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Introduction. The translational hull Cl(S) of a semigroup 5 plays an important role in the
theory of ideal extensions of semigroups. In fact, every ideal extension of S by a semigroup T
with zero can be constructed using a certain partial homomorphism of 7^0 into fi(5); a
particular case of interest is when S is weakly reductive (see §4.4 of [3], [2], [7]). A theorem of
Gluskin [6, 1.7.1] states that if S is a weakly reductive semigroup and a densely embedded
ideal of a semigroup Q, then Q and (l(S) are isomorphic. A number of papers of Soviet
mathematicians deal with the abstract characteristic (abstract semigroup, satisfying certain
conditions, isomorphic to the given semigroup) of various classes of (partial) transformation
semigroups in terms of densely embedded ideals (see, e.g., [4]). In many of the cases studied,
the densely embedded ideal in question is a completely 0-simple semigroup, so that Gluskin's
theorem mentioned above applies. This enhances the importance of the translational hull of a
weakly reductive, and in particular of a completely 0-simple semigroup. Gluskin [5] applied
the theory of densely embedded ideals (which are completely 0-simple semigroups) also to
semigroups and rings of endomorphisms of a linear manifold and to certain classes of abstract
rings.

It then seems evident that a great number of very different results can be brought under
the common roof of the translational hull of a completely 0-simple semigroup. This point of
view promises a variety of new results not only in the theory of semigroups (e.g., construction
of ideal extensions, representation of arbitrary or regular semigroups, embedding, the struc-
ture of various classes of binary relations on a set, etc.) but also in other branches of algebra
(as pioneered by Gluskin [5] in the theory of semigroups and rings of endomorphisms of a
linear manifold). It is very likely that, with the further study of this subject, new applications
in various fields will be found.

The purpose of this work is to construct a faithful representation of the semigroups of
left and right translations of a completely 0-simple semigroup S, study its translational hull,
and derive certain of its properties. These will be useful in the applications to the study of
binary relations, semigroups of endomorphisms of a linear manifold, etc., which will be
treated in subsequent communications.

Summary. In §1 we construct a faithful representation of the semigroup of left [right]
translations of a completely 0-simple semigroup S by means of pairs of functions; this is
then used to characterize its translational hull Q(S). In this characterization of Cl(S), we find
necessary and sufficient conditions on an element in order that it shall correspond to an ele-
ment of Q(S) of the form (ka, pa). §2 is devoted to the comparison of the construction in §1
with the representation of left and right translations by means of matrices due to Clifford.
§3 deals with the conditions on S that are necessary and sufficient in order that, e.g., to every
left translation of S there is at most one linked right translation of S. Finally, in §3 we discuss
some properties of the concepts studied in §1.
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Notation. Throughout the whole paper, S denotes a completely 0-simple semigroup
with the Rees representation S = Jt°(G; I, M; P); 1 denotes the identity of the group G.
We write left [right] translations as operators on the left [right]; A(S) [P(S)] denotes the
semigroup of all left [right] translation of S under multiplication: (AA')x = XQ!x) [x(pp')
= (xp)p'] for all x 6 S. The translations AeA(S), peP(S) are linked if x(ky) = (xp)y for all
x, j e S ; £2(5) denotes the translational hull of S, that is, the subsemigroup of A(S) x P(S)
consisting of all pairs of linked translations. The subsemigroup of Q(5) consisting of all
pairs of the form (ka, pa) (recall, Xax = ax, xpa = xa for all x e S) is denoted by n(S); the map-
ping a-+(Xa,p<) is an isomorphism of S onto 11(5) since S is weakly reductive; further,
11(5) is a minimal ideal of fi(5).

Let £ be a non-empty set. A function y of a subset of K (called the domain of y and
denoted by dy) onto a subset of K (called the range of y and denoted by ry) is called a partial
transformation on K. The cardinality of ry is called the rank of y and denoted by rank y.
The set of all partial transformations on K written as operators on the left under multiplication:

yy'x = y(y'x) if xed(yy'),

is a semigroup denoted by W{K). The set of all partial transformations on K written as
operators on the right under multiplication:

d(yy') = {x € K \ x e Ay, xy e dy'},

xyy' = (xy)y' if xed(yy'),

is a semigroup denoted by W'(K). (Note that the identity mapping on the set W(K) is an anti-
isomorphism of W(K) onto W'(K).)

