Bull. Austral. Math. Soc. Vol. 62 (2000) [21-28]

ON TOPOLOGICAL SEQUENCE ENTROPY OF PIECEWISE MONOTONIC MAPPINGS

JOSE S. CÁNOVAS

In this paper a full classification of piecewise monotonic maps from the point of view of the topological sequence entropy is established.

1. INTRODUCTION

Let $f: [0,1] \to [0,1]$ be a continuous map. f is said to be chaotic in the sense of Li-Yorke if there are two points $x, y \in [0,1], x \neq y$, such that

$$\begin{split} & \liminf_{n\to\infty} \left| f^n(x) - f^n(y) \right| = 0, \\ & \limsup_{n\to\infty} \left| f^n(x) - f^n(y) \right| > 0. \end{split}$$

A useful tool to distinguish between chaotic and non-chaotic maps is the topological sequence entropy (see definition below), as stated in the following result (see [3]).

THEOREM 1.1. Let $f : [0,1] \to [0,1]$ be continuous. Then f is chaotic if and only if there exists an increasing sequence of positive integers A such that $h_A(f) > 0$.

Theorem 1.1 does not establish apparently any difference between two essentially different types of chaotic maps: chaotic maps of type 2^{∞} and of type greater than 2^{∞} . On the other hand, for chaotic maps of type greater than 2^{∞} there is a universal sequence, $A = (i)_{i=0}^{\infty}$, for which $h_A(f) > 0$ [6, Theorem 4.19]. For chaotic maps of type 2^{∞} there is no such universal sequence (see [5]). However, we shall show that at least for piecewise monotonic maps a universal property characterises chaotic maps of type 2^{∞} : they have bounded topological sequence entropy. This property allows us to distinguish among piecewise monotonic chaotic maps of type 2^{∞} and of type greater than 2^{∞} from the topological sequence entropy point of view.

Let us introduce some definitions (see [6]). Recall that a point $x \in [0, 1]$ is *periodic* if there exists a positive integer n for which $f^n(x) = x$. The smallest integer satisfying this condition is called the *period* of x. For $r \in \mathbb{N}$, f is said to be of type 2^r if it has

Received May 2, 2000

This paper has been partially supported by the grant PB/2/FS/97 (Fundación Séneca, Comunidad Autónoma de Murcia).

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/00 \$A2.00+0.00.

J.S. Cánovas

periodic points of period $1, 2, ..., 2^r$, but no other periods. f is said to be of type 2^{∞} if it has periodic points of period 2^n for all positive integers n, but no other periods. f is said to be of type greater than 2^{∞} if it has a periodic point with period $n = 2^p q$, where $q \in \{2k + 1 : k \in \mathbb{N}\}$ and $p \in \mathbb{N} \cup \{0\}$.

Let $x \in [0,1]$. The set of limit points of the sequence $(f^n(x))_{i=0}^{\infty}$, $\omega(x, f)$, is called the ω -limit set of x. Thus $y \in \omega(x, f)$ if and only if there is a sequence of positive integers $\{n_i\}_{i=1}^{\infty}$, with $\lim_{i\to\infty} n_i = \infty$, such that $\lim_{i\to\infty} f^{n_i}(x) = y$. $\omega(x, f)$ is closed and strongly invariant $(f(\omega(x, f) = \omega(x, f)))$. Recall that a continuous map f is *piecewise monotonic* if there exists a partition of [0,1] into intervals such that f is monotonic in each interval of the partition.

