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ON THE RESTRICTED CESÀRO SUMMABILITY OF 
MULTIPLE ORTHOGONAL SERIES 

FERENC MORICZ 

1. Introduction. We actually treat double orthogonal series in detail, 
simply for the sake of brevity in notations. Multiple orthogonal series will 
be shortly indicated in the concluding Section 8. 

Let (X, J^ ju) be an arbitrary positive measure space and {<j)jk(x):i, k = 0, 
1, . . . } an orthonormal system defined on X. We consider the double 
orthogonal series 

oo oo 

(1.1) 2 2 aik$ik{x) 
/=0 A=0 

where {aik:i, k = 0, 1, . . . } is a double sequence of real numbers 
(coefficients), for which 

oo oo 

(i.2) 2 2 4 < oo-
/ = 0 * = 0 

By the extended Riesz-Fischer theorem, there exists a function/(x) e 
L2(X, ^ fi) = L2 such that (1.1) is the generalized Fourier series of f(x) 
with respect to {4>ik(x) } and the rectangular partial sums 

m n 

smn(x) = 2 2 aik4>ik(x) (m, n = 0, 1, . . . ) 
/=0 k=0 

converge tof(x) in L2-metric: 

J ismn(x) - /(-*) f Mx) -> 0 as min(m, n) -> oo. 

Here and in the sequel, the integrals are taken over the entire space X. 
Let a and ft be real numbers, a > — 1 and /? > — 1. We remind the 

reader that the (C, a, /?)-means of series (1.1) are defined as follows (for 
single series, see e.g. [5, p. 77] ;: 
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-, m n 

°mrAX) — a f$ ZJ AU Am_jAn_kSjk{l 
AyrAn i = 0 k = 0 

* m n 
= ——g 2 2 Aa

m_lAP_kalk$lk(x) (m, n = 0, 1, . . . ) 

where 

A 
a = (m + a\ 

{ 
(a + \)(a + 2) . . . (a + m)/m\ for m = 1, 2, 
1 for m = 0. 

In the case a = /? = 0 we have ^ ( x ) = o^m(x), while the case 
a = )8 = 1 gives the first arithmetic means: 

1 m n 

°IUX) = , • iv , n 2 2 sik(x). 
(m + l)(w + 1) /=o k=0 

2. Preliminary results. We begin with the following convention. Given a 
{fp(x) } of functions in L an< 
s, we write 

^(*) = ^ { \ J a-e- (as/7 -* °°) 

system {fp(x) } of functions in L and a sequence {\} of positive 
numbers, we write 

if 

fp(x)/\p -> 0 a.e. as /? -> oo 

and, in addition, there exists a function F(x) e L such that 

sup|^(x) l/A^ ^ F(x) a.e. 

Here p ranges over either 0, 1, . . . or 1, 2, . . . . 
Theorems A, B, C and D below are proved in [2]. The first of them is a 

Kolmogorov type result for double orthogonal series (see [1, pp. 118-119] 
concerning single orthogonal series). 

THEOREM A. ( [2, Lemma 2] ). Under condition (1.2), 

(2.1) S2P^P(X) - O1
2}2P(X) = ^ { 1 } a.e. 

Analyzing the proof, a slightly stronger conclusion can be drawn: for 
every 6 ^ 1 

(2.T) max \s2P Ux) - oX
2p2q{x)\ = ox{\\ a.e. 
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The second theorem is a Kaczmarz type result (cf. [1, pp. 119-120] ). 

THEOREM B. ( [2, Lemmas 3 and 4 and formula (4.6) ] ). Under condition 
(12), for every 0 = 1 

(2.2) max max \o\]n(x) ~ o]J 2P(x) \ = ox{\} a.e. 

as p —* oo. 

Actually, somewhat more is proved in [2]: for every 0 = 1 

(2.2') max max kiiiC*) ~ O\P2P(X) \ = ox{\} a.e. 
2p^m^2p + ] n:0-]2P^n^82P + ] 

Comparing Theorems A and B yields that under condition (1.2) the a.e. 
convergence of {S2P^2P(X) } as/? -^ OO and the a.e. convergence of {omn(x) } 
as min(m, n) —> oo in such a way that 0 = n/m = 0 with a fixed 0 = 1 , 
are equivalent to one another. The latter property may be called a.e. 
restricted (C, 1, l)-summability (and in the same sense we can speak about 
a.e. restricted (C, a, /?)-summability). 

