s
n attached to this system at all points s ∈ P

1(C) satisfy

−n(n − 1)
2

h(A) �
∑

s∈P1(C)

( n∑
i=1

es
i −

1
2

irrs(End∇)
)

� −h(A) + h(Tr A).

The height h(A) of the system is given by the formula

h(A) =
∑

s∈P1(C)

sup(0,−vsAdz − 1),

where vs is the valuation of a meromorphic function at s ∈ P
1(C) extended to n × n matrices.
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Remark 1. The sum of exponents also satisfies
∑

s∈P1(C)

n∑
i=1

es
i � 0.

Therefore, the upper bound given in Theorem 1 is not optimal in some important cases, which we
discuss in § 5.3.

Remark 2. When all the singularities of the system dX/dz = AX are regular, we get the relation

−n(n − 1)
2

h(A) �
∑

s∈P1(C)

n∑
i=1

es
i � −h(A)

that we proved in [Cor99a], as well as Bolibrukh’s estimate [Bol95, Proposition 1.2.3, p. 24]

∑
s∈P1(C)

n∑
i=1

es
i � 0.

The results of this paper are a slight improvement on those which have been announced in
[Cor01b]. A French translation of the initial version of this paper can be obtained as [Cor01c].

1. Local connections

Let K be a local valued field, complete with respect to its discrete valuation v. Denote by O its
valuation ring. An element t ∈ K is called a uniformizing parameter if it satisfies v(t) = 1. Let Ω be
a free O-module of rank one and d : O −→ Ω be a derivation such that there exists a uniformizing
parameter t whose derivation dt is an O-basis of Ω (cf. [Del70]). We will usually call Ω the module
of differential 1-forms. Define furthermore Ω∗ to be the O-dual of Ω, and let their respective vector
spaces be ΩK = Ω ⊗O K, the K-vector space of differential 1-forms, and Ω∗

K = Ω∗ ⊗O K. For any
τ ∈ Ω∗

K , denote with ∂τ the map

∂τ : K −→ K

f �−→ 〈df, τ〉.
Given a uniformizing parameter t, there exists for any f ∈ K a unique αf ∈ K such that

df = αf dt.

The mapping f �−→ αf is a derivation of K. We will thus write αf = df/dt and ∂dt = d/dt.
Denote with DK = K d/dt the K-vector space of such derivations of K. There is a natural valuation,
also denoted by v, on all these spaces.

Let V be a K-vector space of finite dimension n. A linear connection on V is an additive map

∇ : V −→ V ⊗K ΩK

satisfying Leibniz’s rule

∇(fv) = v ⊗ df + f∇v for all f ∈ K and all v ∈ V.

For any derivation ∂ ∈ DK , one defines a map ∇∂ : V −→ V by composing ∇ with

V ⊗K ΩK −→ V

v ⊗ ω �−→ 〈ω, ∂〉v = ω(∂)v.

The additive map ∇∂ is a differential operator on V : it satisfies the relation

∇∂(fv) = ∂(f)v + f∇∂(v) for all f ∈ K and all v ∈ V.
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On Fuchs’ relation for linear differential systems

For a given choice of a uniformizing parameter t, we will mainly work with the derivations d/dt and
θt = t d/dt. When no confusion can arise we will simply write θ.

A vector v ∈ V is said to be horizontal for the connection ∇ if it satisfies ∇(v) = 0, which
amounts to asking that ∇∂(v) = 0 for every derivation ∂ ∈ DK .

For any basis (e) of V , denote with ei the ith vector of (e). The matrix Mat(∇∂ , (e)) of the
differential operator ∇∂ in the basis (e) is defined as the matrix A = (Aij) ∈ Mn(K) such that

∇∂(ej) = −
n∑

i=1

Aijei for all j = 1, . . . , n.

Let X = t(x1, . . . , xn) be the vector of components of v ∈ V in the basis (e). The vector of
components of ∇∂(v) in (e) is then ∂X − AX. The differential system ∂X = AX and the equation
∇∂(v) = 0 are therefore equivalent via the choice of a basis.

Let (ε) be a basis of V and let P ∈ GLn(K) be the matrix of the basis change from (e)
to (ε). The components of v in (ε) are then given by Y = t(y1, . . . , yn) where X = PY , and the
components of the vector ∇∂(v) by ∂Y − A[P ]Y , where the matrix A[P ] is given by the so-called
gauge transformation (with respect to the derivation ∂)

A[P ] = P−1AP − P−1∂P. (1)

Until § 3 we shall consider a fixed uniformizing parameter t of K.

1.1 Connections and constructions

The constructions of a vector space endowed with a connection (V,∇) are the spaces obtained by
any finite succession of duality and quotient operations as well as tensor, exterior or symmetrical
products. Any construction C(V ) of (V,∇) is endowed with a natural connection C(V ) (cf. [Man65]).
We will mainly be concerned with the following three constructions.

The connection ∇∗ induced by ∇ on the K-dual V ∗ of V is given for any ∂ ∈ DK by

∇∗
∂(f)(v) = ∂(f(v)) − f(∇∂(v)) for any f ∈ V ∗ and any v ∈ V. (2)

Let (e) be a basis of V and A = Mat(∇∂ , (e)) be the matrix of ∇∂ in (e). The matrix of ∇∗
∂ in the

dual basis (e∗) is then

Mat(∇∗
∂ , (e∗)) = − tA.

The induced connection on End V = V
⊗

V ∗ is given by

End∇∂(f)(v) = ∇∂(f(v)) − f(∇∂(v)) for any f ∈ EndV and any v ∈ V.

The matrix of End ∇∂ in the basis (e ⊗ e∗) then satisfies

Mat(End∇∂ , (e ⊗ e∗)) = A ⊗ I − I ⊗ tA.

The maximal exterior power
∧n V is endowed with the connection defined by

n∧
∇∂(v1 ∧ · · · ∧ vn) = ∇∂(v1) ∧ · · · ∧ vn + · · · + v1 ∧ · · · ∧ ∇∂(vn)

for any (v1, . . . , vn) ∈ V n. The corresponding matrix is the scalar

Mat
( n∧

∇∂ , e1 ∧ · · · ∧ en

)
= Tr A.
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2. Lattices of vector spaces endowed with a connection

For any free O-module of finite type M of V , define the rank of M as the minimum number rkM
of generators for M .

Definition 1. Let V be a K-vector space of dimension n. We say that M is:

1) a lattice of V if M is a free O-module of rank n of V ;
2) a sublattice of a lattice Λ if M is a lattice of V included in Λ;
3) a partial lattice of V if M is a free O-module of finite type (generally of rank < n) of V , and

a partial sublattice of Λ if it is a partial lattice included in Λ;
4) the free O-module of rank r spanned by (e) if M =

⊕r
i=1 Oei. We write then M = L(e) and

say that (e) is a (O-)basis of M .

We denote with L the set of lattices of V .

Lemma 2.1. Let Λ be a lattice of V .

i) For any r-dimensional vector subspace W of V , the O-module M = Λ ∩ W is a lattice of W
and a partial sublattice of Λ.

ii) Let ϕ be a K-automorphism of V . The image ϕ(Λ) of Λ is a lattice, and ϕ(Λ) ⊂ Λ
(respectively ϕ(Λ) = Λ) if and only if there exists a basis (e) of Λ such that Mat(ϕ, (e)) ∈
Mn(O) (respectively Mat(ϕ, (e)) ∈ GLn(O)). This last condition then holds for any basis (e)
of Λ.

Definition 2. The connection ∇ is said to be regular if there exists a lattice of V which is stable
under ∇θ. The connection is said to be irregular otherwise.

2.1 Valuation defined by a lattice
Let Λ be a lattice of V . We define a valuation vΛ on V by letting

vΛ(x) = sup{k ∈ Z |x ∈ tkΛ} for any x ∈ V.

For any lattice M of V , and more generally for any non-empty subset M of a lattice, we put

vΛ(M) = inf
x∈M

vΛ(x),

agreeing that vΛ(M) = ∞ if M = (0).

Lemma 2.2. Let Λ be a lattice of V .

i) vΛ(x + x̃) � min(vΛ(x), vΛ(x̃)) holds for all x, x̃ ∈ V .

ii) Let W be a vector subspace of V , and M ⊂ Λ∩W a partial sublattice of Λ. Then the inequality
vM (x) � vΛ(x) holds for any x ∈ W .

iii) Let M and M̃ be two partial sublattices of Λ. Then we have

vΛ(M + M̃ ) = min(vΛ(M), vΛ(M̃)).

Proof. Consider x and x̃ in V . One has

min(vΛ(x), vΛ(x̃)) = sup{k ∈ Z |x ∈ tkΛ and x̃ ∈ tkΛ}
� sup{k ∈ Z |x + x̃ ∈ tkΛ} = vΛ(x + x̃),

hence part i follows. Let x ∈ W . If x ∈ tkM , then x ∈ tkΛ, and thus we get

vM (x) = sup{k ∈ Z |x ∈ tkM} � sup{k ∈ Z |x ∈ tkΛ} = vΛ(x),
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and so part ii is proved. Let M and M̃ be two partial sublattices of Λ. According to part i, we have

vΛ(M + M̃) = inf
x∈M+M̃

vΛ(x) � min(vΛ(M), vΛ(M̃)).

On the other hand, since M ⊂ M +M̃ , we get vΛ(M) � vΛ(M +M̃). The same result holds with M̃ ,
and hence part iii follows.

2.2 Lattice invariants
The theorem of elementary divisors holds in the principal domain O. For any lattice Λ of V , and
any free O-submodule M of rank r of Λ, there exists a unique increasing sequence of integers
k1 � · · · � kr and an O-basis (e1, . . . , en) of Λ such that (tk1e1, . . . , t

krer) is a basis of M .
In the general case, the partial lattice t−vΛ(M)M is a submodule of Λ. A partial lattice of V thus

always has such a basis.

Definition 3. Let Λ be a lattice of V . For any free O-module M of rank r of V , we give the
following definitions.

i) We call elementary divisors of M in Λ the integers

k1 = �1 + vΛ(M), . . . , kr = �r + vΛ(M)

where t�1 , . . . , t�r are the elementary divisors of t−vΛ(M)M in Λ in the usual sense.
ii) We call Smith basis of Λ for M any basis (e) of Λ such that (tk1e1, . . . , t

krer) form a basis
of M .

We will write the elementary divisors of M in Λ as ki,Λ(M) to specify if necessary the respective
O-modules, and let

EΛ(M) = (k1,Λ(M), . . . , kr,Λ(M)).

Proposition 2.1. Let N ⊂ M be two lattices of V , and Λ be any lattice of V . The respective
elementary divisors of M and N in Λ satisfy

ki,Λ(M) � ki,Λ(N) for any i = 1, . . . , n.