Now we introduce the notion of topological sequence entropy (see [4]). Let $A = (a_i)_{i=1}^{\infty}$ be an increasing sequence of positive integers and let $Y \subset [0, 1]$. Fix $\varepsilon > 0$. A set $E \subset Y$ is said to be $(A, n, \varepsilon, Y, f)$ -separated if for any $x, y \in E, x \neq y$, there is an $i \in \{1, 2, \ldots, n\}$ such that $|f^{a_i}(x) - f^{a_i}(y)| > \varepsilon$. Denote by $s_n(A, \varepsilon, Y, f)$ the cardinality of any maximal $(A, n, \varepsilon, Y, f)$ -separated set in Y. Define

$$s(A,\varepsilon,Y,f) := \limsup_{n \to \infty} \frac{1}{n} \log s_n(A,\varepsilon,Y,f).$$
$$h_A(f,Y) := \lim_{n \to \infty} s(A,\varepsilon,Y,f).$$

Define the topological entropy of f as

$$h_A(f) := h_A(f, [0, 1]).$$

When $A = (i)_{i=1}^{\infty}$, $h_A(f) = h(f)$ is the standard topological entropy (see [1]).

Let

$$h_{\infty}(f) := \sup_{A} h_{A}(f).$$

According to [4], we say that f is null if $h_{\infty}(f) = 0$, f is bounded if $h_{\infty}(f) < \infty$ and f is unbounded if $h_{\infty}(f) = \infty$.

2. PRELIMINARY RESULTS

Before proving our main results, we need some additional notation and known results concerning ω -limit sets of interval maps of type 2^{∞} . For any infinite ω -limit set $\omega(x, f)$ of a map of type 2^{∞} there exists a sequence of closed intervals $J^0 \supset J^1 \supset J^2 \supset \ldots \supset$ $J^n \supset \ldots$ satisfying the following ([7]):

(C1) $f^{2^i}(J^i) = J^i$ and $f^j(J^i) \cap f^k(J^i) = \emptyset$ for $0 \le j < k < 2^i$ and for all $i = 0, 1, \dots$. (C2) $\omega(x, f) \subset \bigcap_{i=1}^{2^i-1} f^j(J^i)$.

(C2)
$$\omega(x, f) \subset \bigcap_{i \geqslant 0} \bigcup_{j=0}^{i} f^j(J^i)$$

https://doi.org/10.1017/S0004972700018438 Published online by Cambridge University Press

23

Let $\operatorname{Orb}_f(J^i) = \bigcup_{j=0}^{2^i-1} f^j(J^i)$ for all $i \in \mathbb{N}$. The set $\bigcap_{i \ge 0} \operatorname{Orb}_f(J^i)$ is called a *solenoid*. For any $i \in \mathbb{N}$, let J^i be a periodic interval of period 2^i with the following additional condition: if I^i is an interval satisfying the conditions (C1)-(C2) and $I^i \cap J^i \neq \emptyset$, then $J^i = I^i$. In this case we say that $\bigcap_{i>0} \operatorname{Orb}_f(J^i)$ is a maximal solenoid.

In order to handle easily each interval $f^{j}(J^{i})$ with $i \ge 0$ and $0 \le j \le 2^{i} - 1$ we shall write them as follows. Consider the set of infinite sequences $\{0,1\}^{\infty} = \{(\alpha_i)_{i=1}^{\infty}:$ $\alpha_i \in \{0,1\}\}$, and the sets $\{0,1\}^n = \{(\theta_i)_{i=1}^n : \theta_i \in \{0,1\}\}$ for any $n \in \mathbb{N}$. For each *n* and $\theta = (\theta_1, \theta_2, \dots, \theta_n) \in \{0, 1\}^n$, let $\tau(\theta) := \sum_{i=1}^n \theta_i 2^{i-1}$. Clearly $\tau(\theta) \neq \tau(\vartheta)$ for any $\theta, \vartheta \in \{0,1\}^n, \ \theta \neq \vartheta$. For all $\alpha \in \{0,1\}^{\infty}$, let $\alpha \mid_n = (\alpha_1, \alpha_2, \dots, \alpha_n) \in \{0,1\}^n$. Let $0 = (0, 0, ...) \in \{0, 1\}^{\infty}$ and $1 = (1, 1, ...) \in \{0, 1\}^{\infty}$.