Applying a Rademacher-Mensov type result to the subsequence 
{s2p2P(x):p = 0, 1, . . . } (see [2, Lemma 1]), we can conclude a 
Mensov-Kaczmarz type result (cf. [1, pp. 125-126] ). 

THEOREM C. ( [2, Theorem 1] ). Under the condition 

oo oo 

(2.3) 2 2 a]k [log log(max (/, k) + 4) f < oo, 
z- = 0 £ = 0 

for every 0 = 1 

max \o„n(x) - f(x) | = ^ { 1 } a.e. as m-^ oo. 
n:9 ]^n/m^6 

In this paper the logarithms are to the base 2. 
Assuming only (1.2), the order of magnitude of o^n(x) can be esti

mated in the case where m and n tend restrictedly to oo. 

THEOREM D ( [2, Theorem 2] ). Under condition (1.2), for every 0 = 1 

max \o„n(x) | = o j l o g log(m + 4) } a.e. 

3. Main results. We prove that condition (2.3) is also sufficient for the 
a.e. restricted (C, a > 0, /? > 0)-summability of series (1.1). 

THEOREM I. If a > 0, /} > 0, 0 = 1 and condition (2.3) is satisfied, 
then 

(3.1) sup \oa
mi(x) - f(x) | = ox{\} a.e. as m -> oo. 
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The next theorem extends the validity of Theorem D. 

THEOREM 2. If a > 0, /? > 0, 6 i^ 1 and condition (1.2) is satisfied, 
then 

(3.2) max \ofn(x) \ = o, {log log(m + 4) } a.e. 

The following theorem plays a key role in the proofs of Theorems 1 
and 2. 

THEOREM 3. If a > \, ji > \9 6 ^ 1 and condition (1.2) z's satisfied, 
then 

(M + l)z
 m = 0 w = 0 ) 

= 0Y{1} a.e. as M -* oo. 

6M 

By 2 we mean that the summation is carried out for all integer values 
n = 0 

of n such that 0 ^ n ^ #M. 
On the other hand, taking Theorems 1, 2 and 3 for granted, we can 

immediately deduce two corollaries ensuring the so-called strong 
(C, a, /?)-summability of series (1.1) in the restricted case. 

COROLLARY \. If a > \, ft > \, 0 = 1 and condition (2.3) is satisfied, 
then 

— | ^ 2 2[C''Hw-/wf 
(M + l)z

 m=o «=o ' 
= o x {l) a.e. as M ^ oo. 

COROLLARY 2. If a > \, (1 > {, 6 ^ 1 tfjid condition (1.2) w satisfied, 
then 

{ , M 6M \ 1/2 

(M + \y m=o «=o ^ 
= ox{\o% log(M + 4) } a.e. 

We note that in the special case a = fi = 1 similar but not comparable 
statements were derived in [2, Theorems 3 and 4] using another method. 

Analyzing the proofs of Theorems 1 and 2 given in Sections 5 and 6, we 
can gain the following byproduct, interesting in itself. 

COROLLARY 3. If a > 0, /? > 0, 6 ^ 1 and condition (1.2) is satisfied, 
then the convergence of {o°^n{x) } on a measurable set as min(m, n) —» oo 
in such a way that Q~ ^ n/m ^ 6 is equivalent for all a > 0 and /? > 0, w/? 
to # se/1 of measure zero. 
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In other words, if series (1.1) with (1.2) is restrictedly (C, a0, 
/30)-summable on a measurable subset Y of X for a given pair of a{) > 0 
and P0 > 0, then it is also restrictedly (C, a, /3)-summable a.e. on Y for 
each pair a > 0 and /? > 0. 

4. Auxiliary results. In this section we consider numerical series 

00 oo 

2 2 Uik 
/ = 0 A=0 

of real numbers. Now the (C, a, /?)-means are defined by 

1 m n 

(m, n = 0, 1,. . . ; a > - 1 , /3 > - 1 ) . 

