ON THE CENTRAL SERIES OF A RING

BY

R. G. BIGGS

The study of group types was completed by Meldrum [1]. The concept of ring type described here is based on analogous definitions.

The series $R=R_{0} \supset R_{1} \supset \cdots \supset R_{\alpha}=R_{\alpha+1}$ is the lower central series for the ring R if $R_{\gamma+1}=R R_{\gamma}+R_{\gamma} R$ for ordinal number γ and $R_{\gamma}=\cap_{\delta<\gamma} R_{\delta}$ if γ is a limit ordinal. The upper central series for R is the series $0=J_{0} \subset J_{1} \subset \cdots \subset J_{\beta}=J_{\beta+1}$ where $J_{\gamma+1}=\left\{x \in R: x R+R x \subseteq J_{\gamma}\right\}$ for every ordinal number γ and $J_{\gamma}=U_{\delta<\gamma} J_{\delta}$ if γ is a limit ordinal. The length of the upper central series is the smallest ordinal number β for which $J_{\beta}=J_{\beta+1}$. The length of the lower central series is defined similarily. We shall say the ring has type (β, α) if the length of the upper central series is β and the length of the lower central series is α.

In this paper, ring types are determined for three important classes of rings: nilpotent, power nilpotent, and commutative. Although ring types for noncommutative rings are not completely determined, a partial result is given in Theorem 5.

The following lemma is very useful since it shows how to construct rings of many types from the few examples given in this paper.

Lemma 1. If $R=A \oplus B$, A has type $\left(k_{1}, k_{2}\right)$ and B has type $\left(l_{1}, l_{2}\right)$, then R has type $\left(\max \left\{k_{1}, l_{1}\right\}, \max \left\{k_{2}, l_{2}\right\}\right)$.

The proof is based on the fact that the ideals R_{γ} and J_{γ} in the lower and upper central series for R are the direct sums of the corresponding terms in the lower and upper central series for A and B.

The following theorem is easy to prove:
Theorem 1. If R is a nilpotent ring such that $R^{n} \neq 0$ while $R^{n+1}=0$, then R has type (n, n).

Corollary. There are nilpotent rings of type (n, n) for every natural number n.
The ring R is power nilpotent if the last term in its lower central series is $0 ; R$ is weakly nilpotent if the last term in its upper central series is R.

Received by the editors April 1, 1971 and, in revised form, September 3, 1971.

The following example shows that for every ordinal number $\beta \geq \omega$ (ω is the first nonfinite ordinal) there are rings of type (β, ω) which are both weakly nilpotent and power nilpotent.

Example 1. Let $\beta=\gamma+n$ where γ is a limit ordinal number and n is a nonnegative integer. Let R be the commutative ring generated by the set $S=\left\{x_{\alpha}: \alpha\right.$ is an ordinal number, but not a limit ordinal and $\alpha \leq \beta\}$ with the relations:
(1) $x_{\alpha}^{2}=0$ for all $x_{\alpha} \in S$ where $\alpha<\beta$; if β is not a limit ordinal, then $x_{\beta}^{n} \neq 0$ while $x_{\beta}^{n+1}=0$.
(2) Suppose that $x_{\delta_{i}} \in S$ for all i in $[1, m]$. Then the product $x_{\delta_{1}} \ldots \ldots x_{\delta_{m}}=0$ if α, the smallest of the ordinal numbers $\left\{\delta_{1}, \ldots, \delta_{m}\right\}$, has the form $\alpha=\eta+k$ where η is zero or a limit ordinal number and k is a natural number less than m.

If $x_{\alpha_{i, j}}$ stands for an arbitrary element in S, if z is a nonzero element in R, and if $z=\sum_{i=1}^{g} L_{i}\left(\prod_{j=1}^{h_{i}} x_{\alpha_{i, j}}\right)$, where $L_{i} \in Z$, then every factorization of z in R has fewer than $h+1$ factors where $h=\max \left\{h_{1}, \ldots, h_{g}\right\}$. It follows that $z \notin R^{h+1}$ and hence $z \notin R_{\omega}$, the ω-th term of the lower central series for R.