Proof. Let P be the matrix of the basis change from a Smith basis for M to a Smith basis for N
in Λ. The matrix t−EΛ(M)PtEΛ(N) is the matrix of the basis change from a basis of M to a basis
of N . Accordingly, Lemma 2.1, part ii yields

v(Pijt
kj,Λ(N)−ki,Λ(M)) � 0 for any 1 � i, j � n.

Since P ∈ GLn(O), there exists a permutation σ such that v(Piσ(i)) = 0 for all i = 1, . . . , n. The
relation kσ(i),Λ(N) � ki,Λ(M) follows. The two sequences increase, hence we have

ki,Λ(N) � ki,Λ(M).

The index of a sublattice M in the lattice Λ is defined as the (finite) length

[Λ : M ] = χ(Λ/M)

of the quotient module Λ/M (cf. [Ser68, Part III, § 1, p. 58]).

Lemma 2.3. Let Λ ⊃ M be two lattices of V . Then the following hold:

i) [Λ : M ] =
∑n

i=1 ki,Λ(M) = v(det P ) for any gauge matrix P from Λ to M .

ii) If N is a sublattice of M , we have [Λ : N ] = [Λ : M ] + [M : N ].
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Corollary 2.1. Let W and W̃ be two supplementary subspaces of V of respective dimensions
m = dimK W and p = dimK W̃ . Let Λ ⊃ M be two lattices of W and Λ̃ ⊃ M̃ be two lattices of W̃ .
Then

[Λ ⊕ Λ̃ : M ⊕ M̃ ] =
m∑

i=1

ki,Λ(M) +
p∑

i=1

ki,Λ̃(M̃).

The Poincaré rank of a system dX/dt = AX is the integer −v(A)−1. Since it is invariant under
gauge transformations in GLn(O), it is an invariant of the spanned lattice.

Definition 4. We call Poincaré rank of the connection ∇ on the lattice Λ the integer

pΛ(∇) = −vΛ(Λ + ∇θ(Λ)).

Definition 5. We call, after Gérard and Levelt [GL73], order of the singularity of ∇ the minimum
Poincaré rank

m(∇) = min
M∈L

pM (∇)

of the connection ∇.

Remark 3. In the case where ∇ is a regular connection, the order of the singularity is m(∇) = 0.

Definition 6. Let Λ be a lattice of V and let p = pΛ(∇) be the Poincaré rank of ∇ on Λ. We call
polar map the map ∇Λ induced on Λ/tΛ by the operator tp∇θ. If Λ is ∇θ-stable, we call ∇Λ the
residue ResΛ∇ of ∇ on the lattice Λ.

Even when the residue is not defined, its trace is well defined. We denote by τΛ(∇) the corre-
sponding invariant of the lattice Λ.

Definition 7. We call residue trace of the connection ∇ on the lattice Λ the complex number

τΛ(∇) =
n∧
∇
∧n Λ

.

Lemma 2.4. Let M ⊂ Λ be two lattices of V . The index of M in Λ satisfies

[Λ : M ] = τΛ(∇) − τM(∇).

Proof. Let (e) be a basis of Λ and (ε) a basis of M . Let P ∈ GLn(K) be the gauge matrix from (e)
to (ε). Let A = Mat(∇d/dt, (e)) and B = Mat(∇d/dt(ε)). The gauge equation d/dtP = AP − PB
implies that

d

dt
(detP ) = (Tr A − TrB) det P.

Taking residues at t = 0 yields

v(det P ) = Tr Res
t=0

A − Tr Res
t=0

B.

2.3 Subspaces and lattices
Let (Vi)1�i�s be a family of K-vector subspaces of V of respective dimensions ni = dimK Vi such
that

V =
s⊕

i=1

Vi.
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The direct sum
⊕s

i=1 M ∩ Vi is a sublattice of M , but, according to the position of M with
respect to the Vi, one is not sure to recover the lattice M itself.

Definition 8. A lattice M of V is said to be compatible with the direct sum
⊕s

i=1 Vi if

M =
s⊕

i=1

(M ∩ Vi).

Proposition 2.2. Let M be a lattice of V . The lattice
⊕s

i=1(M ∩ Vi) is the largest sublattice of
M compatible with the direct sum

⊕s
i=1 Vi.

Proof. The lattice
⊕s

i=1(M ∩ Vi) is compatible with the direct sum
⊕s

i=1 Vi according to its
construction. Let N be a lattice of V compatible with the direct sum

⊕s
i=1 Vi and satisfying⊕s

i=1(M ∩ Vi) ⊂ N ⊂ M . Their restrictions to Vi satisfy M ∩ Vi ⊂ N ∩ Vi ⊂ M ∩ Vi for all
i = 1, . . . , n. Thus M ∩ Vi = N ∩ Vi and so the equality

⊕s
i=1(M ∩ Vi) =

⊕s
i=1(N ∩ Vi) = N

follows.

Lemma 2.5. Let M and M̃ be two lattices of V . The Poincaré rank of the connection ∇ on M + M̃
satisfies

pM+M̃ (∇) � max(pM (∇), pM̃ (∇)).

In particular, if M and M̃ are ∇θ-stable, then the same holds for M + M̃ .

Proof. By definition pM+M̃ (∇) = −vM+M̃ (M +M̃ +∇θ(M +M̃)). According to Lemma 2.2, part iii,
one has

vM+M̃ (M + M̃ + ∇θ(M + M̃)) = min(vM+M̃ (M + ∇θ(M)), vM+M̃ (M̃ + ∇θ(M̃))).

Since M ⊂ M + M̃ , we get vM+M̃ (M + ∇θ(M)) � vM (M + ∇θ(M)). Similarly, one has

vM+M̃ (M̃ + ∇θ(M̃)) � vM̃ (M̃ + ∇θ(M̃)).

Corollary 2.2. Let m = m(∇) be the order of the singularity of the connection ∇. For any k � m,
and any lattice Λ of V , there exists a unique maximal sublattice Λk of Λ such that pΛk

(∇) � k.

Proof. Let M be a lattice of V such that pM (∇) = m. The Poincaré rank of ∇ on the lattice
t−vΛ(M)M is equal to pt−vΛ(M)M (∇) = m � k, thus the set Lk of all sublattices of Λ of Poincaré
rank � k is non-empty. Since Λ is a module of finite type on the principal domain O, the sum of
all elements of Lk is still a sublattice of Λ, and according to Lemma 2.5, the Poincaré rank on this
lattice is also �k. Hence

Λk =
∑

M⊂Λ
pM (∇)�k

M

is the largest sublattice of Λ of Poincaré rank �k.

Remark 4. In the case where ∇ is a regular connection, the lattice Λ0 exists and is equal to the
Levelt lattice ΛL of Λ that we defined in [Cor99b].

Recall the construction of Gérard and Levelt [GL73] of a saturated lattice. Let Λ be a lattice of
V and ϑ ∈ DK be a derivation of K. One calls the kth saturated lattice of Λ with respect to ϑ the
lattice

Fk
ϑ(Λ) = Λ + ∇ϑ(Λ) + · · · + ∇k

ϑ(Λ) for any k ∈ N.

It is possible to determine the order of the singularity of ∇ with these lattices by means of the
following result.
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Theorem 2 (Gérard–Levelt). If the connection ∇ has order of singularity m, then for every lattice Λ
of V , the (n − 1)th saturated lattice Fn−1

tkθ
(Λ) of Λ is tk∇θ-stable, for any k � m.

Remark 5. After a remark of Marius van der Put, one sees that the (n − 1)th saturated lattice
Fn−1

tkθ
(Λ) of Λ is the smallest lattice of V containing Λ which is tk∇θ-stable.

3. Canonical decompositions of connections

Let us now consider complex analytic differential systems, and take z as the standard coordinate
of C. The classical local theory of irregular singularities (e.g. [Huk37], [Tur55], [Rob80], [Jur78])
asserts that there exists a fundamental matrix of formal solutions for the system z dY/dz = A(z)Y
satisfying Y = U(ζ)ζpLeQ(1/ζ) where ζp = z for some p ∈ N, U is a square matrix of order n with
coefficients in C((X)), L is a constant matrix, and Q is a diagonal matrix of polynomials in XC[X].

Let us now denote with K = C((z)) the field of all formal meromorphic power series, with
O = C[[z]] the valuation ring of K for its z-adic valuation v. One easily checks that the ordinary
differentiation

d : O −→ Ω1
O|C,

where Ω1
O|C is the O-module of formal holomorphic differential 1-forms over C, satisfies the assump-

tions of § 1 with z as uniformizing parameter. Denote further with Ω1
K|C the K-vector space of

differential 1-forms over C and with DerC(K) the K-vector space of C-derivations of K. The space
DerC(K) is then the K-dual of Ω1

K|C.
We consider all the definitions of § 2 in this setting.

3.1 Ramification
The occurrence of rational powers of the variable z in the formal solutions at an irregular singularity
is already mentioned in Fabry’s thesis in 1885 [Fab85]. It corresponds to finite algebraic extensions
of the field K, accounting for the ramification of the system. We call ramification order of the system
z dY/dz = A(z)Y the smallest integer p such that there exists a formal solution under the above
mentioned form. According to Levelt [Lev75], there is an a priori upper bound for p.

Proposition 3.1 (Levelt). The ramification order of a system of order n is smaller than
lcm(1, 2, . . . , n).

Let p ∈ N. We denote with H the extension K[T ]/(T p−z) of K. There exists a unique extension
of the differential d of K to H, that we also denote with d

d : H −→ Ω1
H|C = Ω1

K|C ⊗K H.

We extend in a unique way the connection ∇ to the space VH = V ⊗K H by letting

∇H = ∇⊗ 1 + idV ⊗ d.

We identify V to the K-subspace V ⊗ 1 of VH .
By calling ζ the class of T in the field H we get a natural isomorphism H � C((ζ)). The valuation

v of K extends in a unique way to a discrete valuation of H, that we also denote by v : H −→ (1/p)Z,
which satisfies v(ζ) = 1/p. This valuation does not coincide with the ζ-adic valuation w on H which
takes its values in Z. The valuation ring OH of H for these two valuations is the same, because
w = pv. For any lattice M of VH , we denote with vM the valuation induced by v and with wM the
valuation induced by w on VH , which satisfies wM = pvM . To every lattice Λ of V there corresponds
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a lattice ΛH = Λ⊗O OH of VH . We shall identify Λ to the O-submodule Λ⊗ 1 of ΛH . Through this
identification, the valuation vΛH

of VH , restricted to V ⊗ 1, coincides with vΛ.
Since ζ is a uniformizing parameter of H, every notion defined in § 2 makes sense for the lattices

of (VH ,∇H). However, since the differential 1-form dz/z satisfies

dz

z
= p

dζ

ζ

and can be defined as an element of Ω1
H|C, the operator ∇θ thus also extends to an operator (∇θ)H

of VH . One checks easily that (∇θ)H = (∇H)θ holds. We will frequently drop the index and write
simply ∇. The two derivations θ = z d/dz and θζ = ζ d/dζ of H satisfy θζ = pθ. Therefore, we have

∇θζ
= p∇θ.