Fix $n \in \mathbb{N}$ and let $K_{0|_n} = J^n$ $(K = J^0)$. Put $K_{\theta} := f^{2^n - \tau(\theta)}(J^n)$ for any $\theta \in$ $\{0,1\}^n \setminus \{0|_n\}$. Since $\tau(\theta) \neq \tau(\vartheta)$ for any $\theta, \vartheta \in \{0,1\}^n, \theta \neq \vartheta$, it is clear that $K_{\theta} \cap K_{\theta} = \emptyset$. It is easy to check the properties summarised in the following lemma.

LEMMA 2.1. Let f be of type 2^{∞} . Let $\omega(x, f)$ be an infinite ω -limit set of f. Then there exists a family of pairwise disjoint compact intervals (possibly degenerate) $\{K_{\alpha} : \alpha \in \{0,1\}^{\infty}\}$ satisfying the following conditions:

(a) $\omega(x, f) \subset \bigcup_{\alpha \in \{0,1\}^{\infty}} K_{\alpha}.$ (b) $K_{\alpha|_n} \subset K_{\alpha|_m} \text{ if } n \ge m, n, m \in \mathbb{N}, \alpha \in \{0,1\}^{\infty}. Also K_{\alpha} = \bigcap_{n \ge 1} K_{\alpha|_n}.$

- (c) The set of nondegerate intervals K_{α} is at most countable. Moreover, if K_{α} in nondegenerate, then $f^{j}(K_{\alpha}) \cap f^{i}(K_{\alpha}) = \emptyset$ if $j \neq i$ (K_a is a wandering interval).
- (d) Let $\alpha \in \{0,1\}^{\infty} \setminus \{0\}$ and let j be the first integer such that $\alpha_j = 1$. Then $f(K_{\alpha}) = K_{\beta}$ where $\beta_i = 1$ if i < j, $\beta_i = 0$ and $\beta_i = \alpha_i$ if i > j. Additionally $f(K_0) = K_1$.

PROOF: The proof is easy and we omit it.

The following lemma will be useful in what follows and was proved in [2].

LEMMA 2.2. Fix $\varepsilon > 0$, and let $\mathcal{A}_{\varepsilon} = \{K_{\alpha} : |K_{\alpha}| \ge \varepsilon\}$. Then there exists a positive integer n_0 for which the following two conditions hold:

- If $K_{\alpha|n_0}^-$ and $K_{\alpha|n_0}^+$ denote the left and right side components of $K_{\alpha} \setminus K_{\alpha|n_0}$ (a) and $K_{\alpha} \in \mathcal{A}_{\varepsilon}$ then $\max\{|K_{\alpha|n_{\alpha}}^{-}|, |K_{\alpha|n_{\alpha}}^{+}|\} < \varepsilon$.
- (b) If $\theta \in \{0,1\}^{n_0}$ and $K_{\theta} \neq K_{\alpha|n_0}$ for all $K_{\alpha} \in \mathcal{A}_{\varepsilon}$, then $|K_{\theta}| < \varepsilon$.

Let S be the set containing all the increasing sequences of positive integers. Define the shift map $\sigma: S \to S$ by $\sigma((a_i)_{i=1}^{\infty}) = (a_{i+1})_{i=1}^{\infty}$ for all $(a_i)_{i=1}^{\infty} \in S$.

LEMMA 2.3. Let $A = (a_i)_{i=1}^{\infty} \in S$. Let $f : [0,1] \rightarrow [0,1]$ be continuous. Let $Y \subset [0,1]$ be an invariant set such that $f|_Y$ is surjective to Y. Let $Z \subset [0,1]$ satisfy

0

 $f^k(Z) \subset Y$ for some positive integer k. Then for all $\varepsilon > 0$ it follows that

$$s_n(A, 2\varepsilon, Z, f) \leq s_{n_0}(A, \varepsilon, Z, f) s_n(\sigma^{n_0}(A), \varepsilon, Y, f),$$

where n_0 is the first integer such that $f^{a_{n_0+1}}(Z) \subset Y$.