Let λ be any ordinal number smaller than β and adopt the convention that $x_{\delta}=0$ if $\delta=0$ or a limit ordinal. Then it can be shown by induction on λ that J_{λ}, the λ-th term of R 's upper central series, is spanned as an additive group by the set of all monomials $x_{\delta_{1}} \cdots \cdots x_{\delta_{m}}, \delta_{1} \leq \delta_{2} \leq \cdots \leq \delta_{m}$ where either $\delta_{1} \leq \lambda$ or $\delta_{1}=\lambda+k$, $k \in N$ and $m>k$. It follows from this that x_{α} first occurs in R 's upper central series at J_{α} for all ordinal numbers $\alpha \leq \beta$. Hence R 's upper central series does end at $J_{\beta}=R$.

The next example shows that there exist power nilpotent rings of type $(n, \gamma+n)$ where n is any nonnegative integer and γ is any limit ordinal number.

Example 2. Let R be the ring of all $(\gamma+n)$ by $(\gamma+n)$ matrices with only a finite number of nonzero integer entries and with only zeros on the main diagonal and to the left of the main diagonal. Addition and multiplication in R are the usual matrix addition and multiplication. Let R have the lower central series $R \supset$ $R_{1} \supset \cdots \supset R_{\gamma+n}$. Computation shows that R_{α} is the ring of all matrices in R in which all the entries are zeros on the α diagonals parallel to the main diagonal and just to the right of the main diagonal. Since there are exactly $\gamma+n$ such diagonals, $R_{\gamma+n}=0$, while $R_{\gamma+n-1} \neq 0$. Whenever $m \leq n, J_{m}$, the m-th term of R 's upper central series, is the subring of R consisting of all matrices in R in which all the entries are zeros on the last m diagonals parallel to the main diagonal and to the right of it. The subring J_{n} of R is the last term of the upper central series since in the matrices in R there are no "last" $n+1$ diagonals to the right of the main diagonal.

Theorem 2. A power nilpotent ring must have one of the following ring types: (n, n) where n is a nonnegative integer or $(m, \gamma+n)$ where n is a nonnegative integer, γ is a limit ordinal number, and m is an ordinal number $\geq n$.

Proof. Let R be a power nilpotent ring. If R has a finite lower central series, then R is nilpotent and therefore has type (n, n) for some nonnegative integer n. If the lower central series for R is not finite, suppose that R 's lower central series has length $\gamma+n$ where n is a nonnegative integer and γ is a limit ordinal number. Then it is easy to see that $R_{\gamma} \subseteq J_{n}$, where J_{n} is the n-th term of R 's upper central series and R_{γ} is the γ-th term of R 's lower central series. However, if $R_{\gamma} \subseteq J_{n-1}$, then $R_{\gamma+n-1}=0$, which is a contradiction. Hence $J_{n} \neq J_{n-1}$ and R must have type ($m, \gamma+n$) where m is an ordinal number $\geq n$.

From the fact that a direct sum of power nilpotent rings is a power nilpotent ring and the results given above it follows that there exist power nilpotent rings of each type mentioned in the statement of Theorem 2.

Example 3 will show that there are rings of type $(0, \xi)$ for every ordinal number ξ. We will fix the value of ξ for the rest of this paper. The example is based on certain properties of central series and the ordinal numbers which are established in several lemmas below.