Considering the two-foldedness of these definitions, we will write with a ζ index every object
defined in § 2 with respect to ζ as a uniformizing parameter.

Lemma 3.1. Let Λ be a lattice of V and M be a lattice of VH .

i) M is ∇θ-stable if and only if M is ∇θζ
-stable.

ii) Λ is ∇θ-stable if and only if ΛH is ∇θ-stable.

iii) If Λ is ∇θ-stable, the residue (Resζ)ΛH
∇ induced by ∇θζ

on ΛH/ζΛH satisfies

Mat((Resζ)ΛH
∇, (e ⊗ 1)) = p Mat(ResΛ∇, (e)) for any basis (e) of Λ,

where (e) denotes the quotient basis of Λ and (e ⊗ 1) denotes the corresponding quotient basis
of ΛH/ζΛH .

iv) The Poincaré rank (pζ)ΛH
(∇) = −wΛH

(ΛH + ∇θζ
(ΛH)) of ∇ on the lattice ΛH satisfies

(pζ)ΛH
(∇) = p pΛ(∇).

Proof. Let (ε1, . . . , εn) be a basis on OH of M . Since θζ = pθ, the respective matrices of ∇θ and
∇θζ

in (ε) satisfy
Mat(∇θζ

, (ε)) = p Mat(∇θ, (ε)),
whence we get part i. Let (e) = (e1, . . . , en) be an O-basis of Λ. From the equality

ΛH =
n⊕

i=1

OHei ⊗ 1

we get ∇θ(ei ⊗ 1) = ∇θ(ei) ⊗ 1 + ei ⊗ θ(1) = ∇θ(ei) ⊗ 1 and part ii follows. One also has

∇θζ
(ei ⊗ 1) = 〈∇(ei) ⊗ 1 + ei ⊗ d(1), θζ 〉 = p∇θ(ei) ⊗ 1.

The matrix of the connection ∇θζ
in (ei ⊗ 1) thus satisfies

Mat(∇θζ
, (e ⊗ 1)) = p Mat(∇θ, (e)),

which proves part iii. Write A = Mat(∇θ, (e)). The Poincaré rank (pζ)ΛH
(∇) satisfies

(pζ)ΛH
(∇) = min

i,j
w(pAij) = min

i,j
pv(pAij) = p pΛ(∇),

which concludes the proof.

We wish to extend the invariants defined on K to VH . The former proof shows that we must
choose the valuation v and the derivation θ. However, the residue Resζ for the connection ∇H

defined with respect to the uniformizing parameter ζ is not consistent with this choice. In order to
obtain a definition compatible with the extensions, we set the following definitions.
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Definition 9. Let M be a ∇θ-stable lattice of VH . We call compatible residue of ∇ on M the map
Resc

M∇ of M/ζM induced by the operator ∇θ.

If Λ is ∇θ-stable, the compatible residue of ∇ on ΛH satisfies

Mat(Resc
ΛH

∇, (e ⊗ 1)) = Mat(ResΛ∇, (e)),

for any basis (e) of Λ, with the notations of Lemma 3.1.

3.2 The associated regular connection and the determinant map
We show that a connection has the following canonical decomposition.

Theorem 3. Let (V,∇) be a K-vector space endowed with a connection. There exists a unique
regular connection ∇r : V −→ V ⊗K Ω1

K|C such that the following holds.

i) The map ϕ = ∇θ −∇r
θ of V is semi-simple, and its eigenvalues ϕi belong to (1/z1/p)C[1/z1/p]

for some p ∈ N.

ii) The map (End∇r)θ(ϕ) = [∇θ, ϕ] of V commutes with ϕ.

The smallest such p ∈ N is called the ramification order of the connection ∇. We denote with ω
the K-linear map ω = ∇−∇r : V −→ V ⊗K Ω1

K|C. We call ∇ = ∇r +ω the canonical decomposition
of the connection ∇.

Remark 6. This decomposition differs from the Jordan form given by Levelt in 1975 [Lev75, The-
orem I, p. 9], who writes the operator ∇θ as a unique sum of a commuting semi-simple differential
operator and nilpotent K-linear map.

The proof of Theorem 3 will be the subject of the following subsection (§ 3.3).

Definition 10. We respectively call regular connection associated to ∇ and determinant endomor-
phism, the connection ∇r and the map ϕ = ωθ described in Theorem 3. We call ω the determinant
map of ∇.

Lemma 3.2. Let ∇ be a connection on V and ∇ = ∇r + ω be the canonical decomposition of the
connection ∇. Then:

i) ∇∗ = (∇r)∗ − ω∗;
ii) End ∇ = End ∇r + (ω ⊗ idV ∗ − idV ⊗ω∗);
iii)

∧n ∇ =
∧n ∇r + Tr ω

are the canonical decompositions of the corresponding connections.

In the space VH , endowed with the connection ∇H , we denote with Vi the eigenspaces of ϕ and
ni = dimH Vi their respective dimensions for all i = 1, . . . , s. We denote with ϕi ∈ (1/z1/p)C[1/z1/p]
the corresponding eigenvalues. We will call them attached eigenvalues of ∇, and call determinant
factors the primitives without constant term Qi =

∫
ϕi dz/z of these eigenvalues.

Definition 11. With the previous notations, we call Katz rank of the connection ∇ the rational
number

κ(∇) = − min
i=1,...,s

v(ϕi) ∈ 1
p

Z,

where v(x) = min(v(x), 0).

Definition 12. We say that the vector space endowed with a connection (V,∇) has only one
determinant factor if its determinant endomorphism has only one eigenvalue.
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Corollary 3.1. The vector space endowed with a connection (VH ,∇H) is a canonical direct sum
of subconnections having only one determinant factor. We call it the direct sum attached to the
connection ∇.

Proof. Denote with ∇i = (∇H)|Vi
and ∇r

i the restrictions of ∇H and (∇r)H to Vi. Condition ii of
Theorem 3 implies that, for any derivation ∂ of K, the subspace Vi remains stable under (∇∂)H for
all i = 1, . . . , s. It is clear that

∇i = ∇r
i + ω|Vi

is the canonical decomposition of ∇i. Since ϕ|Vi
is scalar, (Vi,∇i)1�i�s is the claimed family of

subconnections of (VH ,∇H).

3.3 Canonical forms of Babbitt–Varadarajan: proof of Theorem 3
Let us consider the derivation θ = z d/dz. Let a formally meromorphic differential system

θX = AX (3)

be given.
The following proposition by Babbitt–Varadarajan [BV83, Var91] explains which is the best

reduced form (in the sense of Turrittin, see [Tur55]) of this system.

Proposition 3.2. For any matrix A ∈ Mn(K), there exists an integer p ∈ N and a gauge trans-
formation P ∈ GLn(C((z1/p))) such that

P−1AP − P−1θP = Dr1z
r1 + · · · + Drsz

rs + C

where:

i) r1 < · · · < rs < 0 are distinct rational numbers such that pri ∈ Z;

ii) any two matrices among Dr1 , . . . ,Drs , C ∈ Mn(C) commute;

iii) Dr1 , . . . ,Drs are semi-simple;

iv) the eigenvalues of C belong to the set {z ∈ C |Re(z) ∈ [0, 1/p[ }.
The matrix A is equivalent under gauge transformation in GLn(C((z1/p))) to a matrix

D′
r1z

r1 + · · · + D′
rsz

rs + C ′

satisfying conditions i to iv, if and only if there exists T ∈ GLn(C) such that:

a) T−1CT = C ′;
b) T−1DrjT = D′

rj for 1 � j � s.

Such a matrix is called a p-reduced canonical form of the connection, and Dr1z
r1 + · · ·+ Drsz

rs

is called the irregular part of the canonical form. The rational number r1 is then equal to the Katz
rank κ(∇) of the connection ∇.

Owing to the commutation condition ii, the system θZ = A[P ](z)Z has the matrix Z =
zC exp(

∫
Dr1z

r1 + · · · + Drsz
rs dz/z) as a fundamental matrix of formal solutions. We can also

write it under the following form

Y = PZ = P (z1/p)zC exp
(

1
r1 − 1

Dr1z
r1 + · · · + 1

rs − 1
Drsz

rs

)

= P (ζ)ζpCeQ(1/ζ).

According to Proposition 3.1, we only need to ramify up to the order lcm(1, 2, . . . , n). Let us
restate Proposition 3.2 as follows.
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Proposition 3.3. Let ∇ be a connection on V . Let p = lcm(1, 2, . . . , n) and H = K(z1/p). Let ∇H

be the unique extension of ∇ to the space VH = V ⊗K H. Choose a pth root ζ of z. Let θζ be the
derivation ζ d/dζ. Then there exists a regular connection ∇r on VH , an H-linear map

ω : VH −→ VH ⊗H (Ω1
K|C ⊗K H)

and a basis (ε) of VH such that the following four properties hold.

i) The matrix Mat(∇r
θζ

, (ε)) is a constant matrix C̃ ∈ Mn(C) whose eigenvalues belong to the set

{z ∈ C |Re(z) ∈ [0, 1[ }.
ii) The eigenvalues ϕi of the map ϕ = 〈ω, θζ〉 are elements of (1/ζ)C[1/ζ] and ϕ is diagonal in the

basis (ε).

iii) The map γ = ∇r
θζ

◦ ϕ − ϕ ◦ ∇r
θζ

satisfies [ϕ, γ] = 0.

iv) ∇H = ∇r + ω.

Proof. Let us show first of all that the result of Babbitt and Varadarajan implies Proposition 3.3.
Let (e) be a basis of V , and A = Mat(∇, (e)). Let

A[P ] = Dr1z
r1 + · · · + Drsz

rs + C

be a canonical form. Let us denote with (ε) the basis to which the gauge transformation P ∈ GLn(H)
sends the basis (e⊗1) of VH . Define ∇r as the connection whose matrix in (ε) is C ⊗ dz/z and ω as
the H-linear map whose matrix is (Dr1z

r1 + · · · + Drsz
rs) ⊗ dz/z in (ε). Since dz/z = p dζ/ζ, one

finds that Mat(∇r
θζ

, (ε)) = pC, whose eigenvalues do belong to {z ∈ C |Re(z) ∈ [0, 1[ }. The ϕi are

the diagonal entries of D̃ = pDr1z
r1 + · · · + pDrsz

rs . Therefore, we get

Mat(γ, (ε)) = θζD̃ + [pC, D̃].

Thus the matrix of the map [γ, ϕ] satisfies

Mat([γ, ϕ], (ε)) = [θζD̃, D̃] + [[pC, D̃], D̃] = [[pC, D̃], D̃].

Since the matrices C and D−j commute for any j = 1, . . . ,m, the statement [ϕ, γ] = 0 holds by
means of Lemma 3.3 stated below.