The zero in any semigroup is denoted by 0; e.g., the zero of A(5) or P(5) is the trans-
formation mapping 5 onto its zero, the zero of 11(5) and fi(5) is the pair (0, 0), while the
zero of W(K) and W'{K) is the empty partial transformation (thus dO = rO — • ) .

For all concepts and notation not defined in the paper, the reader is referred to [3].
We write functions as operators on either left or right as it is convenient in a particular case.
Multiplication is always (except in the proof of Proposition 1) denoted by juxtaposition.

1. Basic results. Let / be a non-empty set (elements of / are denoted by i,j, k,...) and
let G be a group. Set

L(/, G) = {(a, <t>) I ae W(J), a ± 0, <£: da -* G}uO (1)

with multiplication

(a,<£)(a',0') = (ce(x',0") if aa' ^ 0, and 0 otherwise,") ,„
(a ,# ) = 0(a,tfO = 0, J

where
0"i = fo«WQ (ied(aa')), (3)

(cf. [1], (4.4)). Observe that in (a, <j>) both a and <j> are written as operators on the left. For
everyAeA(5), A^O, let
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aA=(a,tf>), a0=0, (4)
where

A(l;/)/i) = (^;aj ) / i) if A(l;i,/i)*0. (5)

THEOREM 1. The function a is an isomorphism ofA(S) onto L(I, G).

Proof. If A(l; i, /*) # 0, then p^ # 0 for some jel and

J, ̂ ) # 0;

so A(l; /, /*) = (c; /, /i) for some ceG, lei (that is, a left translation does not change
If also A(l; /, v) = (d; k, v), then ,̂,m =£ 0 for some m e / and

(c; /, v) = (c; /, //) (p^ 1 ; m, v) = [A(l; i, /i)] (p^1 ; m, v)

= A[(l; i, n) {p-J; m, v)] = A(l; i, v) = (d; fe, v),

whence c = d, l = k, that is to say, the functions a and </> defined by (5) do not depend on
and are thus single-valued. Further, from (5) it follows that

and it is easy to see that in fact /eda if and only if A(a; i, n) i= 0, where aeG and /ie M are
arbitrary. It is now clear that oce W(I) and <£:da -* G; thus a maps A(5) into L(I, G).

Let X, A'eA(5) be different from zero and aA = (a, </>), aA' = (a', <£')• Then, if ieda',
a'/eda,

A[A'(1; i, /i)] = A(^'i; a'/, /x) = ( (^a ' 0 (* '0 ; «x'«", M> = (*"*; «a'i, /i),

where (/>" is given by (3), while otherwise A[A'(1; /, A4)] — 0- Consequently a(AA') = (aa', <]>")
if aa' ^ 0, and is 0 otherwise. Comparison of this with (2) proves that (aA)(aA') = a(AA') for
non-zero A, A'. Since the last equation is clearly valid when A = 0 or A' = 0, we conclude that
a is a homomorphism. It is easy to see that aA = aA' implies that A = A'.

To show that a is onto, let (a, 0) e L(I, G). Define A: S -* S by

Ma; i,u) = ((6i)a;cti,u) if ieda, and 0 otherwise,*) . „
)• (6)

A0 = 0. J
Then, if ieda, p^ ^ 0, we have

[A(a; i, /i)] (b ;j, v) = ((<j>i)a; ai, /i) (fc ;j, v) = ((^Cjap^b; ai, v) = A(apw&; i, v)

while otherwise both [X(a;i,n)](b;j, v) and A[(a;/,ju)(6;y, v)] are zero. Since
holds trivially when x.= 0 or y = 0, we conclude that AeA(S). It is clear that, for A defined
by (6), aA = (a, <j>). Consequently a is an isomorphism of A(S) onto L(J, G).
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Now let M be a non-empty set (elements of M are denoted by fi, v,...; M stands for
capital n) and let G be a group. Set