Let A_{0} be the class of all ordinal numbers. Let $\lambda_{0}=1$; define $\lambda_{\alpha+1}=\lambda_{\alpha} \omega$, and if α is a limit ordinal number, let $\lambda_{\alpha}=\inf \left\{\delta \in A_{0}: \delta>\lambda_{\gamma}\right.$ for all $\left.\gamma<\alpha\right\}$. Let A_{α} be the smallest subclass of A_{0} with the properties:
(1) $\lambda_{\alpha} \in A_{\alpha}$,
(2) if $\delta, \eta \in A_{\alpha}$, then $\delta+\eta \in A_{\alpha}$, and
(3) if $B \subset A_{\alpha}$ and B is a set, then the $\inf \left\{\delta \in A_{0}: \delta>\eta\right.$ for all $\left.\eta \in B\right\} \in A_{\alpha}$.

Note that $A_{0} \supset A_{1} \supset \cdots \supset A_{\alpha} \supset \cdots$, and that if α is a limit ordinal number, then $A_{\alpha}=\bigcap_{\gamma<\alpha} A_{\gamma}$ since $\lambda_{\alpha}=\inf \left\{\delta \in A_{0}: \lambda_{\gamma}<\delta\right.$ for all $\left.\gamma<\alpha\right\}$ is an element in A_{γ} for all $\gamma<\alpha$.

Lemma 2. Let Q be any commutative ring with lower central series $Q \supset Q_{1} \supset \cdots$ $\supset Q_{\beta}=Q_{\beta+1}$. Then:
(1) $Q_{\alpha} Q_{\gamma} \subseteq Q_{\alpha+\gamma}$ for all ordinal pairs (α, γ) for which α is a limit ordinal, and
(2) $\bigcap_{n \varepsilon N}\left(Q_{\lambda_{\alpha}}\right)^{n} \subseteq Q_{\lambda_{(\alpha+1)}}$, where N is the set of natural numbers.

It is easy to prove (1) by transfinite induction and (2) follows easily from (1).
Now let δ be any nonzero ordinal number. Let α_{1} be the largest ordinal number such that $\lambda_{\alpha_{1}} \leq \delta$, and let δ_{1} be the largest ordinal number in $A_{\alpha_{1}}$ such that $\delta_{1} \leq \delta$. For every natural number $j \geq 2$ let α_{j} be defined recursively as the largest ordinal number such that $\delta_{1}+\cdots+\delta_{j-1}+\lambda_{\alpha_{j}} \leq \delta$, and let δ_{j} be the largest ordinal number in $A_{\alpha_{j}}$ such that $\delta_{1}+\cdots+\delta_{j} \leq \delta$. Eventually, for some natural number $n, \delta_{1}+\cdots$ $+\delta_{n}=\delta$ since $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$ is a strictly decreasing set of ordinal numbers.

The representation $\delta=\delta_{1}+\cdots+\delta_{n}$ of an ordinal number given above will be called its limit form.

Lemma 3. The limit form of every nonzero ordinal number is unique.

Proof. Given an ordinal number δ, the ordinal number δ_{1}, the first term in δ 's limit form, is uniquely determined. The ordinal number δ_{j} is uniquely determined once the ordinals $\delta_{1}, \ldots, \delta_{j-1}$ have been determined. Hence the sum, $\delta=\delta_{1}+$ $\cdots+\delta_{n}$, is composed of uniquely determined terms.

There exists an ordinal number ρ such that $\lambda_{\rho}>\xi$. Let G be the set of all ordinal numbers less than λ_{ρ}. Let R be the ring generated by the set $\left\{x_{\delta}: \delta \in G\right\}$ with the defining relations:
(1) R is commutative.
(2) If δ has the limit form $\delta=\delta_{1}+\cdots+\delta_{m}$ where $\delta_{m} \in A_{\alpha_{m}} \sim A_{\alpha_{m}+1}$, then δ_{m} must be the n-th ordinal in the usual ordering of the ordinals in $A_{\alpha_{m}}$ for some natural number n. We impose the condition on R that every generator x_{δ} satisfies the relationship: $\left(x_{\delta}\right)^{n+1}=x_{\delta_{1}+\ldots+\delta_{m-1}}$, for every $\delta \in G$.