We remind the reader of some identities and inequalities well-known in 
the literature. For all a and y 

m 

(4.1) Aa„^+l = 2 A«Al,_, 
/ = 0 

(see, e.g. [5, p. 77, formula (1.10) ] ). Hence the representations 

i m 

(4.2) a&* = —-y 2 >C-VW (« + Y > -1) 
/!„, ,--o 

and 

(4.3) <f+s = ~ 2 ^ : ^ M os + s > -i) 

easily follow. 
We also need the following estimate: There exist two positive constants 

Cx and C2 depending only on a such that 

(4.4) Cx ^ Aa
m/ma ^ C2 (m = 1, 2, . . . ; a > .-1) 

(see [1, p. 69, formula (25) ] or [5, p. 77, formula (1.18) ] ). 
In the next Tauberian result {XM:M = 0, 1,. . . } is a non-decreasing 

sequence of positive numbers. 

LEMMA 1. If a > —{, /3 > -{, e > 0, TJ > 0, 6 ^ 1 and 

1 ( 1 M m „ 1 1/2 
(4'5) r W T l ^ 2 2 [a™]J - o ^ M - œ , 

A M \{M + 1) m = 0 « = 0 J 
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then 

1 

[, / , £v - I I a + l / 2 + ^ j 8 + l / 2 + ï7i 

(4.6) — max \oMN
 v '| 

Furthermore, if 

0 as M -* oo. 

1 { 1 M f/M 1 1/2 

- ^ - 5 2 2 Kif\ ÎB (M = 0,1,. 
(M + I f m = 0 w = 0 J 

XM l ( M + 1) 

vv/Y/z a positive number B, then there exists a constant C depending only on a, 
ft, e, K] and 6 such that 

1 

w 
max \o 

N:d ]^N/M^ 

a + l / 2 + £, /8+l/2 + 77| 
MN I g CB (M = 0, 1, . . . ) . 

In case M = 0 the condition 0 ] ^ 7V/M ^ 6 is meant to be satisfied 
by N = 0. 

Proof. The basic idea goes back to Zygmund [4, pp. 360-361]. By 
(4-2), 

<x+l/2 + e , j8+l /2 + Tj 
JA/W 

1 M 

\ V j - l / 2 + £ i a a,yS+ 1/2+77 
1 / 9 + , ^-( AM-m /lm°mN , a + l / 2 + e 

m = 0 

Hence, via the Cauchy inequality, 

(4.7) max 

1 

a + l / 2 + e , / 3 + l / 2 + 77i 
7MN I 

M 
-1/2 + c ^ a r Aa\ m a y i a , / 3 + l / 2 + 7i| 

M-m ^mL max |a ^ 
A / ^ . / a i < - — • - — • " 

1 
. « + 1 / 2 + 

M 

{ M 

2J [AM_m Am] 
m = 0 . m = 0 

2 [ max | < - r / 2 + " l ] 2 
1/2 

Taking into account (4.1) and (4.4), it is not hard to check that 

M \ 1 / 2 

(4.8) 
1 

, « + 1 / 2 + 6 
lA/ {z»-"-™r - °{WTW) 

Repeating the above reasoning, this time starting with a^^+ 1 / +T?, by 
(4.3), (4.1) and (4.4) we get that 

https://doi.org/10.4153/CJM-1985-022-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1985-022-9


RESTRICTED CESÀRO SUMMABILITY 377 

(4.9) K;£+1/2+^ 1 
5+1/2 + 7] 

1N w = 0 

1 ( N * Î 
, 0 + 1 / 2 + TI I ^ lAN-n An\ <£* 1° mtA I 

1/2 

>N + 1 w = c 

Combining (4.7), (4.8) and (4.9) (the latter taken for each N such that 
6 l ^ N/M ̂  0) yields 

max 
N:6 X^N/Mt 

a + l / 2 + e,0+l/2 + T?i 
JMN I 

0{1}{—L- 2 f max (—— 2 fal]2)l] 
1/2 

= 0(1} { 
M 

2 M + 1 m=o 6 lM + 1 

0A/ \ 

n=0 * 

1/2 

{ i M ^ 11/2 

——-3 2 2 [aff = o{XM} a sM-œ. 
(M + 1) m = 0 n = 0 J 

The last step is due to assumption (4.5). The estimate obtained is (4.6) to 
be proved. 