Conversely, let (∇r, ω, ε) be a triple satisfying conditions i to iv. Denote with

C = Mat(∇r
θζ

, (ε))

the matrix of the operator ∇r
θζ

and with

D = Mat(〈ω, θζ〉, (ε)) = diag(ϕ1, . . . , ϕn) = D−mζ−m + · · · + D−1ζ
−1,

where the Di are constant diagonal matrices, the matrix of ϕ = 〈ω, θζ〉 in the basis (ε). By assump-
tion, the equalities

Mat(∇θζ
, (ε)) = D + C

and

Mat([γ, ϕ], (ε)) = [[C,D],D] = 0

hold. We want to show that (1/p)(D + C) is a canonical form of Babbitt–Varadarajan of ∇θ.
The second assumption yields

[[C,D],D] = (Cij(ϕj − ϕi)2) = 0.

Thus, whenever ϕj �= ϕi, one has Cij = 0. Hence the matrices C and D commute. But, because C
is a constant matrix, this implies that [C,Di] = 0 for all i, and thus (1/p)(D + C) is a canonical
form of Babbitt–Varadarajan of ∇θ.
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We will now show that the decomposition stated in Proposition 3.3 is unique, then we will prove
that this decomposition is in fact defined over the field K.

Let us work with a uniformizing parameter t and denote with

D−mt−m + · · · + D−1t
−1 + C

a canonical form. Let us start with three technical lemmas.
For a diagonal matrix D = (Di), denote with I(D) the set of indexes

I(D) = {(i, j) ∈ {1, . . . , n}2 |Di = Dj}.
For an indexed matrix Pk, we will denote its elements with (P (k)

ij ). If Dk is diagonal, we will denote

its elements with (D(k)
i ).

Let D0, . . . ,Dp be diagonal matrices of Mn(C).

Lemma 3.3. A matrix P ∈ Mn(C) commutes with the matrices Dk for all k = 1, . . . , p if and only if

Pij �= 0 =⇒ (i, j) ∈
p⋂

k=0

I(Dk).

Proof. Indeed, for any k, the entries of the commutator matrices satisfy [P,Dk]ij = Pij(D
(k)
i −D

(k)
j )

for all 1 � i, j � n.

We will denote with S(D0, . . . ,Dp) the system

[D0,X0] = 0,
[D0,X1] + [D1,X0] = 0,

...
[D0,Xp] + · · · + [Dp,X0] = 0

in the unknown matrices (X0, . . . ,Xp).

Lemma 3.4. If (X0, . . . ,Xp) satisfies the system S(D0, . . . ,Dp), then Xicommutes with D0, . . . ,Dp−i

for all i = 0, . . . , p.

Proof. The statement is obvious for p = 0, so let us proceed by induction on the integer p.
Assume that the statement is established for p−1. Let (X0, . . . ,Xp) be a p-tuple satisfying the system
S(D0, . . . ,Dp). By definition, the (p−1)-tuple (X0, . . . ,Xp−1) satisfies the system S(D0, . . . ,Dp−1).
This assumption yields

[X0,D0] = · · · = [X0,Dp−1] = 0,
[X1,D0] = · · · = [X1,Dp−2] = 0,

...
[Xp−1,D0] = 0.

Writing the last equation of the system S(D0, . . . ,Dp) elementwise, we get

X
(0)
ij (D(p)

i − D
(p)
j ) = −X

(1)
ij (D(p−1)

i − D
(p−1)
j ) − · · · − X

(p)
ij (D(0)

i − D
(0)
j ). (4)

If (i, j) /∈ ⋂p−1
k=0 I(Dk), then X

(0)
ij = 0 according to Lemma 3.3. If however (i, j) ∈ ⋂p−1

k=0 I(Dk)

but (i, j) /∈ I(Dp), one has D
(k)
i = D

(k)
j for 1 � k � p − 1 and D

(p)
i �= D

(p)
j . Equation (4) then
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yields X
(0)
ij = 0. We have thus

(i, j) /∈ I(Dp) =⇒ X
(0)
ij = 0,

so the matrix X0 commutes with Dp.

The matrices (X1, . . . ,Xp) then satisfy the (p − 1)th-order system S(D0, . . . ,Dp−1). According
to the induction assumption, we get

[X1,D0] = · · · = [X1,Dp−1] = 0,
[X2,D0] = · · · = [X2,Dp−2] = 0,

...
[Xp−1,D0] = [Xp−1,D1] = 0,

[Xp,D0] = 0,

which proves the statement at order p.

Lemma 3.5. Let B be a matrix of Mn(C) commuting with the matrices Dk for all k = 0, . . . , p.
Assume that there exists p + 1 matrices (X0, . . . ,Xp) of Mn(C) such that

[D0,X0] + · · · + [Dp,Xp] = B.

Then B = 0.

Proof. Written elementwise, the equation becomes

X
(0)
ij (D(0)

i − D
(0)
j ) + · · · + X

(p)
ij (D(p)

i − D
(p)
j ) = Bij.

If (i, j) ∈ ⋂p
k=1 I(Dk), we have D

(k)
i = D

(k)
j for all k = 1, . . . , p, hence Bij = 0. If (i, j) /∈ ⋂p

k=1 I(Dk),
then Bij = 0, because B commutes with all the matrices Dk. Therefore B = 0.

Lemma 3.6. Assume that (ε) and (ε̃) are two bases of V in which the connection ∇ has the same
canonical form B = D−mt−m+· · ·+D−1t

−1+C. The gauge matrix P from (ε) to (ε̃) then commutes
with the irregular part of the canonical form B.

Proof. Assume that the gauge matrix P from (ε) to (ε̃) can be written as P = tνP̂ , where

P̂ = P0 + P1t + · · · + Pkt
k + · · · .

The gauge equation

θtP̂ − νP̂ = BP̂ − P̂B

gives rise to the following infinite system of matrix equations:

k∑
t=0

[D−m+t, Pk−t] = 0 (in degree −m + k) for 0 � k � m − 1, (5)

m−1∑
t=0

[D−m+t, Pm+k−t] = [Pk, C] + (k − ν)Pk (in degree k) for k � 0, (6)
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which we rewrite in expanded form as

[D−m, P0] = 0,

[D−m, P1] + [D−m+1, P0] = 0,

...

[D−m, Pm−1] + · · · + [D−1, P0] = 0,

[D−m, Pm] + · · · + [D−1, P1] = [P0, C] − νP0,

...

[D−m, Pm+k] + · · · + [D−1, Pk+1] = [Pk, C] + (k − ν)Pk,

...

With the notations used in Lemma 3.4, the (m − 1)-tuple (P0, . . . , Pm−1) satisfies the system
S(D−m, . . . ,D−1). By means of Lemma 3.4, we get

[P0,D−m] = · · · = [P0,D−1] = 0,

[P1,D−m] = · · · = [P1,D−2] = 0,

...

[Pm−2,D−m] = [Pm−1,D−m+1] = 0,

[Pm−1,D−m] = 0.

Consider the system (6). Let us prove by induction on k that if (P0, . . . , Pm−1) satisfies the
system (5), then [Pk, C] + (k − ν)Pk = 0 holds for any k � 0.

The matrices P0 and C commute with Dk for all k = −m, . . . ,−1. According to Jacobi’s identity,
the same holds for [P0, C]. Lemma 3.5 then yields [P0, C]− νP0 = 0. Assume now that the equation
[Pt, C] + (t − ν)Pt = 0 holds for any t < k. Then for every t = −1, . . . , k − 1 the matrices
(Pt+1, . . . , Pm+t) satisfy the equation

[D−m, Pm+t] + · · · + [D−1, Pt+1] = 0.

We can put D0 = · · · = Dk = 0 because the matrix (0) is a diagonal matrix. The (m + k)-tuple
(P0, . . . , Pm+k) then satisfies the system S(D−m, . . . ,Dk), hence, according to Lemma 3.4, we get

[P0,D−m] = · · · = [P0,Dk] = 0,

[P1,D−m] = · · · = [P1,Dk−1] = 0,

...

[Pm+k−1,D−m] = [Pm+k,D−m+1] = 0,

[Pm+k,D−m] = 0.

In particular, Pk commutes with D−m, . . . ,D0. Thus the same holds for the matrix [Pk, B]+(k−ν)Pk.
Therefore, we get [Pk, B] + (k − ν)Pk = 0. System (6) now becomes

m−1∑
t=0

[D−m+t, Pm+k−t] = 0, for k � 0.

Hence the matrices Pk commute with D−m, . . . ,D−1 for all k � 0.
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Proposition 3.4. Let (ε) and (ε̃) be two bases of V where the connection ∇ has canonical forms

B = D−mt−m + · · · + D−1t
−1 + C in (ε),

B̃ = D̃−mt−m + · · · + D̃−1t
−1 + C̃ in (ε̃).

Let P be the gauge matrix from (ε) to (ε̃). Then the following equalities hold:

D̃−mt−m + · · · + D̃−1t
−1 = P−1(D−mt−m + · · · + D−1t

−1)P, (7)

C̃ = P−1CP − P−1θtP. (8)

Proof. According to Proposition 3.2, there exists a matrix T ∈ GLn(C) such that T−1CT = C ′

and T−1DjT = D′
j for all 1 � j � s. The gauge P̃ = PT preserves the matrix of the connection.

Therefore it satisfies the gauge equation

θtP̃ = BP̃ − P̃B.

Lemma 3.6 ensures that the matrix P̃ commutes with the irregular part D−mt−m + · · · + D−1t
−1.

Hence,

D−mt−m + · · · + D−1t
−1 = P̃ (D−mt−m + · · · + D−1t

−1)P̃−1

= PT (D−mt−m + · · · + D−1t
−1)T−1P−1

= P (D̃−mt−m + · · · + D̃−1t
−1)P−1,

and so (7) is established. Accordingly, we get

θtP̃ = CP̃ − P̃C,

which yields (8).

Corollary 3.2. If there exist two triples (∇r, ω, ε) and (∇̃r, ω̃, ε̃) satisfying the four conditions of
Proposition 3.3, then one has ∇r = ∇̃r and ω = ω̃.

Proof. The operator ∇θζ
has canonical form D−mζ−m + · · · + D−1ζ

−1 + C in the basis (ε), and
canonical form D̃−mζ−m + · · · + D̃−1ζ

−1 + C̃ in the basis (ε̃). Lemma 3.6, applied to VH equipped
with the uniformizing parameter ζ, shows that

Mat(∇̃r
θζ

, (ε̃)) = Mat(∇r
θζ

, (ε))[P ]

and
Mat(ϕ̃, (ε̃)) = P−1 Mat(ϕ, (ε))P,

where P is the gauge matrix from (ε) to (ε̃). Hence we get ∇r = ∇̃r and thus ω = ω̃.

We are now ready to prove Theorem 3.

Proof of Theorem 3. We now show that the decomposition stated above is in fact defined on the base
field K. Let H be the field K(ζ). Let us denote with ∇r

H the regular connection associated to ∇H ,
and let ωH = ∇H −∇r

H . Let us choose a basis (e) of V over K, and put ξ = e2iπ/p. The element σ
of the differential Galois group Gal(H/K) defined by putting σ(ζ) = ξζ is a generator of the
group. Choose a basis (ζ0, ζ1, . . . , ζp−1) of H over K such that σ(ζi) = ζi+1 mod p holds. The family
(ei ⊗ ζj)1�i�n,0�j�p−1 is then a K-basis of VH .