PROOF: Let E_1 and E_2 be an $(A, n_0, \varepsilon, Z, f)$ -separated set and an $(\sigma^{n_0}(A), n - n_0, \varepsilon, Y, f)$ -separated set with maximal cardinalities. Let $z \in Z$ and choose $x_z \in Y$ such that $f^k(x_z) = f^k(z)$ (this can be done because $f|_Y$ is surjective). Then for any $z \in Z$ one can assign a pair $(x_1, x_2) \in E_1 \times E_2$ such that $|f^{a_i}(z) - f^{a_i}(x_1)| < \varepsilon$ if $1 \leq i \leq n_0$ and $|f^{a_i}(z) - f^{a_i}(x_2)| = |f^{a_i}(x_z) - f^{a_i}(x_2)| < \varepsilon$ if $n_0 < i \leq n$. Two different points z_1 and z_2 of an $(A, n_0, 2\varepsilon, Z, f)$ -separated set have different pairs associated. Conversely if they are not associated to the same pair, they cannot belong to the same $(A, n_0, 2\varepsilon, Z, f)$ -separated set. Then

$$s_n(A, 2\varepsilon, Z, f) \leq s_{n_0}(A, \varepsilon, Z, f) s_{n-n_0}(\sigma^{n_0}(A), \varepsilon, Y, f)$$
$$\leq s_{n_0}(A, \varepsilon, Z, f) s_n(\sigma^{n_0}(A), \varepsilon, Y, f),$$

and this concludes the proof.

LEMMA 2.4. Let $A = (a_i)_{i=1}^{\infty} \in S$. Let $f : [0,1] \to [0,1]$ be of type 2^{∞} with a finite number of maximal solenoids S^i , with $1 \leq i \leq k$. Let $K_{0|_j}^i$ be periodic intervals of period 2^j , $j \in \mathbb{N}$, such that $S_i \subset \operatorname{Orb}_f(K_{0|_i}^i)$. For all $n \in \mathbb{N}$ let

$$L_n = \left\{ x \in [0,1] : f^{a_r}(x) \notin \bigcup_{i=1}^k \operatorname{Orb}_f(K^i_{\mathbf{0}|_j}) \text{ for } 1 \leqslant r \leqslant n \right\}.$$

Then for any $\varepsilon > 0$,

$$\limsup_{n\to\infty}\frac{1}{n}\log s_n(A,\varepsilon,L_n,f)=0.$$

PROOF: Assume the contrary for some $\varepsilon > 0$ and define the following map \widehat{f} : $[0,1] \to [0,1]$. Let $\widehat{f}(x) = f(x)$ if $x \in [0,1] \setminus \bigcup_{i=1}^{k} \operatorname{Orb}_{f}(K_{0|_{j}}^{i})$, and define \widehat{f} on $\bigcup_{i=1}^{k} \operatorname{Orb}_{f}(K_{0|_{j}}^{i})$ to be continuous and linear in each subinterval. Hence, $(\widehat{f}|_{K_{\theta}^{i}})^{2^{j}}$ is monotone for any $i = 1, 2, \ldots, k$ and $\theta \in \{0, 1\}^{j}$. So $(\widehat{f}|_{K_{\theta}^{i}})^{2^{j}}$ has periodic points of period at most two. Then any $\omega(x, \widehat{f})$ is finite, that is, it is a periodic orbit. From [6, p.73], \widehat{f} is of type 2^{l} for some $l \in \mathbb{N}$, and therefore it is non-chaotic. On the other hand, it is obvious that $s_n(A, \varepsilon, L_n, f) = s_n(A, \varepsilon, L_n, \widehat{f})$. Since $s_n(A, \varepsilon, L_n, \widehat{f}) \leq s_n(A, \varepsilon, [0, 1], \widehat{f})$ we conclude that

$$h_{A}(\widehat{f}) \ge \limsup_{n \to \infty} \frac{1}{n} \log s_{n}(A, \varepsilon, [0, 1], \widehat{f})$$
$$\ge \limsup_{n \to \infty} \frac{1}{n} \log s_{n}(A, \varepsilon, L_{n}, f) > 0$$

and this leads to a contradiction because \hat{f} is non-chaotic and, according to Theorem 1.1, its topological sequence entropy must be zero.