The second part of Lemma 1 can be verified in a similar manner. 
We will make use of the following representations, too: 

(4 10) aa~ufi - oa(* 

, m n 

= —T-p 2 2 Aa
mZ\A^kiu,k (a > 0, ft > - 1 ) 

and 

(4.11) a a - 1 , 0 - 1 _ a - 1 , 0 _ « ,0-1 «0 
mn mn 

l 

Both easily follow through the identities 

2 2 < i ^ : ^ (« > o, j8 > o). 

«4* a n d , « _ a + m ~ y - i 
a + m 
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Finally, we present two more inequalities: 

(4.12) 

and 

(4.13) 

4<X-\ 

• L Aa 

2-!-

O G) (/ = 1, 2, a > [) 

> 4 " J 
<9{1} (/ = 1, 2, . . . ; a > 0). 

The first inequality is well-known (see, e.g. [1, p. 110] ), while the second 
one was proved in [3, formula (4.9) ]. 

5. Proof of theorem 1. This is done on the basis of Theorem 3, which 
will be proved in Section 7, and on the following consequence of 
Lemma 1. 

COROLLARY 4. If a > 

(5..) f — ' -
,(M + \f m = 0 n=0 

P > - £ , € > 0, Tj > 0, 0 è 1 and 

ox{\) a.e. 
M BM \ ] / 2 

2 2 [oaJ„(x)-f(X)]2j 

then 

(5.2) max |a 
N:d ]^N/M^6 

a + l / 2 + e,0+l/2 + 7j (x) - / ( * ) ! 

<2S M 

oA{l} a.e. 

as M oo. 

In fact, setting AM = 1 (M = 0, 1, . . . ), 

woo = %W>oo(*) - / ( . x ) and 

% = *,*<M*) 0'2 + *2 > 0), 

Corollary 4 immediately follows from Lemma 1. 
After these preliminaries the proof of (3.1) is quite simple. By Theorem 

C, (3.1) holds for a = ft = 1. Hence, by Theorem 3, we get (5.1) for a = p 
= 0. Thus, by Corollary 4, we obtain (5.2) also for a = /? = 0. Using 
again Theorem 3, we find (5.1) for a = —[ + c and y8 = —{ + V-
Hence, by Corollary 4, we get (5.2) for the same pair a and /?, i.e., (3.1) for 
a = 2c and ft = 2i\. Since € and rj are arbitrary positive numbers, Theorem 
1 is completely proved. 

6. Proof of theorem 2. The proof relies again on Theorem 3 and on the 
following consequence of Lemma 1. 
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COROLLARY 5. If a > -{, /} > H f > M > M = 1 and 

M 6M \ 1 / 2 

>(M + 1)Z
 m = 0 A7 = 0 

- 4 - ï 2 2Kf„(x)]2 

(M + 1) m = o w=o ' 
= oA.{log log(M + 4) } a.e., 

(6.2) max l o ^ 1 ' 2 " ^ 1 ' 2 " ^ * ) I = <\{log log(M + 4) } a.e. 

This time we set 

XM = loglog(M + 4) (M = 0, 1, . . . ) 

and 

uik = aik<t>ik(x) 0", * = o, l , . . . ) 

in Lemma 1. 
Now, by Theorem D, (3.2) holds for a = /} = 1. Hence, by Theorem 3, 

we conclude (6.1) for a = ji = 0. Thus by Corollary 5, we obtain (6.2) for 
a = /} = 0. Using again Theorem 3, we find (6.1) for a = — î + € and 
/? = — ̂  -f TJ. Hence, by Corollary 5, we get (6.2) also for a = —{ -f e 
and /? = — ̂  + 17. But the latter estimate coincides with (3.2) for a = 2e 
and /? = 2TJ. Since € > 0 and T) > 0 are arbitrary, (3.2) is proved for all 
a > 0 and & > 0. 

7. Proof of theorem 3. By the triangle inequality, the left-hand side of 
estimate (3.3) to be proved can be estimated as follows 

( i M 8M \ ]/2 

.(M + 1)Z
 m = 0 n = 0 

{ 
M 0M 

2 SlC'^'w-C1^) (M + 1) m =o «=o 
• 1 / 2 

a,j3- 1 / \ i an s \ i2 } 
{ . M 0M v 

(M + 1) m==o «=o ' 

{ , M 0M \ 

(M + 1) w = o rc=0 / 
According to this estimate, Theorem 3 will be a consequence of Lemmas 
2-4 below. 
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LEMMA 2. If a > \, /? > {, 6 ^ 1 tfW condition (1.2) /s satisfied, then 

{
, M 0M 

(M + 1) m=0 « = 0 
- oal'\x) + a f (x) ] 2} ' / 2 = ox{\) a.e. as M -> oo. 