Lemma 4. Let R have the lower central series $R \supset R_{1} \supset \cdots \supset R_{\beta}=R_{\beta+1}$. Let α be an ordinal number. Then $x_{\delta} \in R_{\lambda_{\alpha}}$ if $\delta \in G \cap A_{\alpha}$.

Proof. If $\alpha=1$, then $\delta \in G \cap A_{1}$ implies that δ is a limit ordinal number. Since $x_{\delta}=\left(x_{\delta+n}\right)^{n+1}$ for every natural number n, it follows that $x_{\delta} \in R_{\omega}=R_{\lambda_{1}}$. Suppose that $x_{\delta} \in R_{\alpha}$ for all $\delta \in G \cap A_{\alpha}$. Also suppose that $\theta \in G \cap A_{\alpha+1}$. Then θ must be the γ-th ordinal number in A_{α}, where γ is a limit ordinal.

Let μ_{n} be the $(\gamma+n)$-th ordinal in A_{α}, namely, $\theta+\left(\lambda_{\alpha}\right) n$. Then $\left(x_{\mu_{n}}\right)^{n+1}=x_{\theta}$ and hence $x_{\theta} \in\left(R_{\lambda_{\alpha}}\right)^{n+1}$ for all natural numbers n. By Lemma 2, $x_{\theta} \in R_{\lambda_{\alpha+1}}$. If α is a limit ordinal number, then $A_{\alpha}=\bigcap_{\gamma<\alpha} A_{\gamma}$. Hence $\delta \in G \cap A_{\alpha}$ implies that $\delta \in$ $G \cap A_{\gamma}$ for all $\gamma<\alpha$, and therefore $x_{\delta} \in \bigcap_{\gamma<\alpha} R_{\lambda_{\gamma}}=R_{\lambda_{\alpha}}$. By transfinite induction on α the lemma follows.

Let $y \in R$. Then y can be expressed in the form: $y=\sum_{j=1}^{p} L_{j} y_{j}$ where L_{j} is a nonzero integer for all j in $[1, p]$ and where the y_{j} are distinct elements of R of the form $y_{j}=\prod_{m=1}^{j_{m}} x_{\delta_{j, m}}$ where $\delta_{j, m} \in G$ for all j in $[1, p]$ and all m in $\left[1, j_{m}\right]$. If $y_{h} \notin R_{\theta}$ for at least one h in $[1, p]$, then $y \notin R_{\theta}$. For $y \in R_{\theta}$ implies that a sum of distinct terms, each of which lies in $R \sim R_{\theta}$ and has the form $L_{j} \prod_{m=1}^{j_{m}} x_{\delta_{j, m}}$, must equal a sum of distinct terms of the same general form in R_{θ}. This is impossible since there are no additive relations given in the defining relations for the ring R.

Let $L_{1}=R$, and let $L_{n}=R_{n-1}$ for all natural numbers n. Let $L_{\alpha}=R_{\alpha}$ for all nonfinite ordinal numbers α.

Lemma 5. Suppose that $L_{\left(\lambda_{\alpha}\right) n}=\left(L_{\lambda_{\alpha}}\right)^{n}$. Then $L_{\left(\lambda_{\alpha}\right) n} L_{\theta}=L_{\left(\lambda_{\alpha}\right) n+\theta}$ if $\theta \leq \lambda_{\alpha}$. Hence $L_{\left(\lambda_{\alpha}\right)(n+1)}=\left(L_{\lambda_{\alpha}}\right)^{n+1}$.