0

3. MAIN RESULTS.

Our main goal is the following theorem.

THEOREM 3.1. Let f be a continuous map having a finite number of maximal solenoids. Then

- (a) f is non chaotic if and only if $h_{\infty}(f) = 0$ (f is null).
- (b) f is chaotic of type 2[∞] if and only if h_∞(f) = log 2 (f is bounded and non-null).
- (c) f is chaotic of type greater than 2^{∞} if and only if $h_{\infty}(f) = \infty$ (f is unbounded).

PROOF: Part (a) follows from Theorem 1.1. For part (c), let $A = (2^i)_{i=1}^{\infty}$. Then

$$K(A) = \lim_{k \to \infty} \limsup_{n \to \infty} \frac{1}{n} \operatorname{Card} \bigcup_{i=1}^{n} \{2^{i}, 2^{i} + 1, \dots, 2^{i} + k\} = \infty.$$

By [4], $h_A(f) = K(A)h(f)$. Since f is of type greater than 2^{∞} , h(f) > 0 (see, for example, [6]). Then $h_A(f) = \infty$.

Part (b). Let $S^i = \bigcap_{n \ge 1} \operatorname{Orb}_f(K^i_{0|n})$ be the maximal solenoids of f with $1 \le i \le k$. By Lemma 2.2, for any $\varepsilon > 0$ we can find a positive integer n_{ε} such that if $\mathcal{A}^i_{\varepsilon} = \{K^i_{\alpha} : |K^i_{\alpha}| \ge \varepsilon\}, i = 1, 2, \ldots, k$, then:

- (a) $\operatorname{Orb}_f(K^i_{0|_n}) \cap \operatorname{Orb}_f(K^j_{0|_n}) = \emptyset$ if $i \neq j$.
- (b) If $K_{\alpha|n_{\epsilon}}^{-,i}$ and $K_{\alpha|n_{\epsilon}}^{+,i}$ denotes the left and right side components of $K_{\alpha}^{i} \setminus K_{\alpha|n_{\epsilon}}^{i}$ and $K_{\alpha}^{i} \in \mathcal{A}_{\epsilon}^{i}$ then $\max\{|K_{\alpha|n_{\epsilon}}^{-,i}|, |K_{\alpha|n_{\epsilon}}^{+,i}|\} < \epsilon$.
- (c) If $\theta \in \{0,1\}^{n_{\varepsilon}}$ and $K^{i}_{\theta} \neq K^{i}_{\alpha|_{n_{\varepsilon}}}$ for all $K^{i}_{\alpha} \in \mathcal{A}^{i}_{\varepsilon}$, then $|K^{i}_{\theta}| < \varepsilon$.

We claim that for any positive integer n the number $s_n(A, \varepsilon, [0, 1], f) \leq q(n)2^n$, where $\limsup_{n \to \infty} (\log q(n))/n = 0$. This will give us

$$s(A, \varepsilon, [0, 1], f) = \limsup_{n \to \infty} \frac{1}{n} \log s_n(A, \varepsilon, [0, 1], f)$$
$$\leq \limsup_{n \to \infty} \frac{1}{n} \log q(n) 2^n = \log 2$$

for all $\varepsilon > 0$, and this will imply that $h_A(f) \leq \log 2$ for any increasing sequence A. Following the proof of [3, Theorem 2.2], there is a sequence B such that $h_B(f) \geq \log 2$. Thus, we shall obtain the result.

