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Abstract

We consider two person, zero sum games with several symmetries. Where such symmetries are present
there is a group acting on the strategies of the game. We show how to use this action to produce a
reduced game with a smaller matrix, but having the same value as the original game, and how to
obtain optimal strategies for the original game from optimal strategies of the reduced game. An
analysis of a simplified version of the popular game Mastermind is given to illustrate the theory
developed.

1980 Mathematics subject classification (Amer. Math. Soc): 90 D 05, 90 D 45.

The rules of many games give them a number of symmetries. When analysing
such a game one keeps meeting cases which seem very much like ones already
encountered and the natural approach is to try to link together somehow
strategies that appear similar to each other.

In this paper we formalize these feelings for two person, zero sum games (with
imperfect information) with several symmetries. Where such symmetries are
evident, there is in fact a group acting on the strategies of the game. This action
yields homogeneous optimal strategies (that is, optimal strategies in which linked
strategies are used with equal probability) for each player, and makes it possible
to guarantee the existence of a smaller matrix game with the same value as the
original one. Further, all homogeneous optimal strategies in the original game can
be obtained from a knowlege of all optimal strategies in the smaller or reduced
game. The greater the number of symmetries, the smaller will this reduced game
be, in general.
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[2 ] Reducing games with underlying symmetry 153

The reduction turns out to be the same as the one considered in

[Ga le /Kuhn /Tucke r (1950), Application (e), pages 94-95] , where they reduce

games whose matrices can be partitioned into submatrices within each of which

column totals are equal and row totals are equal. The virtue in considering the

groups acting is that the recognition of such an action guarantees a priori that

such a partitioning is possible (without first calculating the full matrix and having

to play with rearrangements of its rows and columns) and indeed tells in advance

exactly how to do the partitioning.

The reduction leads to the concept of a strategy being weakly dominated (see

Section 2). Such a strategy may not be dominated in the usual sense but the

results of Section 2 show that it can be ignored as its only contribution to the

reduced matrix is dominated in the usual sense. In a simplified version of the

popular game Mastermind (an analysis of which prompted the results of this

paper) the original matrix is 9 X 168 and contains no row or column domination.

However weak domination allows us to ignore 72 of player 2's strategies. Then

reduction using the underlying symmetries, following the method developed here

(the group involved is S2 X S3, where Sn is the group of all permutations of

{1 ,2 , . . . , «} ) , produces a 2 X 3 matrix which can of course be easily solved and

used to find the value of the original game and to produce all homogeneous

optimal strategies for it. More details are given in Section 3.

1. Theory

A group G acts on a set S when there is a function from S X G -> G, mapping

(s, g) -> sg such that, for all s £ S, g, h £ G,

s(gh) ~ (sg)h, si = s
where 1 is the identity of G. The action of a group G on a set S partitions 5 into

the orbits under G: two elements s,, s2 of S are in the same orbit if slg — s2 for

some g £ G [see, for example, Mac Lane/Birkhoff (1979), pages 70-71].

We consider a finite, two person, zero sum game in normal form with pure

strategies T = {y\,---,ym} for player 1 and A = {8,,. . . ,5n} for player 2 with

payoff matrix A = {atj) where atJ = 7r(y., 8j) is the payoff to player 1 when the

players use y, and Sj respectively. We suppose that there is a (finite) group H (of

symmetries) acting on both T and A so that

(1) ir(y,8)=ir(yh,8h)

for all 7 £ F, 8 £ A, h £ H; this is a formal way of stating that symmetrical

positions have the same payoff. We denote by X and Y the sets of mixed

strategies for players 1 and 2 respectively.
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First notice that the action of H extends to all m X 1 (or n X 1) row vectors
linearly; that is, if

x = (* , , . . . , x m ) = X,Y, + ••• +xmym

and h G H then

For each /, xh has its /th component (xh)t equal to the fcth component xk of JC
where yfh~l = yk.If x E Xand h E H then xA G l a g a i n . It follows readily from
(1) that

(xh)A = (xA)h and A{yhf = {AyT)h

for all x E X, j G Y, h E i / . (For example, if yth~l = Y^(() for all /, the yth
component of (xh)A equals

which equals the /th entry of xA if 8jh'i = 8,, and so equals the yth entry of
(xA)h.) Since

(zh)(wh)T = zwT

for all h G / / and all m X 1 (or n X 1) vectors z and w, we conclude that, for all
x<EX,yGY,h(EH,

(2) (xh)A(yh)T = xAyT.