R(M, G) = {(JS, «/01 jSe H"(M), pV 0, «/r:d0 - G}uO (7)
with multiplication

(fi,M(fi',V) = W,V) if PT^O, and 0 otherwise,!
( g )

J
where

(9)

Note that in 0?, i/0 both j? and ^ are written as operators on the right. For every peP(S),
P * 0, let

pb = (0,*), 0b = 0, (10)
where

if (l;i ,

A proof entirely analogous to the proof of Theorem 1 establishes

THEOREM 2. The function b « on isomorphism o/P(S) OTJ/O .R(M, G).

We only state the analogue of (6) (used to prove that b is onto), namely, for {fi, ij/) e R(M, G),
define p:S->S by

(a;i,n)p = (a(jul>);i,nP) if ^ed/3, and 0 otherwise,"! .

0p = 0. J
Then peP(5) and pb = (fi, $).

For aA = (a, <j>), pb = (fi, ̂ ) , we also have (see the proof of Theorem 1)

i,n)*0}, (12)

i,tip¥:O}. (13)
THEOREM 3. For aA = (a, <f>), pb = 0?, xji), X and p ore linked if and only if the following

two conditions are satisfied:

i e da, pm) ± 0 o \i e d/J, p W ) l 94 0 (i e /, /i e M), (14)

^(«o(^0 = (^)P(^)i »/ i e d a . P ^ o ' 4 0 (iel.jieM) (15)

(c/- [1], (4.5)). Furthermore, ifX and p are /infcea1, A = 0 //awa* o«/y ifp = 0.

Proof. The first statement follows directly from the following calculation.

!„(„() ((f>i)b;j,v) if ieda,j
0 otherwise.
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The second statement is easily checked.

Recall that, for any ae W{I), rank a is the cardinality of the range ra of a; similarly for
/?e W'(M). To simplify notation, we define

rank (a, <j>) = rank a, rank (/?, \j/) = rank /?, rank 0 = 0. (16)

THEOREM 4. For 0?t (\,p)e£l(S), (A,p)eII(S) if and only if rank aA = rank pb = l.

Proof. Let aA = (a, (/>), pb = (p\ \p ) .

Necessity. Let 0 # (A,p)GlI(5r); by the definition of IT(5),

for some (fc;y, v)e<S. From (12) and (13), we obtain

doc = {iel\pvi*0}, (18)

| * 0 } . (19)
For /eda, we have

Ka;», /*) = (b ;j, v) (a; i, n) = (bpvi a ;j, /x) = ((</> i)a; ai, |i),
whence

<t>i = bpvi, <xi=j ( i eda) ; (20)

the last equality implies that rank a = 1. An analogous calculation proves:

nt^Pvjb, rf = v (nedP); (21)

again, the last equality implies that rank /? = 1.

Sufficiency. By hypothesis, rank a = rank/? = 1; so ai =j for all /eda and some ye/ ,
similarly nfi = v for all /* ed^ and some veM.

Suppose that pv, # 0; then for any /jedjS we have

[(1; i, Ai)p] (1 ;/,//) = Oî r; i, v) (1; i, /£) = ( Oi^)pw ; i, fi) * 0,

whence A(l; i,fi) =£ 0, which, by (12), implies that / e da.
Suppose next that />„, = 0. Let yeM be such that pyJ i= 0. Then, since pvi = 0,

if y e dj}, and is zero otherwise; it is therefore zero in all cases. Consequently

0 = (1; i, y) [A(l; i, /i)] = (1; i, y) (^i ;j, n)

if/eda; this implies that i$ da, since pyJ ^ 0. This proves (18); (19) is established analogously.
Let /eda , fiedf}; then, by (18) and (19), we have pvi^0 and p^j^O, and, by (15),

Piij(4>i) — (/"/')/'vi» whence ((pfyp'J =P~J ip-ty)- Since y and v are fixed, in the last equation
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the left-hand side depends only on i while the right-hand side depends only on \i. Since
/eda and //ed/? are arbitrary, both sides must be equal to a constant, say b. Hence (20)
and (21) are satisfied; since also (18) and (19) have been established, we may reverse the
steps of the first part of the proof to see that (17) also holds. Thus (A,p)eII(S).