Proof. If $\theta=1, L_{\left(\lambda_{\alpha}\right) n} L_{1}=L_{\left(\lambda_{\alpha}\right) n} R=L_{\left(\lambda_{\alpha}\right) n+1}$. Suppose that $L_{\left(\lambda_{\alpha}\right) n} L_{\eta}=L_{\left(\lambda_{\alpha}\right) n+\eta}$ and $\eta<\lambda_{\alpha}$. Then $L_{\left(\lambda_{\alpha}\right) n} L_{\eta+1}=L_{\left(\lambda_{\alpha}\right) n} L_{\eta} R=L_{\left(\lambda_{\alpha}\right) n+\eta} R=L_{\left(\lambda_{\alpha}\right) n+\eta+1}$. Let θ be a limit ordinal number $\leq \lambda_{\alpha}$. Suppose that $L_{\left(\lambda_{\alpha}\right) n} L_{\eta}=L_{\left(\lambda_{\alpha}\right) n+\eta}$ for all ordinal numbers $\eta<\theta$. Then $\bigcap_{\eta<\theta} L_{\left(\lambda_{\alpha}\right) n} L_{\eta}=\bigcap_{\eta<\theta} L_{\left(\lambda_{\alpha}\right) n+\eta}=L_{\left(\lambda_{\alpha}\right) n+\theta}$ since $\left(\lambda_{\alpha}\right) n+\theta$ is a limit ordinal. If $y \notin\left(L_{\lambda_{\alpha}}\right)^{n+1}, y \in \bigcap_{\eta<\theta} L_{\left(\lambda_{\alpha}\right) n} L_{\eta}$, then y expressed in terms of the generators,
$\left\{x_{\delta}: \delta \in G\right\}$, equals $\sum_{j=1}^{p} L_{i} y_{j}$ where the y_{j} 's are distinct, where for some $j, y_{j}=$ $x_{\delta_{1}} \ldots \ldots x_{\phi_{n}} x_{\phi_{1}} \ldots \ldots x_{\phi_{s}}$ where $x_{\delta_{i}} \in L_{\lambda_{\alpha}}$ for all i in $[1, n]$ and $x_{\phi_{1}} \ldots \ldots x_{\phi_{s}} \notin L_{\lambda_{\alpha}}$. This expression for y_{j} is unique up to the order of the factors if all simplifications permitted by defining relations (2) are made. Hence $x_{\phi_{1}} \cdots x_{\phi_{s}} \in \bigcap_{\eta<\theta} L_{\eta}$, and hence $y_{j} \in L_{\left(\lambda_{\alpha}\right) n} \bigcap_{\eta<\theta} L_{\eta}=L_{\left(\lambda_{\alpha}\right) n} L_{\theta}$. Every y_{i} is either an element in $\left(L_{\lambda_{\alpha}}\right)^{n+1} \supseteq$ $L_{\left(\lambda_{\alpha}\right) n} L_{\theta}$, or y_{i} has the same properties as y_{j}, and therefore $y_{i} \in L_{\left(\lambda_{\alpha}\right) n} L_{\theta}$ for all i in $[1, p]$. Hence, $y=\sum_{i=1}^{p} y_{i} \in L_{\left(\lambda_{\alpha}\right) n} L_{\theta}$ and $L_{\left(\lambda_{\alpha}\right) n+\theta}=L_{\left(\lambda_{\alpha}\right) n} L_{\theta}$. By Lemma 2, $L_{\left(\lambda_{\alpha}\right) n} L_{\theta} \subseteq$ $L_{\left(\lambda_{\alpha}\right) n+\theta}$. Hence by transfinite induction, $L_{\left(\lambda_{\alpha}\right) n} L_{\theta}=L_{\left(\lambda_{\alpha}\right) n+\theta}$ if θ is an ordinal number $\leq \lambda_{\alpha}$.

Lemma 6. $L_{\left(\lambda_{\alpha}\right) n}=\left[I\left(\left\{x_{\delta}: \delta \in A_{\alpha}\right\}\right)\right]^{n}$ for all ordinal numbers α and all natural numbers n, where $I(S)$ is the ideal generated by the subset S of R.