Let $L_0 = \bigcup_{i=1}^k \operatorname{Orb}_f(K_{0|_{n_{\epsilon}}}^i)$, and let L_n be the set defined in Lemma 2.4 for any $n \in \mathbb{N}$. First, we estimate $s_n(A, \varepsilon, K_{\theta}^i, f)$ for some $1 \leq i \leq k$ and $\theta \in \{0, 1\}^{n_{\epsilon}}$. Let $\theta_j \in \{0, 1\}^{n_{\epsilon}}$ be such that $f^{a_j}(K_{\theta}^i) = K_{\theta_j}^i$ for $1 \leq j \leq n$. We assign to each $x \in K_{\theta}^i$ a code (C_1, C_2, \ldots, C_n) as follows: if $f^{a_j}(x) \in K_{\theta_j}^i$ with $|K_{\theta_j}^i| < \varepsilon$, then we put $C_j = C$. If $\theta_j = \alpha|_{n_{\epsilon}}$ for some

J.S. Cánovas

 $K_{\alpha}^{i} \in \mathcal{A}_{\varepsilon}^{i}$, then we put $C_{j} = L$ if $f^{a_{j}}(x) \in K_{\theta_{j}}^{-,i}$ and $C_{j} = R$ if $f^{a_{j}}(x) \in K_{\theta_{j}}^{+,i}$. Divide all the intervals $K_{\alpha}^{i} \in \mathcal{A}_{\varepsilon}^{i}$ into pairwise disjoint intervals, $K_{\alpha}^{i,1}, K_{\alpha}^{i,2}, \ldots, K_{\alpha}^{i,r_{\alpha}}$, each of length smaller than ε . If $f^{a_{j}}(x) \in K_{\alpha}^{i,s}$ we put $C_{j} = K_{\alpha}^{i,s}$. It is clear that

(1)
$$s_n(A,\varepsilon,K^i_{\theta},f) \leq \operatorname{Card}\left\{(C_1,C_2,\ldots,C_n): C_i \in \{C,L,R,K^{i,j}_{\alpha}\}\right\}.$$

We are going to obtain an upper bound for $s_n(A, \varepsilon, K_{\theta}^i, f)$. Let $r_i = \operatorname{Card}(\mathcal{A}_{\varepsilon}^i)$ and let $R_i = \max\{r_{\alpha} : K_{\alpha}^i \in \mathcal{A}_{\varepsilon}^i\}$. Notice that any $K_{\alpha}^i \in \mathcal{A}_{\varepsilon}^i$ is a wandering interval. So, by Lemma 2.1, if $x \in K_{\theta}^i$, then $f^{a_j}(x)$ belongs to at most r_i intervals $K_{\alpha}^i \in \mathcal{A}_{\varepsilon}^i$. Moreover, if for some $x \in K_{\theta}^i$ and $f^{a_j}(x) \in K_{\alpha}^i \in \mathcal{A}_{\varepsilon}^i$, then $f^{a_{\bullet}}(x) \notin K_{\alpha}^i$ for all $s \neq j$. Hence, the number of codes is at most

(2)
$$\left(\left(\begin{array}{c} n \\ 0 \end{array} \right) + \left(\begin{array}{c} n \\ 1 \end{array} \right) + \ldots + \left(\begin{array}{c} n \\ r_i \end{array} \right) \right) (R_i)^{r_i} 2^n$$

By (1)

(3)
$$s_n(A,\varepsilon,K^i_{\theta},f) \leq \left(\begin{pmatrix} n \\ 0 \end{pmatrix} + \begin{pmatrix} n \\ 1 \end{pmatrix} + \ldots + \begin{pmatrix} n \\ r_i \end{pmatrix} \right) (R_i)^{r_i} 2^n.$$