COROLLARY.

n(S) = {{k, p) e fi(S) | rank ax ^ 1, rank pb ^ 1}

= {(A,p)en(S)|rankaA = rankpb = 1}U0.

2. Matrix representation of translations. In [3, p. 116, exercise 3], the semigroup A(5)
is faithfully represented by the semigroup of all column-monomial MxM-matrices over
G°; the case of a completely simple semigroup is treated in [2] (see also [1, §4]). Analogously,
P(5) is faithfully represented by the semigroup of all row-monomial /x/-matrices over G°.
We now compare the construction in §1 with the representation by matrices.

Let J</ be the semigroup of all column-monomial (in every column at most one non-
zero element) /x/-matrices over G°. For every (a, (p)eL(I, G), let

c(a,tf>) = (ay), c0 = 0

(the last 0 is the matrix with all entries zero), where (ay) is an /x/-matrix defined by

atj = <t>j if jeda, a/ = i, and 0 otherwise.

THEOREM 5. The function c is an isomorphism ofL(I, G) onto si.

Proof. Since a is single-valued, (a^esf and thus c:L(I,G)->s/. Let c(a,0) = (ay)»
c(a', <£') = (*;;)• Then

2 r
c 0 = 0 otherwise,

where <j>" is given by (3), and cu = (f>"j ifjed(<xa'), aa'j = i, and is 0 otherwise. Further,

where

, v i f(#)(^7) if kedtx,ak = i,jed<x',a'j = k,

\WiWJ) if j
\ 0 otherwise,
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Consequently c((a, </>)(a',<£')) = c(a,<£)c(a', <£')> which obviously implies that c is a homo-
morphism. If follows easily that c is one-to-one.

If (ay) 6 si, for every /, j e /, let oy = i and (j)j = aXi if a y 76 0. It is easy to see that
(a, 0)eL(7, G) and c(a, #) = (cy). Hence c is an isomorphism of L(I, G) onto s/.

Let 38 be the semigroup of all row-monomial M x M-matrices over G°, and for every

where
bpV

z=H*]' if ^ed/?, nP = v, and is 0 otherwise.

A proof analogous to the proof of Theorem 5 establishes

THEOREM 6. The function d is an isomorphism of R(M,G) onto SB.

The next theorem should be compared with condition (Z>3) in [2].

THEOREM 7. Let X e A(S) and p e P(5), and let A = caA, B = pbd. Then A and p are linked
if and only if PA = BP.

Proof. Let A = (atJ), B = (£„„); we have PA = (cw), BP = (</„,), where

)(*/) i f j e d a . P r t ^ O .
0 otherwise,

); i f pe*P*P(mj*°>
0 otherwise.

The theorem now follows by Theorem 3.

It follows from the above discussion that rank (a, </>)(= rank a) is the number of non-
zero rows of c(a,<j>); similarly rank (P,^)(= rank/?) is the number of non-zero columns of

3. Uniqueness of linked translations. In this section we discuss the conditions under
which to every left translation of S there is at most one linked right translation, and related
questions. By iA denote the identity mapping of a non-empty set A, and by </)A (also
denote the mapping on A onto the identity 1 of the group G; note that (iIf (j>j) and (iM,
are identities of L(I, G) and R(M, G), respectively. To simplify notation, in this section we
identify A(5) and P(5) with L(I, G) and R(M, G), respectively.

THEOREM 8. On S the following conditions are equivalent:
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(a) To every left translation there is at most one linked right translation;

(b) the only right translation linked to the identity transformation as a left translation is
the identity transformation;

(c) Pui — cPvifor some ce G and all iel implies that \i = v;

(d) to every inner left translation there is at most [exactly] one linked inner right trans-
lation;

(e) S is right reductive.