Proof. $L_{\left(\lambda_{1}\right) 1}=L_{\omega}=I\left(\left\{x_{\delta}: \delta \in A_{1}\right\}\right)$. Suppose that $L_{\left(\lambda_{\theta}\right) 1}=I\left(\left\{x_{\delta}: \delta \in A_{\theta}\right\}\right)$ for all ordinal numbers $\theta \leq \alpha$. Suppose also that $L_{\left(\lambda_{\alpha}\right) n}=\left[I\left(\left\{x_{\delta}: \delta \in A_{\alpha}\right\}\right)\right]^{n}=\left[L_{\lambda_{\alpha}}\right]^{n}$. Then by Lemma 5, $L_{\left(\lambda_{\alpha}\right)(n+1)}=\left[L_{\lambda_{\alpha}}\right]^{n+1}=\left[I\left(\left\{x_{\delta}: \delta \in A_{\alpha}\right\}\right)\right]^{n+1}$. Hence by induction on n, $L_{\left(\lambda_{\alpha}\right) n}=\left[I\left(\left\{x_{\delta}: \delta \in A_{\alpha}\right)\right]^{n}\right.$ for all natural numbers n. Hence $L_{\lambda_{\alpha+1}}=L_{\left(\lambda_{\alpha}\right) \omega}=\bigcap_{n \in N}$ $L_{\left(\lambda_{\alpha}\right) n}=\bigcap_{n \in N}\left[I\left(\left\{x_{\delta}: \delta \in A_{\alpha}\right\}\right)\right]^{n}=I\left(\left\{x_{\delta}: \delta \in A_{\alpha+1}\right)\right.$. By transfinite induction on α, $L_{\left(\lambda_{\alpha}\right) 1}=I\left(\left\{x_{\delta}: \delta \in A_{\alpha}\right\}\right)$ for all ordinal numbers α.

Hence R 's lower central series does not end until after $R_{\lambda_{\rho}}$ and therefore $R_{\xi} \neq R_{\xi+1}$.

Example 3. Let S be the ring generated by the set $\left\{x_{\delta}: \delta \in G\right\}$ with the defining relations (1) and (2) given above for the ring R, and (3) let R_{ξ} be the ξ-th term in R 's lower central series, let n be a natural number and let $\delta_{i} \in A_{\alpha_{i}} \sim A_{\alpha_{i}+1}$ for all i in $[1, n]$ where $\alpha_{1} \geq \cdots>\alpha_{n}$. If $x_{\delta_{1}} x_{\delta_{2}} \ldots \ldots x_{\delta_{n}} \in R_{\xi}$ and if $x_{\phi_{1}} x_{\phi_{2}} \ldots \ldots x_{\phi_{t}}=x_{\delta_{n}}$ where $\phi_{t} \in A_{0} \sim A_{1}$, then the relation $x_{\delta_{1}} \ldots \ldots x_{\delta_{n}}=x_{\delta_{1}} \ldots \ldots x_{\delta_{n-1}} x_{\phi_{1}} \ldots \ldots$ $x_{\phi t-1}\left(x_{\gamma+4 n} x_{\gamma+4 n+1}+x_{\gamma+4 n+2} x_{\gamma+4 n+3}\right)$ holds where $\phi_{t}=\gamma+n$, and $\gamma=0$ or $\gamma \in A_{1}$, the set of limit ordinals.

It is easy to see that elements in the ring R of the form:

$$
\left(x_{\delta_{1}} \ldots x_{\delta_{n-1}} x_{\phi_{1}} \ldots \ldots x_{\phi_{t-1}} \cdot x_{\gamma+4 n} x_{\gamma+4 n+1}\right)
$$

lie in $R_{\xi+1}$ in R 's lower central series. Hence if S has the lower central series $S \supset S_{1} \supset \cdots \supset S_{\xi}$, then $R_{\alpha}=S_{\alpha}$ if $\alpha \leq \xi$. However $S_{\xi+1}=S_{\xi}$ due to the additive relations in S defined by the relations of type (3). Hence the ring S has type ($0, \xi$).

The next example shows that there are commutative rings of type ($n, n-1$) for every natural number n.