Let h EL H. Since x t-»x/i(j> H».y/i) is a bijection from X(Y) to itself, the

following is an easy consequence of (2).

LEMMA 1. Let x E X, y G Y, h G H. Then (x, y) is an equilibrium pair if and
only if (xh, yh) is. Thus x is optimal for player 1 if and only if xh is.

Let H = {hx,... ,hr}. For each x G A'we define JC G A'by

x=( 2 xh)/r.

Since 3c is a convex linear combination of xhx,... ,xhr it follows that x is optimal
for player if x is. Notice also that x is homogeneous in the sense that if yt and yk

are in the same orbit of T under H (that is yk = Y,^ for some h E / / ) then the /th
and &th components of x are equal; this is an easy exercise. We denote by X the
set of all homogeneous elements of X; clearly the map x y-> x maps X onto X.

LEMMA 2. If x G X is optimal for player 1 then so is x, and x E X.
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Let r , , . . . , r , be the orbits of T under H, suppose that these have sizes

mu...,ms respectively, and suppose that the y ' s are renamed so that yx e

F , , . . . , y s G Ts. For each x G X we define an j X 1 vector

d(x) = (mlxu...,msxs).

Since x has m, entries equal to JC, etc., d(x) is a probability vector. If x G X, we
see that, for ally, they th entry of xA equals

*i 2 akJ+--- +xs 2 akJ

r

which equals they th entry of d(x)B where B = (fel7) is the 5 X n matrix with

for all i, j . Thus if x G X,

(3) xA = d(x)B.

Let A', denote the set of s X 1 probability vectors. Then d: X -» A', is a
bijection with inverse e: A1, -» X where ^ ( x , , . . . , ^ ) = (z , , . . . ,zm) with z, =
xk/mk when ^ G I \ . It follows that, for all x G Xx,

(4) x£ = e(x)^.

The following is a simple consequence of (3) and (4).

THEOREM 3 (Reduction with respect to player 1). Let B be obtained from A and
H as above. Then

(i) x G X is optimal in A if and only ifd(x) is optimal in B,
(ii) ify G Y is optimal in A then it is optimal in B, and
(iii) the values of A and B are equal.

Thus if we find an optimal x for player 1 in B, we obtain from it e(x) which is
optimal for player 1 in A, and all homogeneous optimal strategies for player 1 in
A arise in this way. (However player 1 may also have nonhomogeneous optimal
strategies in A.)

A very simple example of this reduction is Colonel Blotto with 6 companies for
2 locations against the enemy's 5 companies where each side must station at least
one company in each location (see [Williams (1966) pages 159-163]). Here equal
forces in any location is a draw and a superior force overwhelms the opposition
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and the payoff equals the size of the force overwhelmed. The payoff matrix A is

Enemy

(5) Blotto

51
42
33
24
15

41
4
1

- 2
- 1

0

32
2
3
2
0
1

23
1
0
2
3
2

14
0

- 1
- 2

1
4

Here 42 means 4 companies in location 1 and 2 in location 2. The symmetry here
is between the two locations, which are essentially the same so that the group H is
the group S2 of permutations of the two locations. Clearly condition (1) holds.
The orbits of T are {51,15), {42,24}, {33} and the reduced matrix B is

{51,15}

{42,24}

{33}

41
2

0
. - 2

32
\

\
2

23
3
2

1
2

14
2

0
- 2

Of course H also acts on A and the orbits are {41, 14}, {32, 23}. Notice that any
two strategies in the same orbit of A have equal columns in B. This always
happens.

LEMMA 4. Suppose 8X,82 E. A are in the same orbit under H. Then in the matrix B
they have equal columns.