Proof. (a)=>(b). Obvious.

(b)=>(c). Suppose that />,,, = cpvi for some ceG and all iel. Define /? and ip
on M by

fv if y = ji,I , f c i f y = / O
yp = s >', yxjj = < >.

[y otherwise J (̂ 1 otherwise J

Then

otherwise]' PM)i=\pri otherwise}'

thus pyi # 0op(yfi)i ^ 0, and, if pyi ± 0,

Bv>. if y = fif I

fl otherwise] yi

By Theorem 3, it follows that (it, (j)j) and (ft, ̂ ) are linked, which by hypothesis implies
: then u = uiM = uB = v.

(c) => (e). Suppose that

(22)

For ^ ^ 96 0 and x=l, (22) yields op^ = bpvk; whence p^ =a~1bpvk. It also follows from
(22) that p^k ^ 0 o p Y k # 0, so that p)ik = a~ 1bpvk is valid for all kel. By (c), we have n = v,
which together with plik = a~1bpvk implies a = b. Since (22) also implies i=j, we have
proved that (a; i,fi) = (b;j, v).

(e) => (a). If X is linked to p and p', then, for all x, y e 5, x(Aj) = (xp)y = (xp')y, whence
xp = xp', since S is right reductive. Thus p = p'.

(a) => (<i). This follows from the fact that (Xy, py)eCl(S) for any yeS.

(d)=>(a). Suppose that X is linked to p and p'. Then, for all x,yeS, x{Xy) = (xp)y
= (xp')y, so that XXf) = A^.. But then Xxp is linked to both pxp and p j p . , which, by (d) implies
that pxp = pxp.. Consequently, for all x,yeS, y(xp) = y(xp'), that is, (yx)p = (yx)pr. Since
S2 = S, we have p = p'.
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Remark. It follows from the proof of Theorem 8 that (a) => (d) and (e) => (a) in any
semigroup while (d) =*• (a) in any semigroup S for which S2 = S.

Some of the conditions appearing in Theorem 8 may be phrased as follows:

(a) the projection mapping Cl(S) -> A(5) is one-to-one;

(c) no two different rows of P are left proportional (cf. [3, p. 119, exercise 2]);

(d) the projection mapping 11(5) ->T(S) (inner left translations) is one-to-one;

(e) the mapping x -* Xx is one-to-one.

Since the mappings in (a), (d), (e) are always homomorphisms, we have

COROLLARY. If Sis right reductive, then

where A(5) is the projection of£l(S) into A(S).

THEOREM 9. On S the following conditions are equivalent:

(a) If (a, 4>) is linked to (fi, tfr) and to ($', \j/), then 0 = /?';

(c) />,,( =pvlfor all is I, implies n — \.

Proof, (a) => (b). This follows from ((ij, tf>7), (iM,

(ft)=*-(c). Suppose that pfLi=pyi for all i e / and define j8 as in the proof of Theorem 8
((Z>)=>(c)). Then pyi =P(ypyl for all iel, which by Theorem 3 implies that ((i / ( $/), (/J.I/'M))
eQ(S). But then the hypothesis implies that /? = /?M, whence /i = v.

(c) =* (a). Suppose that (a, 0) is linked to (0, \p) and to (/?', i/r). From the very definition
of (/?, \}i) and (/?', i/'), it follows that d/? = d)S'. Applying Theorem 3 twice, we have, for any

l*0 ( ie / ) ,

i f

whence Pw)i= Pwy for all i s / . The hypothesis then implies that /I/? = /IJ8', and, since
/xedjS is arbitrary, P = P'.

Note that, if (a, <£) is linked to OS, i/0 and 0?, t/O> then Theorem 3 implies that \j/ = \jt'.
" Left-right" duality yields the corresponding theorems for right translations.