Example 4. Let $R(k)$ be the commutative ring generated by the set $\left\{y_{n}: n \in N\right.$, the set of natural numbers\} with the relations:
(1) $y_{1}^{k+1}=0$.
(2) $y_{1} y_{s}=y_{1}^{2}$ for all natural numbers n.
(3) if $n_{k}>n_{1}, \ldots, n_{k-1}$, then $y_{n_{1}} y_{n_{2}} \ldots y_{n_{k}}=$

$$
\left(y_{n_{1}} y_{n_{2}} \ldots \ldots y_{n_{k-1}} y_{4 n_{k}} y_{4 n_{k}+1}+y_{n_{1}} y_{n_{2}} \ldots \ldots y_{n_{k-1}} \cdot y_{4 n_{k}+2} \cdot y_{4 n_{k}+3}\right) .
$$

Due to relations of type (3), $R(k)^{k}=R(k)^{k+1}$. However $y_{2} y_{3} \cdots y_{k+1} \notin R(k)^{k-1}$ and hence $R(k)$'s lower central series has exactly $k-1$ steps. Let $R(k)$ have the upper central series $0 \subset J_{1} \subset \cdots \subset J_{k}=J_{k+1}$. This series ends at J_{k} since

$$
y_{1}^{k} \in J_{1}, y_{1}^{k-1} \in J_{2}, \ldots, y_{1} \in J_{k} .
$$

The next theorem shows that $R(k)$'s upper central series cannot have length greater than k since its lower central series has length $k-1$. It follows that $R(k)$ has type ($k, k-1$).

Theorem 3. There are no commutative rings of type (m, n) where n is a natural number and m is any ordinal number $>n+1$.

Proof. Let R be a commutative ring. If R 's lower central series ends after n steps, then $R^{n+1}=R^{n+2}$. Let R have the upper central series $0 \subset J_{1} \subset \cdots \subset J_{\alpha}=$ $J_{\alpha+1}$. If $x \in J_{n+2}$, then $x R \subseteq J_{n+1}, \ldots, x R^{n+1} \subseteq J_{1}$ and $x R^{n+2}=0$. Hence $x R^{n+1}=0$ which implies $x \in J_{n+1}$. Hence $J_{n+2}=J_{n+1}$ and R 's upper central series has length less than $n+2$.

From the examples and theorems above, the following result can be obtained.
Theorem 4. The ring types realized by commutative rings are those of the form (α, β) where $\beta \geq \alpha-1$ if α is a finite ordinal number and where $\beta \geq \omega$ if α is a nonfinite ordinal number.

The next theorem shows that not all ordinal pairs (α, β) are the types of some ring R.

Theorem 5. There are no rings of type (m, \dot{n}) where n is a natural number and m is any ordinal number $>2 n+2$.
Proof. Let R be any ring such that $R^{n+1}=R^{n+2}$. Note that $x \in J_{\rho}$ iff $\sum_{s=0}^{\rho} R^{s} x R^{\rho-s}$ $=0$ where R^{0} means that no power of R appears on that side. If $x \in J_{2 n+3}$, then $\sum_{s=0}^{2 n+3} R^{s} x R^{2 n+3-s}=0$. But in each case for $s=0,1, \ldots, 2 n+3$ either $s \geq n+2$ or $2 n+3-s \geq n+2$. Hence the equation above may be rewritten $\sum_{s=0}^{2 n+2} R^{s} x R^{2 n+2-s}=0$ since $R^{n+2}=R^{n+1}$. From this it follows that $x \in J_{2 n+2}$ and hence R 's upper central series has length $\leq 2 n+2$.
It is still unknown whether there are noncommutative rings of type (m, n) where n is a natural number and m is an ordinal number $>n+1$.

Reference

[^0]
[^0]: 1. J. D. P. Meldrum, On central series of a group, J. Algebra 6 (1967), 281-284.

 University of Western Ontario, London, Ontario