Proof. Let M ^ l . Then there exists an integer / > ^ 0 such that 2P < 
M S 2". Clearly, 

Thus, in order to prove (7.1) it suffices to derive 

(7.2) 2Sfe(x) = ox{\} a.e. as/? -> oo. 

To this goal, we define 

f °° n 1 1/2 

F$(x)= 2 [28fd(x)]2\ 
V/7=0 ' 

and prove Fffix) e L2. In fact, representation (4.11) and inequality 
(4.12) help obtain 

j[Fll(x)fdix(x) 

= 2 -^—2 2 2 2 2 \±*=£ % <2*24 

~ l i l E . . , £ r^«- i„ i2 *2' r^^8-! 12 2 2/^4 2 [^f] 2 fef 
=̂o (2p + \y ,=, *_, „.i i <*c J „r, L ^ 

= o{i} 2 - r ^ - 3 2 2 /*4 
^ = o (2^ + 1) 1 = 1 k=\ 

oo oo 1 

= o{i} 2 2 ikal 2 ! 

/ = l k=\ p:2p-*max(i,k/8) (2P + 1) 

/ = ! k=\ 

Hence B. Levi's theorem implies (7.2). 

LEMMA 3. If a > \, ft > 0, 6 ^ 1 and condition (1.2) z's satisfied, then 

M 0M \ J/2 

, la ,H(x) — a ._ix) l / 
>(M + l)2

 w = o ^ o 
{ , M 0M \ ] 

-——2 2 2 [a«; 1^(x)-a^)] 2 
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ox{\) a.e. as M —> oo. 

Proof. Since again 

3 

for 2P~] < M ^ 2P with/? ^ 0, instead of (7.3) it is enough to prove 

38fyx) =i 2 "8%{x) 

3*ak (7.4) "S^0(x) = ox{\} a.e. as/? -> oo. 

Now we define 

Ffe(x)= ( 1 [3ô^(x)]2| 
V n = 0 J 

1/2 

^ = 0 

We will prove that F^ix) <E L2, whence via B. Levi's theorem (7.4) 
follows. 

To this end, using representation (4.10) we can estimate as follows: 

1 { oo 

2 _ 
^=o (2P + 1) m=o n=o L/ = i k=Q OLA 

2P 62p r m n 

2 2 2 2 
2^ 02^ r m n Aa-\ 

Au~l 12 Ï 1/2 

m 

+ 

X 

{ oo 1 F V2F r m AZ 

2 —î—̂  2 2 2 2 
n = 0 ( 2 P + I V m = 0 « = 0 L / = l A:=] 

2̂  02^ r m AZ , 0 - 1 

0 (2P + 1 ) Z
 m = 0 « = 0 Lz = l A:=l û^4"2 

1/2 

(l - ^ ) iaik4>dx)]2} 

= Fl%x) + Ffe(x), 

say. If we prove that both F^e(x) and F"y(x) belong to L2, then we are 
done. 

First, we deal with F4ff(x) by using (4.12): 

(7.5) jwfa ) fdvix) 

i 2 —1—2 2 2 2 2 
^ = 0 (2P + 1) m = 0 n = 0 / = ! k = 0 

1 

p = o (2P -f 1) /=i k=o 

2P 62p 2P 

2 2 i2al 2 

nm-i 

Aa-\ 

«Aa
m 

<24 

2 ^ 

2 i 
n = k 

o{\) 2 l 

=o 2p + i ; 

2P 02p 

2 2 
= 1 £ = 0 

ia ik 
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= 0{\] 2 2 ia2 1 
oo oo 

2 
i=\ Â=0 ' p:2p^;maLx(i,k/0) 2P + 1 

= ^{i} 2 2 4 <°°-
i = \ k = 0 

Second, we treat F"§(x) with the help of (4.12) and (4.13). Proceeding 
as in the case of (7.5), we get 

J iff. 0(x)] dfx(x) 

1 
2P 62p 

-2 2 2 2 2 
= 0 (2P + 1) m = 0 n = 0 i=\ k = \ 

4a-\ 

oAl* 

X hi-k 

z 2 

•2 2 
< aik 

2P 62p 2p 

^ = 0 2P + 1 /=i k=\ m=\ 

*a-\ 

aAl 

62p , 

2 -
l A 2 - A 

o{\) 2 
2^ 02^ 

2 2 ia2
ik < oo. 