4. Some properties of L(I, G) and R(M, G). We finally turn to some simple properties
of L(I, G) and R(M, G) (that is, of A(S) and P(5), respectively).
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PROPOSITION 1. The identity mapping of the set L(I,G) onto the set R(I,G) is an anti-
isomorphism if and only ifG is commutative.

Proof. Denote by * and » the multiplications in L(I, G) and R(I, G), respectively.

Necessity. By hypothesis we have

(a, *)•(«', *') = («',*') »(a,0) ((a,fl,(«',0')eL(/,G)). (23)

Let a, beG; fix /e/and let a = a':i-*i, <f>:i->a, (j>':i-*b. Then

(a, # • ( « ' , f ) = (a,cj>"), 4>"i = (<K0(tf>'0 = flfr,

(a', 0') o (a, 4>) = (a, 0"), »./r" = (<<£') (<a'tf>) = to ,

which by (23) implies that ab = to.

Sufficiency. We have

(a, <£)*(«', 0') = (aa\ <£") if aa' # 0, and 0 otherwise, (24)

(a',0')o(a,4>) = (a'a,i/O if a'a ^ 0, and 0 otherwise. (25)
Further

(aa')i = a(a'i) = a(ia') = (ia')a = i(a'a), (26)

and, by the commutativity of G,

4>"i = Wa'O {4>'i) = (*'O (0«'O = (#') ( '«» = ^"- (27)
Comparing (24), (25), (26), and (27), we obtain (23).

Let A be any set and a an equivalence relation on A. We say that a set C is a cross-
section of a if C is a subset of A intersecting every class of a exactly once.

PROPOSITION 2. The semigroups L{I, G) and R(M, G) are regular.

Proof. We consider only L(I,G); R(M,G) is treated analogously. Let (<x,<f>)eL(I,G)
and let C be any cross-section of the equivalence relation on da induced by a. Define a'
and #' as follows: Let da' = ra, a.'(ui)=j if a/=q/ and jeC, (j)'(ai) = ((j)a'aiy1. Then
aa'a = a and

so that (a, <£) = (a,

PROPOSITION 3. Let A be a non-empty subset of I, a an equivalence relation on A, C any
cross-section of a. Define a:A-*C and (f>:A-*G as follows: ai = j if i a j andje C, <f>i= 1 if
ieC, otherwise arbitrary. Then (a,0) is a non-zero idempotent of L(I,G) and all non-zero
idempotents ofL(I,G) can be constructed in this fashion.
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Proof. It is easily verified that the above construction yields a non-zero idempotent of
£(/, <J). Conversely, if (a, <j>) is a non-zero idempotent of L(J, G), then let A = da, C = ra,
a be the equivalence on A induced by a. From ai = a(a/), it follows that OH =j if i try andye C;
from 0/ = (<f>ixi)(<t>i), it follows that </>/ = 1 if /eC.

REFERENCES
1. A. H. Clifford, Semigroups admitting relative inverses, Annals of Math. 42 (1941), 1037-1049.
2. A. H. Clifford, Extensions of semigroups, Trans. Amer. Math. Soc. 68 (1950), 165-173.
3. A. H. Clifford and G. B. Preston, The algebraic theory of semigroups, Vol. I, Math. Surveys

No. 7, Amer. Math. Soc. (Providence, R. I., 1961).
4. L. M. Gluskin, Ideals of transformation semigroups, Mat. Sb. 47 (1959), 111-130 (Russian).
5. L. M. Gluskin, Semigroups and rings of endomorphisms of linear spaces, Izv. Akad. Nauk

SSSR, ser. mat. 23 (1959), 841-870 (Russian).
6. L. M. Gluskin, Ideals of semigroups, Mat. Sb. 55, (1961) 421-448 (Russian).
7. Reikichi Yoshida, Ideal extensions of semigroups and compound semigroups, Mem. Res.

Inst. Sci. Eng., Ritumeikan Univ. 13 (1965), 1-8.

THE PENNSYLVANIA STATE UNIVERSITY

UNIVERSITY PARK, PENNSYLVANIA

https://doi.org/10.1017/S0017089500000239 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500000239