Denote with ϕi ∈ (1/ζ)C[1/ζ] the eigenvalues of 〈ωH , θζ〉. There exists a basis (ε) of VH such
that:

i) Mat((∇r
H)θζ

, (ε)) = C ∈ Mn(C);
ii) ωH(εi) = ϕiεi dζ/ζ for any i = 1, . . . , n.
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Consider the coordinate decomposition εi =
∑

j,k U i
jkej ⊗ ζk with U i

jk ∈ K. The image of εi under σ
is given by

σ(εi) =
∑
j,k

σ(U i
jk)σ(ej) ⊗ σ(ζk) =

∑
j,k

U i
jkej ⊗ ζk+1 mod p

=
∑
j,k

U i
j,k−1 mod p ej ⊗ ζk.

The family (σ(ε1), . . . , σ(εn)) is thus still a basis of VH .

The map (∇r
H)σ = σ ◦∇r

H ◦σ−1 is C-linear. For any a ∈ H and any v ∈ VH , the following holds:

(∇r
H)σ(av) = σ(∇r

H(σ−1(av)))

= σ(∇r
H(σ−1(a))σ−1(v))

= σ(σ−1(a)∇r
H(σ−1(v)) + σ−1v ⊗ d(σ−1(a)))

= aσ(∇r
H(σ−1(v))) + v ⊗ σ(d(σ−1(a))).

Since σ is a differential automorphism of H, it commutes with the differential d, hence

(∇r
H)σ(av) = a(∇r

H)σ(v) + v ⊗ da,

so (∇r
H)σ is indeed a connection on VH . In the basis (σ(ε)), we have

(∇r
H)σ(σ(εi)) = σ ◦ ∇r

H ◦ σ−1(σ(εi)) = σ(∇r
H(εi))

= σ

( n∑
j=1

Cjiεj

)

=
n∑

j=1

σ(Cji)σ(εj)

=
n∑

j=1

Cjiσ(εj).

The connection ∇r
H has a simple pole in the basis (σ(ε)); thus it is a regular connection.

The map ωσ
H = σ ◦ ωH ◦ σ−1 is C-linear. For any a ∈ H and any v ∈ VH , the following holds:

ωσ
H(av) = σ(ωH(σ−1(av)))

= σ(ωH(σ−1(a)σ−1(v)))

= σ(σ−1(a)ωH(σ−1(v)))
= aωσ

H(v).

Therefore ωσ
H is H-linear. On the other hand, we have

ωσ
H(σ(εi)) = σ ◦ ωH ◦ σ−1(σ(εi)) = σ(ωH(εi))

= σ

(
ϕiεi

dζ

ζ

)

= σ(ϕi)σ(εi)σ
(

dζ

ζ

)
.

Since the map σ is an element of the Galois group, we get

σ

(
dζ

ζ

)
=

d(σ(ζ))
σζ

=
d(ξζ)
ξζ

=
dζ

ζ
.
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Accordingly,

ωσ
H(σ(εi)) = σ(ϕi)σ(εi)

dζ

ζ

holds. The collection of the vectors σ(εi) forms a basis of eigenvectors of 〈ωσ
H , θζ〉. The eigenvalues

of 〈ωσ
H , θζ〉 are the images σ(ϕi) of the ϕi who also belong to (1/ζ)C[1/ζ].

The connection ∇ is defined over K. It is thus invariant under the action of the Galois group
Gal(H/K) and so ∇H satisfies

∇H = (∇H)σ = (∇r
H)σ + ωσ

H .

The connection (∇r
H)σ and the map ωσ

H satisfy the conditions of Proposition 3.3 in the basis
(σ(ε1), . . . , σ(εn)). The uniqueness of the decomposition implies that (∇r

H)σ = ∇r
H and thus

σ ◦∇r
H = ∇r

H ◦ σ hold. Hence there exists a regular connection ∇r on V satisfying the assumptions
of Theorem 3, such that ∇r

H = ∇r ⊗ 1H +idV ⊗ d. This connection is unique. The map ω = ∇−∇r

satisfying ω ⊗ 1 = ωH is what we called the determinant map.

4. Levelt lattices and exponents

4.1 The unramified case

Let (V,∇) be a finite-dimensional K-vector space endowed with a connection. Let ∇ = ∇r + ω be
the canonical decomposition of ∇. Assume in this subsection that the determinant endomorphism ϕ
of ∇ has its eigenvalues in (1/z)C[1/z]. We will then say that ∇ is unramified. Denote the attached
direct sum with V =

⊕s
i=1 Vi. Let us consider a lattice Λ of V .

Definition 13. A lattice is said to be compatible with the connection ∇ if it is stable under ∇r
θ

and compatible with the direct sum
⊕s

i=1 Vi attached to ∇.

Proposition 4.1. The set of sublattices of Λ which are compatible with the connection ∇ has a
unique maximal element.

Proof. The connection ∇r is regular. Thus there exists a ∇r
θ-stable lattice M of V . After Corol-

lary 2.2, there exists a largest ∇r
θ-stable sublattice N of Λ. Since the direct sum

⊕s
i=1 Vi is stable

under the action of ∇r
θ, the lattice

⊕s
i=1 N ∩Vi is the largest sublattice of Λ compatible with ∇.

Definition 14. Let Λ be a lattice of V . We call Levelt lattice for the connection ∇ attached to the
lattice Λ the largest sublattice ΛL(∇) of Λ compatible with the connection ∇.

Definition 15. We call exponents of the connection ∇ attached to the lattice Λ the eigen-
values (eΛ

i (∇))i=1,...,n of the residue of the associated regular connection ∇r with respect to the
lattice ΛL(∇). We denote with NΛ

i (∇) the integer part of the real part of the exponents eΛ
i (∇), and

call them valuations of the connection ∇ attached to the lattice Λ.

We sometimes write eΛ
i (∇) = NΛ

i (∇) + ẽΛ
i (∇). If so, we will call ẽΛ

i (∇) the non-integer or
invariant part of eΛ

i (∇).

Remark 7. These two definitions extend previous notions that we defined in the regular case
[Cor01a]. The exponents in the sense of Definition 15 extend the notion of exponents defined by
Levelt [Lev61] for analytic systems at a regular singularity.

The definition of the Levelt lattice easily yields the following result.
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Lemma 4.1. Let Λ be a lattice of V .

i) If Λ̃ ⊂ Λ is a sublattice of Λ, then Λ̃L ⊂ ΛL holds.

ii) Let Λ1 and Λ2 be two free O-submodules of V such that Λ = Λ1 ⊕ Λ2. If the K-vector spaces
V1 = Λ1 ⊗O K and V2 = Λ2 ⊗O K are stable under ∇θ, then the Levelt lattice ΛL of Λ satisfies

ΛL = (Λ1)L ⊕ (Λ2)L.

Lemma 4.2. Let (V,∇) be a vector space endowed with a connection and let P ∈ (1/z)C[1/z].
The map ∇ + P idV ⊗ dz/z is a connection on V , and

ΛL

(
∇ + P idV ⊗dz

z

)
= ΛL(∇) holds for any lattice Λ of V.

Proof. If ∇ = ∇r + ω is the canonical decomposition of ∇, then

∇ + P idV ⊗dz

z
= ∇r +

(
ω + P idV ⊗dz

z

)

is the corresponding canonical decomposition of ∇ + P idV ⊗ dz/z.

Lemma 4.3. If the connection ∇ has only one determinant factor, then the following hold, for any
lattice Λ of V :

i) ΛL(∇) = ΛL(∇r);

ii) 0 � pΛ(∇r) � pΛ(∇).

Proof. Let ϕ = f idV be the determinant map of ∇. Statement i is a straightforward consequence
of Lemma 4.2. Take v ∈ Λ. We have

vΛ(∇r
θ(v)) = vΛ(∇θ(v) − fv) � min(vΛ(∇θ(v)), vΛ(fv))

� min(vΛ(∇θ(v)), v(f) + vΛ(v)).

Since vΛ(∇r
θ(Λ)) = infv∈Λ vΛ(∇r

θ(v)), we find that

vΛ(∇r
θ(Λ)) � min(vΛ(∇θ(Λ)), v(f)).

But −v(f) = κ(∇) � pΛ(∇) holds by definition. Thus we get

−vΛ(∇r
θ(Λ)) � −vΛ(∇θ(Λ)),

and statement ii follows.

4.2 The ramified case
Assume here that the K-vector space endowed with a connection (V,∇) has ramification order
p > 0. Let us take the notations of § 3.1. Denote with H = K[T ]/(T p − z) the minimal ramification
extension, with OH the corresponding valuation ring, with VH = V ⊗K H the vector space obtained
under extension of scalars and with ∇H the unique extension of the connection ∇. Let ∇ = ∇r + ω
be the canonical decomposition of ∇, and VH =

⊕s
i=1 Vi the attached direct sum.

Let Λ be a lattice of V , and ΛH = Λ ⊗O OH . Choose a pth root ζ of z, and denote with θζ the
derivation ζ d/dζ.

Lemma 4.4. Under the former assumptions, the following hold:

i) The sum ∇H = (∇r)H + ω ⊗ 1 is the canonical decomposition of ∇H .

ii) The connection ∇H is unramified (with respect to ζ).
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Definition 16. Let Λ be a lattice of V .

1) We call Levelt lattice for the connection ∇ attached to the lattice Λ the Levelt lattice attached
to the lattice ΛH for the connection ∇H . One denotes it with ΛL(∇), although usually it is
not defined over O.

2) We call exponents of the connection ∇ attached to the lattice Λ the eigenvalues (eΛ
i (∇))i=1,...,n

of the compatible residue Resc
ΛL(∇)∇r

H of the regular connection ∇r
H attached to ∇H with

respect to the lattice ΛL(∇).

Lemma 4.5. The Levelt lattice ΛL(∇) is independent of the choice of the uniformizing parameter ζ.

Proof. Let us consider an automorphism σ ∈ Gal(H/K) acting on VH as in the proof of
Theorem 3. The lattice σ(ΛL(∇)) is still (∇r

θ)H-stable, and it is compatible with the attached
direct sum

⊕s
i=1 Vi. We have

σ(ΛL(∇)) ⊂ σ(ΛH) = ΛH ,

because ΛH is the tensor extension of a lattice of V . Hence σ(ΛL(∇)) ⊂ ΛL(∇). The former reason-
ing also applies to σ−1, thus σ(ΛL(∇)) = ΛL(∇). Therefore we proved that ΛL(∇) is independent
of the choice of ζ.

Note that any ramification of order p′ divisible by p gives with this definition the same set of
exponents.