PROOF. Let h E H be such that 82 = 8xh. The ;th entry in the S2-column of B is

-J- 2 »(Y,«,*) = -i- 2 »(Y*",«,)

by (1). But {yh ' | y G T,} = T, and so this equals the ith entry in the 5,-column
of B.

Thus while B is an s X n matrix it only has at most / distinct columns, where
A,, . . . ,A, are the orbits of A under H. By using column dominance (or applying
the analogous reduction with respect to player 2 to B) we obtain an s X t matrix
D with the same value as A and with a one-to-one correspondence (via the
functions d and e) between the homogeneous optimal strategies for player 1 in A
and all optimal strategies for player 1 in D. The entry dX] in row F, and column Ay
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of D is given by

(6)
m,

for any 8 E A;,
Of course we could first reduce via the second player to an m X t matrix C.

Then two rows in the same orbit of F are equal and so we could obtain from C an
s X t matrix £>', which we could use to find all homogeneous optimal strategies
for player 2 in A. The entry d'tj in row F, and column Ay- is given by

nj seAy

for any y in F, (where | Ay-1 = ny). But since (6) is independent of S G Ay and (7) is
independent of y G F, we have

rf..=
minj V rer,

Thus D and D' are equal, and so we can use D to find all homogeneous optimal
strategies for either player.

THEOREM 5. Let D be the s X t matrix obtained as above. Then D has the same
value as A and the sets of homogeneous optimal strategies for the players in A can be
obtained by applying the appropriate function e to the sets of all optimal strategies in
D.

In the Blotto example above, D is

{51,15}

{42,24}
{33}

{41,14} {32,23}

2

0
- 2

This has value 14/9 with unique optimal strategies (8/9, 0, 1/9) and (1/9, 8/9).
Thus the original game A has value 14/9 and the unique homogeneous optimal
strategies in A are

x = (4/9, 0,1/9,0,4/9) ,

y = (1/18, 4/9, 4/9, 1/18).

(The nonhomogeneous (3/90, 48/90, 32/90, 7/90) is also optimal for player 2
[Williams (1966) page 162].)
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The matrix A reflects the symmetries better if it is rewritten with strategies in
the same orbit adjacent.

51
15
42
24
33

41
4
0
1

- 1
- 2

14
0
4
1

1
- 2

'32
1 2
; i

i 3

, o
i 2

23
1
2
0
3
2

In each of the 6 submatrices column sums are equal, as are row sums (but the
common column sum is not necessarily the same as the common row sum as the
2 X 1 matrices show). Again it follows easily from (1) that this always happens.
(The proof is essentially given in Lemma 4.)

LEMMA 6. If F, and Aj are orbits in F and A respectively then the submatrix of A
relevant to F, and Ay has all row sums equal and all column sums equal.

Thus if we rearrange the rows and columns into their orbits, the resulting
partition is as in Application (e), pages 94-95 of [Gale/Kuhn/Tucker (1950)].
Knowing that a group of symmetries is acting on a game makes it possible to tell
what this partitioning is without writing down the matrix in full, and usually
makes it unnecessary to write down more than a few of the columns (or rows) in
order to calculate its value and find optimal strategies. We illustrate this with the
example in Section 3.

2. Weak domination

Consider two pure strategies y,, y2 for player 1. We say that y, is weakly
dominated by y2 if

(i) y, and y2 are not in the same orbit of F under H, and
(ii) in the matrix C obtained via the reduction with respect to player 2, the

y^row is dominated in the usual sense by the y2-row.
Condition (ii) is the same as requiring that, for all orbits A, of A under H,

SEA,

(Notice also that if the domination in (ii) is strict, that is the two rows are not
equal, condition (i) automatically holds as strategies in the same orbit have equal
rows in C, by Lemma 4.)
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If y, in orbit F, is weakly dominated by y2 in orbit F2, the r,-row of D is
dominated by the F2-row of D and so there is an optimal strategy for player 1 in
D in which F, is not used. Thus, by Theorem 5, there is a homogeneous optimal
strategy for player 1 in A in which y, (and all strategies in F,) are not used. Thus
we can ignore strategies which are weakly dominated.