^=0 2P + 1 i = i A = I 

The next "almost symmetric" counterpart of Lemma 3 can be derived in 
a similar way. Therefore, its proof will be omitted. 

LEMMA 4. If a > 0, yS > \, 6 g 1 <zwd condition (1.2) zs satisfied, then 

{ 1 M 6M 11 /2 

—^-3 2 2[< ;r
iw-<f„ (x)]2 

(M + 1) w = o «=0 ' = 6>Y{1} a.e. as M -^ oo. 

8. Extension to multiple case. Let Z + be the set of d-tuple, k = (kx, . . ., 
kd) with nonnegative integers for coordinates, where <i is a fixed positive 
integer. Let {<j>k(x):k e Z^_} be an orthonormal system on the measure 
space (X, J^ jix). We consider the J-multiple orthogonal series 

(8.1) 2 y ak<t>k(x) = 2 . . . 2 ak k^k k(x) 
AeZ< 

where {ak:k e Z + } is a ^-multiple sequence of real numbers for which 

(8.2) 2 a\ < oo. 
k^z% 
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By the extended Riesz-Fischer theorem there exists a function/(x) e 
Lr such that the rectangular partial sums of (8.1) defined by 

w, nd 

sn(x) - 2 . . . 2 ci,...khu...Mix) 
A,=0 A-,=0 

(n = ( * „ . . . , Wj) G ZJ
+) 

converge t o / ( x ) in L -metric: 

/ [sJx) — / ( x ) ]2(i]ii(x) —> 0 as min n. —> oo. 
i < ,• < , / -y 

i =./=</ 

Let a,, . . . , ad be real numbers, a > — 1 for each j = 1, . . . , d. The 
(C, « ] , . . . , a^) — means of series (8.1) are defined by 

<!:::::»>) 
</ . « / - I 

**„...,*/*) = 2 ... 2 n ^ 
A"i=0 ^ = 0 V = l ^ / 

= 2 ... 2 (n^K ,>, *,<*>. 
The extensions of Theorems A and B, Theorem 1 and 2, and Corollary 

1, for instance, read as follow. 

THEOREM A'. Under condition (8.2), 

S2P 2p(x) ~ °2p['...2p(x) = °x{^} a ' e -

THEOREM B'. Under condition (8.2), for every 6 ^ 1 

max max . . . max 

1. . .1 / x 1. . .1 / x 

%,. . . , / , /* ) ~~ °2P,...AX) 
ox{\} a.e. as p -^ oo. 

THEOREM V. If a- > 0/br each j = 1, . . . , d, # = 1 tffld the condition 

oo oo 

(8.3) 2 . . . 2 4 *, [log log( max *. + 4) ]2 < oo 

/5 satisfied, then 

max . . . max l< ! • ' • % ( * ) - / ( * ) I 

= #Y{1} a.e. as nx —» oo. 
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THEOREM 2''. If a. > Ofor eachj = 1, . . . , d, 0 ^ 1 and condition (8.2) zs 
satisfied, then 

max . . . max |a"] " " ^ (x) | 

= o,{log log(A?! 4- 4) } a.e. 

COROLLARY Y. If a: > Ofor eachj = 1, . . . , d, 0 i^ 1 and condition (8.3) 
/s satisfied, then 

{ , M BM 6M \ 1 / 2 

-—~ 2 2 ... 2 Kav.%^)-/^)n (M + I f Wl=0 /72 = 0 ^ = 0 ! 2 ^ J 
= 0V{1} a.e. as M —> oo. 

Of course, the corresponding extensions of Theorem 3 and Corollaries 2 
and 3 are also true. 

The proofs of these extensions can be carried out in a similar fashion to 
those of Theorems A, B, 1, 2, 3 and Corollaries 1, 2, 3, but the technical 
details become more complicated. 
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