4.3 The Katz lattice
Assume in this subsection that the connection is unramified. The Katz rank κ(∇) of ∇ is then equal
to the minimal Poincaré rank of ∇ on all lattices of V , that we called the order of the singularity
m(∇). By means of Corollary 2.2 the following definition makes sense.

Definition 17. We call the Katz lattice of ∇ attached to the lattice Λ the largest sublattice ΛK(∇)
of Λ of minimal Poincaré rank.

Lemma 4.6. Let Λ be a lattice of V .

i) If the connection ∇ is regular, then ΛK(∇) = ΛL(∇) holds.

ii) If the polar map ∇Λ
of the connection ∇ is non-nilpotent, then the Katz lattice ΛK(∇) of Λ

satisfies

ΛK(∇) = Λ.

iii) The polar map ∇ΛK(∇)
is non-nilpotent.

Proof. The Katz rank of a regular connection is zero. The definitions of the Katz lattice and of the
Levelt lattice then coincide. In the unramified case, the map ∇Λ is non-nilpotent only if there exists
a determinant factor of degree equal to the Poincaré rank. Therefore condition iii holds. In this case,
pΛ(∇) = κ(∇) also holds, hence ΛK(∇) = Λ.

Proposition 4.2. Let Λ be a lattice of V . Let ΛK = ΛK(∇) be the attached Katz lattice and
EΛ(ΛK) = (k1, . . . , kn) the sequence of its elementary divisors in Λ. We denote with p = pΛ(∇) the
Poincaré rank of ∇ on Λ, and with κ = κ(∇) the Katz rank of ∇. Then the following inequalities
hold:

max
i=1,...,n−1

ki+i − ki � p − κ � kn.
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Proof. By definition, one has κ � p. If p = 0, the connection is regular: in this case ΛK = ΛL = Λ,
and thus k1 = · · · = kn = 0. Assume in the sequel that p > 0.

Let (ε) be a Smith basis of Λ for ΛK . We denote with X = (x1, . . . , xn) an n-tuple of integers,
with zX the matrix

zX =




zx1 0
. . .

0 zxn




and with (zXε) the family (zx1ε1, . . . , z
xnεn). Denoting with A = Mat(∇θ, (ε)) the matrix of the

connection in the basis (ε) we have

Mat(∇θ, (zXε)) = A[zX ] = (Aijz
xj−xi − δi,jxi)1�i,j�n.

The Katz lattice ΛK has Poincaré rank κ. Call E the sequence (k1, . . . , kn). The matrix A[zE ] then
has its coefficients in z−κO. Therefore,

v(Aij) − ki + kj � −κ for all 1 � i, j � n. (9)

Since p = max1�i,j�n(−v(Aij)), the right-hand side of the proposition

p − κ � max
1�i,j�n

(kj − ki) = kn

follows. On the other hand, the index [Λ : ΛK ] =
∑n

i=1 ki is minimal among the indexes in Λ of all
sublattices of Λ of minimal Poincaré rank. For any T = (t1, . . . , tn) ∈ Z

n such that 0 � t1 � · · · � tn
and

∑n
i=1ti <

∑n
i=1ki, the lattice spanned by (zT ε) has strictly larger Poincaré rank than κ.

There exists thus a couple of indexes (i(T ), j(T )) ∈ {1, . . . , n}2 such that

v(Ai(T )j(T )
) − ti(T )

+ tj(T )
< −κ. (10)

Let � be an index such that k�+1 � 1. Let us show that k�+1 − k� � p − κ. Let ti = ki for i � � and
ti = ki − 1 for i � � + 1. Then there exists a pair (i, j) and ε = −1, 0 or 1 such that

−κ > v(Aij) − ti + tj = v(Aij) − ki + kj + ε � ε − κ.

Hence v(Aij) = ki − kj and i � � � � + 1 � j, and so

k�+1 − k� � kj − ki = −v(Aij) � p − κ.

The left-hand side
max

i=1,...,n−1
ki+1 − ki � p − κ

follows.

Corollary 4.1. Let Λ be a lattice of V . Let p = pΛ(∇) be the Poincaré rank on the lattice Λ and
κ = κ(∇) be the Katz rank of the connection. The index of the Katz lattice ΛK in Λ satisfies

p − κ � [Λ : ΛK ] � n(n − 1)
2

(p − κ).

Proof. The estimate follows from Proposition 4.2, since [Λ : ΛK ] =
∑n

i=1 ki holds.

Note that Corollary 4.1 yields the following result, which we stated for the regular case in
[Cor99a].

Corollary 4.2. If the connection ∇ is regular, then for any lattice Λ of V , the index of its Levelt
lattice satisfies

pΛ(∇) � [Λ : ΛL] � n(n − 1)
2

pΛ(∇).

1387

https://doi.org/10.1112/S0010437X04001046 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X04001046


E. Corel

Proof. Indeed, in this case the Katz rank is zero, and the Katz lattice is equal to the Levelt
lattice.

Lemma 4.7. Let Λ be a lattice of V . The Katz lattice ΛK = ΛK(∇) and the Levelt lattice

ΛL = ΛL(∇)

attached to Λ satisfy

(ΛK)L(∇) = ΛL.

Proof. The Poincaré rank on the Levelt lattice ΛL is equal to the Katz rank of the connection ∇.
Therefore, ΛL ⊂ ΛK . Since ΛL is compatible with ∇, it follows that ΛL ⊂ (ΛK)L(∇). There is
no strictly larger lattice compatible with ∇ than ΛL. However ΛK is a sublattice of Λ compatible
with ∇, whence (ΛK)L(∇) = ΛL.

4.4 Duality and special lattices
Let us now consider the dual connection ∇∗ induced by ∇ on the K-dual V ∗ of V .

Let M be a lattice of V spanned over O by a basis (e) of V and let (e∗) be the dual basis of (e).
Lattices are well behaved towards duality, i.e. one has

HomK(M,O) = HomO(M,O) = L(e∗)

(cf. [Bou85, Part VII, § 4, no. 2, p. 243]). We denote with M∗ the dual lattice HomO(M,O) of M .
The Poincaré rank of the dual connection ∇∗ on the dual lattice M∗ satisfies pM∗(∇∗) = pM (∇).
In a similar way as for Corollary 2.2, we have the following result.

Lemma 4.8. Let ∇ be a connection on V of order of singularity m = m(∇). Then, for any k � m,
and any lattice Λ of V , there exists a unique minimal lattice Λk containing Λ such that pΛk(∇) � k.

Since M is a sublattice of Λ implies that M∗ ⊃ Λ∗, Remark 5 yields the following result.

Corollary 4.3. Let ∇ be a connection on V . Let m be its order of singularity. Then, for any
k � m, and any lattice Λ of V , the saturated lattice Fn−1

zkθ
(Λ∗) of the dual lattice Λ∗ with respect

to the dual connection ∇∗ satisfies

Fn−1
zkθ

(Λ∗)∗ = Λk(∇).

Remark 8. Since ΛL(∇) = Λ0 when ∇ is regular, this result gives rise to an algorithm that computes
the Levelt lattice in the regular case, which differs from the algorithm given by Levelt [Lev01].
When the connection is unramified, we get an algorithm to compute the Katz lattice, since in that
case one has ΛK(∇) = Λm, if we denote with m the order of singularity of ∇. We shall give the
corresponding algorithm in the appendix.

5. Fuchs’ relation

In this section, we prove the results yielding the generalization of Fuchs’ relation. We shall need the
following classical result.

5.1 Sibuya’s lemma
Sibuya’s lemma (cf. [Lev75, p. 10]) is a fundamental result for formal reduction algorithms at an
irregular singularity.
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Lemma 5.1. Let Λ be a lattice of V , let p = pΛ(∇) > 0 be the Poincaré rank of the connection ∇
on Λ. Let π be the canonical projection of Λ on Λ = Λ/zΛ and let ∇Λ

be the induced polar map on
Λ = Λ/zΛ. Assume that there exist two C-vector subspaces F1 and F2 of Λ such that the following
conditions hold:

i) Λ = F1 ⊕ F2;

ii) F1 and F2 are stable under ∇Λ
;

iii) the restrictions ∇1 = ∇Λ
|F1

and ∇2 = ∇Λ
|F2

have no eigenvalue in common.

Then there exist two unique free zp∇θ-stable O-submodules Λ1 and Λ2 of Λ satisfying:

1) Λ = Λ1 ⊕ Λ2;

2) F1 = π(Λ1) and F2 = π(Λ2).

5.2 Estimates for lattice invariants
Proposition 5.1. Let ∇ be an unramified connection on V and Λ be a lattice of V . Let p = pΛ(∇)
be the Poincaré rank, and κ = κ(∇) be the Katz rank of ∇ on Λ. The Levelt lattice ΛL(∇) of Λ
satisfies the inequalities

p − κ � [Λ : ΛL(∇)] � n(n − 1)
2

p − 1
2

irr(End∇),

where irr(End∇) denotes the Malgrange irregularity of the connection End ∇ induced by ∇ on
End V .

Recall that, if the vector space endowed with a connection (V,∇) has determinant factors Qi

with multiplicity ni, the Malgrange irregularity index of End ∇ is equal to

irr(End∇) = −2
∑

1�i<j�s

ninjv(Qi − Qj) = −2
∑

1�i<j�s

ninjv(ϕi − ϕj)

(cf. [Ber98, p. 10]). The following lemma will be of use in the proof.

Lemma 5.2. Let m � n two integers. The equality

m(m − 1)
2

+
(n − m)(n − m − 1)

2
=

n(n − 1)
2

− m(n − m)

holds.

Proof of Proposition 5.1. Corollary 4.1 yields

p − κ � [Λ : ΛK(∇)] � n(n − 1)
2

(p − κ).

Since we have

[Λ : ΛL(∇)] = [Λ : ΛK(∇)] + [ΛK(∇) : ΛL(∇)], (11)

it is enough to estimate the index [ΛK(∇) : ΛL(∇)]. We use induction on the number s of distinct
determinant factors of ∇.

Assume that the connection has only one determinant factor, denoted with Q. Then κ = −v(Q)
and irr(End∇) = 0 hold. According to Lemma 4.3, part i, the Levelt lattice of Λ satisfies the equality
ΛL(∇) = ΛL(∇r). By means of Lemma 4.7 we get ΛL(∇) = (ΛK(∇))L(∇r). The connection ∇r is
regular and its Poincaré rank p̃ = pΛK (∇)(∇r) on the Katz lattice ΛK(∇) satisfies

0 � p̃ � κ.
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After Corollary 4.2, the inequalities 0 � [ΛK(∇) : ΛL(∇)] � 1
2n(n − 1)κ hold. Hence we get

p − κ � [Λ : ΛL(∇)] � n(n − 1)
2

(p − κ) +
n(n − 1)

2
κ =

n(n − 1)
2

p.