For example, in the Blotto example above, the 51 and 42 rows of C are (2, 3/2)
and (0, 3/2) respectively. Thus 42 is weakly dominated by 51 and so we can
ignore 42 (and therefore 24). Notice however that 42 is not dominated in the
usual sense by 51 in A.

3. An example

In this section we examine a simplified version of the popular game Mastermind
and illustrate how the reduction techniques in §1 and the notion of weak
dominance enable us to transform this to a manageable problem.

Player 1, the "coder", selects a "code" which is an ordered pair of pegs each of
which is one of the 3 colours red (R), blue (B) or green (G). Thus the coder has
32 = 9 pure strategies, namely RR, RB, RG, BR, BB, BG, GR, GB, GG. Player 2,
the "decoder", makes successive guesses, trying to identify the code selected.
After each guess he is told how many pegs sx in his guess are exactly right (correct
colour in correct place) and how many pegs s2 are partly right (correct colour but
in the wrong place); we call this information the "signal" (st, s2). The payoff to
the coder is the number of guesses it takes the decoder to identify the code. (In
the two commerically available versions a code consists of four or five pegs each
of which is one of six or eight colours.)

There are two kinds of symmetry here, one obtained by permuting the 3 colours
(this is the group S3) and the other (the group S2) by permuting the order of the
pegs in a code (for example mapping BG to GB). It is easy to see that the action
of these two groups commute with each other (that is ygh — yhg for a strategy y
and for g G 53, h E S2); thus indeed their direct product H — S3X S2 acts on
this game. There are two orbits for the coder, namely F, = {RR, BB, GG} and
F2 = {RB, RG, BR, BG, GR, GB}.

The decoder has a large number of different pure strategies. A strategy for him
consists of an initial guess then, for each possible signal, a second guess etc. For
example, if he picks RB as his first guess there are only two signals (0,1) and (1,0)
which leave him in any doubt as to the code. Let 8, denote the strategy where he
picks BG if the signal is (0,1) and RG if it is (1,0) (after which he knows the code
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and proceeds accordingly); we picture this as

8, =

~RG
guess 1 guess 2

A detailed analysis of the decoder's pure strategies shows that there are 168
undominated ones. Thus the matrix A is 9 X 168 and it would be a long and
tedious task to write out A in full, let alone use it to find the value of the game.
The decoder's 168 undominated strategies are of one of five types:

(i) several yielding the same reduced column as 5, (indeed there are 24 in two
orbits, but it is not necessary to know this in order to solve the game),

(ii) several (indeed 24 in two orbits) yielding the same reduced column as

«2

(0,

= RB-^
—-~.
0,

1)

o T ^

-̂  BG

^~^RR

guess 1 guess 2 guess 3

(iii) several (24 in two orbits) yielding the same reduced column as

(0,1) ^BG

53 =RB

(0,0)

(iv) 48 in four orbits yielding the same reduced column as

(.,0) BG

(v) 48 in four orbits yielding the same reduced column as

0,0)

0.0)
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The corresponding columns in the matrix B obtained by a first player reduction
are

8/3
13/6

82

7/3
5/2

83

8/3
7/3

*4

2
3

8/3
8/3

Thus 85 and 83 are weakly dominated by 8, and we can ignore these columns.
Thus, using Theorem 5, we are led to consider the matrix

8/3 7/3 2]
13/6 5/2 3

(Actually D is obtained from this matrix by repeating the first and second
columns twice for the two orbits in each of (i) and (ii) above and by repeating the
third column four times.) This 2 X 3 game is easy to solve and we find it has
value 29/12 and (unique) optimal strategies (1/2, 1/2) and (1/4, 3/4, 0). Thus
the value of this form of Mastermind is 29/12 and we can read off homogeneous
optimal strategies. The coder uses each of his strategies in F, with probability 1/6
and each strategy in F2 with probability 1/12. (Indeed it is not difficult to see by
a separate calculation that this is the only optimal strategy for the coder.) The
decoder has infinitely many homogeneous optimal strategies because of the
different orbits giving rise to equal columns. For example, one is where he uses
each of the twelve strategies in the orbit of 8, with probability 1/48 and each of
the twelve in the orbit of 82 with probability 1/16.
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