The statement for s = 1 follows, since in that case irr(End∇) = 0.
Let s � 2 be an integer. Assume that

0 � [ΛK(∇) : ΛL(∇)] � n(n − 1)
2

κ − 1
2

irr(End∇)

holds for any t < s, for any vector space endowed with a connection (V,∇) having t distinct
determinant factors, and for any lattice Λ of V .

Let (ϕi)i=1,...,s be the distinct determinant factors of (V,∇). The valuation of every ϕi is negative.
Assume the (ϕi) arranged by increasing valuation. Then v(ϕ1) = −κ holds. We shall say that ϕi and
ϕj are equivalent up to order k if v(ϕi −ϕj) � −κ + k + 1. Let Λ be a lattice of V . Let us consider

the Katz lattice ΛK(∇). The eigenvalues of the polar map ∇ΛK(∇) are equal to the coefficients of
valuation −κ of the attached eigenvalues ϕi = θQi. Two situations may occur.

a) The polar map ∇ΛK(∇) has at least two distinct eigenvalues. If so, one of them is not zero.
Let us call W the eigenspace of Λ/zΛ corresponding to a non-zero eigenvalue of ∇ΛK(∇). Sibuya’s
lemma ensures then that there exist two free O-submodules Λ1 (whose image in Λ/zΛ is W ) and Λ′

of respective ranks m1 and m′, corresponding to subconnections (V1,∇1) and (V ′,∇′) of (V,∇) and
such that ΛK(∇) = Λ1 ⊕ Λ′. Then we get

ΛL(∇) = (ΛK(∇))L(∇) = (Λ1)L ⊕ (Λ′)L.

The set of determinant factors of ∇ is the disjoint reunion of the sets of determinant factors of ∇1

and ∇′; note that all determinant factors of ∇1 have valuation −κ.
The connections ∇1 and ∇′ have strictly less distinct determinant factors than ∇. The induction

assumption then yields

0 � [ΛK(∇) : ΛL(∇)] � m1(m1 − 1)
2

pΛ1(∇1) − 1
2

irr(End∇1)

+
m′(m′ − 1)

2
pΛ′(∇′) − 1

2
irr(End∇′).

According to the definition of the Katz lattice,

pΛK(∇)(∇) = κ = max(pΛ1(∇1), pΛ′(∇′))

holds. Therefore,

0 � [ΛK(∇) : ΛL(∇)] �
(

m1(m1 − 1)
2

+
m′(m′ − 1)

2

)
κ

− 1
2

irr(End∇1) − 1
2

irr(End∇′).

After Lemma 5.2, we have
1
2(m1(m1 − 1)) + 1

2(m′(m′ − 1)) = 1
2 (n(n − 1)) − m1m

′.

Hence, we get

0 � [ΛK(∇) : ΛL(∇)] � n(n − 1)
2

κ − m1m
′κ

− 1
2

irr(End∇1) − 1
2

irr(End∇′).
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According to the assumption, the difference between a determinant factor Qi of ∇1 and a determi-
nant factor Qj of ∇′ has valuation v(Qi − Qj) = −κ. Thus

m1m
′κ + 1

2 irr(End∇1) + 1
2 irr(End∇′) = 1

2 irr(End∇).

Hence, the following inequalities hold:

0 � [ΛK(∇) : ΛL(∇)] � n(n − 1)
2

κ − 1
2

irr(End∇).

Relation (11) finally yields

p − κ � [Λ : ΛL(∇)] � n(n − 1)
2

(p − κ) +
n(n − 1)

2
κ − 1

2
irr(End∇)

� n(n − 1)
2

p − 1
2

irr(End∇).

b) The map ∇ΛK(∇) has only one eigenvalue, which is non-zero according to condition iii of
Lemma 4.6. All the attached eigenvalues (and thus all determinant factors) are equivalent up to
order 0. Let k be the largest integer such that the ϕi are all equivalent up to order k. Let us call
P ∈ (1/z)C[1/z] the polynomial of degree −k that is equivalent to all ϕi up to order k, and consider
the connection ∇′ = ∇ − P idV ⊗ dz/z. The connection ∇′ satisfies the condition a, because its
determinant factors are not all equivalent. The Katz rank κ′ of the connection ∇′ satisfies κ′ < κ,
thus the lattice ΛK = ΛK(∇) does not have minimal Poincaré rank for ∇′. Consider the Katz lattice
ΛK2 = (ΛK)K(∇′). According to Corollary 4.1, the corresponding index then satisfies

κ − κ′ � [ΛK(∇) : ΛK2] � n(n − 1)
2

(κ − κ′).

We then consider the Levelt lattice (ΛK2)L(∇′) of the lattice ΛK2 for the connection ∇′. By means
of Lemmas 4.7 and 4.2 we get

(ΛK2)L(∇′) = ((ΛK)K(∇′))L(∇′) = (ΛK)L(∇′)

= (ΛK)L

(
∇− P idV ⊗dz

z

)

= (ΛK)L(∇)
= ΛL(∇).

Accordingly, the index [ΛK2 : (ΛK2)L(∇′)] satisfies

0 � [ΛK2 : (ΛK2)L(∇′)] � n(n − 1)
2

κ′ − 1
2

irr(End∇′).

Only differences between determinant factors occur in the Malgrange irregularity; hence we have
that irr(End∇′) = irr(End∇). Thus,

0 � [ΛK(∇) : ΛL(∇)] = [ΛK(∇) : ΛK2] + [ΛK2 : ΛL(∇)]

� n(n − 1)
2

(κ − κ′) +
n(n − 1)

2
κ′ − 1

2
irr(End∇′)

� n(n − 1)
2

κ − 1
2

irr(End∇),

so our induction is complete. Relation (11) then yields

p − κ � [Λ : ΛL(∇)] � n(n − 1)
2

(p − κ) +
n(n − 1)

2
κ − 1

2
irr(End∇)

� n(n − 1)
2

p − 1
2

irr(End∇).

1391

https://doi.org/10.1112/S0010437X04001046 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X04001046


E. Corel

5.3 Fuchs’ inequalities

Proposition 5.2. Let (V,∇) be a K-vector space endowed with a connection, and Λ be a lattice
of V . Denote with p = pΛ(∇) the Poincaré rank of the connection ∇ on the lattice Λ, with ∧np the
Poincaré rank of

∧n ∇ on
∧n Λ and with τΛ(∇) the trace of the residue of ∇ on Λ. Then the sum

of all exponents e1, . . . , en of the connection ∇ on the lattice Λ satisfies

τΛ(∇) − n(n − 1)
2

p �
n∑

i=1

ei − 1
2

irr(End∇) � τΛ(∇) − p + ∧np.

Proof. Assume first that the connection is unramified. The n exponents ei are equal to the eigenval-
ues of the residue of the associated regular connection ∇r on the Levelt lattice of Λ. By Lemma 2.4
one has

n∑
i=1

ei = τΛL
(∇r) = τΛ(∇r) − [Λ : ΛL(∇)].

Since
∧n ∇ =

∧n ∇r + Tr ω is the canonical decomposition of
∧n ∇, the relation

τΛ(∇r) = τΛ(∇) − Res
0

Tr
1
z
ϕ = τΛ(∇)

holds, because Tr (1/z)ϕ ⊂ (1/z2)C[1/z]. Accordingly, the sum of exponents satisfies
n∑

i=1

ei = τΛ(∇) − [Λ : ΛL(∇)]. (12)

Denote with κ the Katz rank of ∇. After Proposition 5.1, we get

τΛ(∇) − n(n − 1)
2

p �
n∑

i=1

ei − 1
2

irr(End∇) � τΛ(∇) − p + κ − 1
2

irr(End∇).

Let ϕ1, . . . , ϕn be the attached eigenvalues of ∇, counted without respect to their multiplicities, and
assume that they are arranged by increasing valuation. Then κ = −v(ϕ1) and

irr(End∇) = −
∑

1�i,j�n

min(v(ϕi − ϕj), 0)

hold. The sum ϕ1 + · · · + ϕn = Tr ϕ is equal to the only eigenvalue attached to the connection∧n ∇. The space
∧n V has dimension 1, and its Poincaré rank is

∧np = sup(0,−v(ϕ1 + · · · + ϕn)).

Hence, we have

∧np � κ � p.

If there exists i < j such that the equality −v(ϕi − ϕj) = −v(ϕ1) holds, then we have κ −
1
2 irr(End∇) � 0. If instead κ − 1

2 irr(End∇) > 0 holds, then we have v(ϕ1) = · · · = v(ϕn) = −κ,
and the coefficients of valuation −κ of all the ϕi are equal, whence v(ϕ1+· · ·+ϕn) = −κ. Therefrom,
one gets

−p + κ − 1
2 irr(End∇) � −p + ∧np.

The statement of the proposition is then established for the unramified case.

Assume now that ∇ is ramified of order p. Let us use the notations of § 3.1. The field H is here
assumed to be endowed with its natural ζ-adic valuation w, and the invariants of ∇H are defined
with respect to the uniformizing parameter ζ. According to Proposition 5.1 and the proof of the
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unramified case just given, the following inequalities hold:

(pζ)ΛH
(∇H) − κζ(∇H) +

1
2

irrζ(End∇H) � [ΛH : ΛL(∇)]ζ +
1
2

irrζ(End∇H) � . . .

� n(n − 1)
2

(pζ)ΛH
(∇H).

With [ΛH : ΛL(∇)]ζ we denote the index as calculated in the ring C[[ζ]]. Recall from § 3.1 that
(pζ)ΛH

(∇H) = p pΛ(∇). One easily sees that the same holds for all the occurring invariants:

κζ(∇H) = pκ(∇), irrζ(End∇H) = p irr(End∇),

(τζ)ΛH
((∇r)H) = pτΛ(∇r), [ΛH : ΛL(∇)]ζ = p[Λ : ΛL(∇)].

The definition of the exponents in the ramified case yields
n∑

i=1

ei = Tr Resc
ΛL(∇)∇H =

1
p

Tr (Resζ)ΛL(∇)∇H

=
1
p
((τζ)ΛH

((∇r)H) − [Λ : ΛL(∇)]ζ).

Replacing in the expression above finishes the proof.

Let us now consider the field C(z) of rational fractions, endowed at all points a ∈ P
1(C) with

the local valuation map va. Denote with vaA = min1�i,j�n vaAij the order at a of a matrix A, and
with Resz=af the residue of a function f(z) at the point z = a. At s ∈ P

1(C), the former local
definitions make sense by means of the change of local coordinate t = z − s if s ∈ C and t = 1/z if
s = ∞. We denote the Poincaré rank at s with ps.

Definition 18. If the matrix A has coefficients in C(z), we call height of the system the integer

h(A) =
∑

a∈P1(C)

sup(0,−vaAdz − 1).

Theorem 4 (Fuchs’ inequalities). Let dX/dz = AX be a meromorphic differential system on P
1(C).

The exponents es
1, . . . , e

s
n attached to this system at all points s ∈ P

1(C) satisfy

−n(n − 1)
2

h(A) �
∑

s∈P1(C)

( n∑
i=1

es
i −

1
2

irrs(End∇)
)

� −h(A) + h(Tr A) (13)

and ∑
s∈P1(C)

n∑
i=1

es
i � 0. (14)

Proof. We return to z = 0 by a change of local coordinate. The system dX/dz = AX defines a
connection ∇ on Kn. Attach to On its Levelt lattice (On)L. According to Proposition 5.2, one has
the following local relation:

Res
t=0

Tr A − n(n − 1)
2

(p0)On(∇) �
n∑

i=1

e0
i −

1
2

irr0(End∇) � . . .

� Res
t=0

Tr A − (p0)On(∇) + (p0)∧n On

( n∧
∇

)
.
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On the other hand, according to relation (12), one has
n∑

i=1

e0
i � Res

t=0
TrA − [On : (On)L].

We know that (p0)∧n On(
∧n ∇) = sup(0,−v0(Tr Adz) − 1). Adding together these inequalities at

every singularity one gets

∑
s∈P1(C)

Res
t=s

Tr A − n(n − 1)
2

∑
s∈P1(C)

ps �
∑

s∈P1(C)

n∑
i=1

es
i −

1
2

irrs(End∇) � . . .

�
∑

s∈P1(C)

Res
t=s

Tr A −
∑

s∈P1(C)

ps +
∑

s∈P1(C)

ps(Tr A)

and ∑
s∈P1(C)

n∑
i=1

es
i �

∑
s∈P1(C)

Res
t=s

Tr A.

Since
∑

s∈P1(C) ps = h(A), both results follow now from the residue theorem.

Let A ∈ Mn(C(z)) be a matrix of rational functions having poles in the set S = {s1, . . . , sp} ⊂
P

1(C). For every s ∈ S, denote its Poincaré rank with ps = max(0,−vsAdz − 1), and its polar
matrix with the matrix

As = lim
z→s

(z − s)ps+1A(z) if s �= ∞,

A∞ = − lim
t→0

tp∞−1A

(
1
t

)
for s = ∞.

We say that s ∈ S is a singularity of first kind if ps = 0, and of second kind if ps > 0.

Definition 19. We say that the system dX/dz = AX is generic if for every singularity s of the
second kind of A the polar matrix As has n distinct eigenvalues.

Corollary 5.1. Let dX/dz = AX be a generic system over P
1(C). The sum of its exponents

es
1, . . . , e

s
n at all points s ∈ P

1(C) satisfies

∑
s∈P1(C)

n∑
i=1

es
i = 0.

Proof. Let s be a singularity of the second kind. Let ϕs
1, . . . , ϕ

s
n be the determinant factors attached

to the system at s. Since the system is generic, one has

vs(ϕs
i ) = vs(ϕs

i − ϕs
j) = −ps

for all 1 � i �= j � n. The local Malgrange irregularity index at s is then equal to

irrs(End∇) = n(n − 1)ps.

If s is of the first kind, then it is a regular singularity and the same relation is satisfied. Hence one
has ∑

s∈P1(C)

( n∑
i=1

es
i −

1
2

irrs(End∇)
)

=
∑

s∈P1(C)

n∑
i=1

es
i −

n(n − 1)
2

h(A).
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According to relation (13) of Theorem 4 we get

∑
s∈P1(C)

n∑
i=1

es
i � 0.

Relation (14) of Theorem 4 then yields the result.

Appendix

In this appendix, we describe the algorithm whose existence was mentioned in Remark 8. The
general idea is to compute an O-basis of the lattice Λk(∇) by using its description in terms of the
saturated Gérard–Levelt lattice given in Corollary 4.3. Note that if the connection ∇ has matrix
representation A = Mat(∇θ, (e)) in an O-basis (e) of Λ, then its saturated Gérard–Levelt lattice
Fn−1

zkθ
(Λ) is spanned by the columns of the n × n2 matrix

Mk(∇, (e)) = M(zkA) = (I AA2 . . . An−1), (A1)

where

A0 = I (A2)

At+1 = zkθAt + zkAAt for any t � 0. (A3)

Since
Λk(∇) = Fn−1

zkθ
(Λ∗)∗,

to the differential system
dX

dz
= AX (A4)

we attach n column vectors spanning the same O-module as the n2 columns of the matrix MF (−f tA)
defined from the dual system dX/dz = − tAX, for some well-chosen f ∈ K.

The following section describes the tools to perform this procedure.

Hermite normal form
Let E be a euclidean ring, and let m,n ∈ N be two integers. Denote with Mn×m(E) the algebra of
n × m matrices with coefficients in E. Assume that n � m.

Theorem 5 (Hermite normal form). Let M = (Mij) ∈ Mn×m(E) an n×m matrix with coefficients
in E. Then there exists a matrix U ∈ GLm(E) such that MU has the following form:

MU =




0 . . . 0 m11 m12 . . . m1n

0 . . . 0 0 m22 . . . m2n
...

...
...

. . .

0 . . . 0 0 0 mnn


 . (A5)

Since U ∈ GLm(E), the n last columns of MU span the same E-module as the m columns of M .
This theorem holds for the ring of polynomials C[z] (see e.g. [Coh91, p. 69], or [Roc93, ch. VI]).

One can moreover assume in this case that the polynomials mii have leading coefficient for all
i = 1, . . . , n and that d◦mii > d◦mij for all j > i.

Description of the algorithm
Let us consider a differential system dX/dz = AX with coefficients in the field K = C(z).
Let V = Kn, and define ∇ as the connection such that ∇d/dz has matrix A in the canonical
basis of V .
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For every pole z = ai of the matrix A, the localized ring Ri = C[z](z−ai) of C[z] at the principal
ideal (z − ai) is the valuation subring of K for the (z − ai)-adic valuation vi. Embed then K in the
field C((z − ai)) of all formal series in (z − ai) with coefficients in C. Denote with mi the order of
singularity of the pole ai. Finally set Λi = (Ri)n and denote with Λ∗

i its dual.
Theorem 2 of Gérard and Levelt [GL73] ensures that

∇∗
(z−ai)mi d/dz(Fn−1

(z−ai)mi d/dz(Λ
∗
i )) ⊂ Fn−1

(z−ai)mi d/dz(Λ
∗
i ).

The lattice Fn−1
(z−ai)mi d/dz(Λ

∗
i ) is the Gérard–Levelt saturated lattice of Λ∗

i of order mi with respect
to the uniformizing parameter ti = z − ai.

This process can be simultaneously performed at every finite singularity of the system.
Let S = {a1, . . . , ap} be the set of poles of the matrix A contained in C. Set f = (z − a1)m1

(z − a2)m2 · · · (z − ap)mp .

Proposition A.1. Let ϑ be the derivation ϑ = f d/dz of K. Then the following hold.

1) The lattice Fn−1
ϑ (Λ∗

i )
∗ is the largest (z−ai)mi∇d/dz-stable sublattice of Λi for any i = 1, . . . , p.

2) There exists a K-basis (e) of V such that the lattice Fn−1
ϑ (Λ∗

i )
∗ is spanned over Ri by (e) for

any i = 1, . . . , p.

Proof. The derivation ϑ satisfies ϑ =
∏

j 	=i(z−aj)(z−ai) d/dz for all i = 1, . . . , p. Since
∏

j 	=i(z−aj)
is invertible in Ri for any i = 1, . . . , p, one has Fn−1

ϑ (M) = Fn−1
(z−ai) d/dz(M) for any Ri-lattice M of V .

This result also clearly holds for the dual. Since Fn−1
ϑ (Λ∗

i ) is the smallest (z − ai)mi∇d/dz-stable
lattice containing Λ∗

i , its dual lattice Fn−1
ϑ (Λ∗

i )
∗ is the largest (z−ai)mi∇d/dz-stable sublattice of Λi.

Thus part 1 is proved.
The lattice Fn−1

ϑ (Λ∗
i ) is spanned in the canonical basis of Kn by the columns of

M(−f tA) = (I AA2 . . . An−1),

where

A0 = I

Ak+1 = ϑAk − f tAAk, for any k � 0,

for any i = 1, . . . , p. Since the columns of M(−f tA) are independent of i, the statement for part 2
follows.

The next step is to find the basis (e) of Proposition A.1. In order to perform Hermite’s reduction
on the matrix M(−f tA) whose coefficients belong to C(z), consider q ∈ C[z] such that the matrix
M = qM(−f tA) is polynomial and of zero valuation. After Theorem 5, there exists U ∈ GLn2(C[z])
such that MU is of the form (A5). Let us denote with M̃ the upper triangular matrix consisting of
the last n columns of MU :

M̃ =




m11 . . . m1n
...

. . .
0 mnn


 .

The block matrix consisting of the first n columns of M is qI, so M has rank n over K. Hence,
according to Theorem 5, the matrix M̃ has also rank n over K.

Proposition A.2. If the system (A4) has only regular singularities over P
1(C), the system

dX

dz
= A[tM̃−1]X (A6)

has only simple poles over C, and these poles belong to S = {a1, . . . , ap}. Moreover, the eigenvalues
of Resz=sA[tM̃−1] are the exponents of the system dX/dz = AX at any s ∈ C.
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Proof. Let us denote with (u) the canonical basis of V = Kn. The matrix M̃ is the gauge matrix
from the dual basis (u∗) of V ∗ to a basis (α) of the saturated dual lattice Fn−1

ϑ (Λ∗
i ). This basis spans

for any i = 1, . . . , p the smallest (z−ai)mi∇d/dz-stable superlattice (Λ∗
i )

mi(∇) of Λ∗
i . Accordingly, the

matrix tM̃−1 is a gauge matrix from (u) to the basis (α∗) which spans the largest (z − ai)mi∇d/dz-
stable sublattice of Λi that we denoted with (Λi)mi in § 2.3. The basis (α∗) then satisfies the
conditions of the basis (e) of Proposition A.1.

The matrix U belongs to GLn(Ri) for any i = 1, . . . , p. Denote with H(s) evaluation at any point
z = s ∈ C of a matrix function H ∈ Mn×m(C[z]). For s �∈ S, we have q(s) �= 0, so M(s) ∈ Mn×n2(C)
has rank n over C. According to Theorem 5, the matrix U(s) has rank n2 over C. Hence the
matrix M̃(s) has also rank n over C, and thus the polynomial m11m22 · · ·mnn has no zero outside
of S. Therefore, A[tM̃−1] does not bring any apparent singularity outside of S.

If s ∈ C is a regular point for the system (A4), it is also regular for the system dX/dz =
A[tM̃−1]X. At a regular point, the exponents are all zero, and indeed one has Resz=sA[tM̃−1] = 0.
The assumption that the system has only regular singularities over P

1(C) means that mi = 0 for
all i = 1, . . . , p. Therefore, the lattice (Λi)mi spanned by (e) is the regular Levelt lattice of Λi

for all i = 1, . . . , p such that ai ∈ C, hence the eigenvalues of Resz=aiA[tM̃−1] are the exponents of
the system dX/dz = AX at ai.
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