Finally, if $R = \max\{R_i : 1 \leq i \leq k\}$, $r = \max\{r_i : 1 \leq i \leq k\}$ and

$$p(n) = \left(\left(\begin{array}{c} n \\ 0 \end{array} \right) + \left(\begin{array}{c} n \\ 1 \end{array} \right) + \ldots + \left(\begin{array}{c} n \\ r \end{array} \right) \right),$$

then

(4)
$$s_n(A,\varepsilon,L_0,f) \leq kR^r p(n)2^{n+n_{\varepsilon}}.$$

By Lemma 2.3, since $f|_{L_0}$ is surjective, we obtain for $1 \leq i \leq n$ that

$$s_n(A, 2\varepsilon, L_i, f) \leq s_i(A, \varepsilon, L_i, f) s_n(\sigma^i(A), \varepsilon, L_0, f)$$

By (4)

$$s_n(A, 2\varepsilon, L_i, f) \leq s_i(A, \varepsilon, L_i, f) k R^r p(n) 2^{n+n_{\varepsilon}}$$

Hence

$$s_n(A, 2\varepsilon, [0, 1], f) \leq s_n\left(A, 2\varepsilon, [0, 1] \setminus \bigcup_{i=0}^n L_i, f\right) + \sum_{i=0}^n s_n(A, 2\varepsilon, L_i, f)$$

$$\leq s_n\left(A, \varepsilon, [0, 1] \setminus \bigcup_{i=0}^n L_i, f\right) + \sum_{i=0}^n s_n(A, 2\varepsilon, L_i, f)$$

$$\leq s_n\left(A, \varepsilon, [0, 1] \setminus \bigcup_{i=0}^n L_i, f\right)$$

$$+ \left(1 + \sum_{i=1}^n s_i(A, \varepsilon, L_i, f)\right) k R^r p(n) 2^{n+n\varepsilon}$$

$$\leq (2+n)Q(n) k R^r p(n) 2^{n+n\varepsilon},$$

where

[7]

$$Q(n) = \max\left\{\left\{s_i(A,\varepsilon,L_i,f): i=1,2,\ldots,n\right\} \cup \left\{s_n\left(A,\varepsilon,\left[0,1\right]\setminus\bigcup_{i=0}^n L_i,f\right)\right\}\right\}.$$

By Lemma 2.4, $\limsup (\log Q(n))/n = 0$, and this concludes the proof.

THEOREM 3.2. Let $f : [0,1] \rightarrow [0,1]$ be piecewise monotonic. Then:

- (a) f is non-chaotic if and only if $h_{\infty}(f) = 0$ (f is null).
- (b) f is chaotic of type 2^{∞} if and only if $h_{\infty}(f) = \log 2$ (f is bounded and non-null).
- (c) f is chaotic of type greater than 2^{∞} if and only if $h_{\infty}(f) = \infty$ (f is unbounded).

PROOF: Let I_1, I_2, \ldots, I_k be maximal subintervals of [0, 1] such that $f|_{I_i}$ is monotone and $[0, 1] = \bigcup_{i=1}^{k} I_i$ for some $k \in \mathbb{N}$. By Theorem 3.1 it suffices to prove that the number of maximal solenoids is smaller than k. Let $\omega(x, f)$ be an infinite ω -limit set contained in a solenoid $\bigcap_{n \ge 1} \bigcup_{\theta \in \{0,1\}^n} K_{\theta}$. Then for any positive integer n there must exist an interval K_{θ} with $\theta \in \{0,1\}^n$ for which $f|_{K_{\theta}}$ is not monotone. Assume the contrary: let $n \in \mathbb{N}$ be such that $f|_{K_{\theta}}$ is monotonic for any $\theta \in \{0,1\}^n$. Then $(f|_{K_{\theta}})^{2^n}$ has at most periodic points of period 2 and this leads to a contradiction because $\bigcup_{\theta \in \{0,1\}^n} K_{\theta}$ could not contain an infinite ω -limit set of f. So the number of maximal solenoids is smaller than k and

the proof is complete.

References

- R.L. Adler, A.G. Konheim and M.H. McAndrew, 'Topological entropy', Trans. Amer. Math. Soc. 114 (1965), 309-319.
- [2] F. Balibrea, J. Cánovas and V. Jiménez López, 'Commutativity and non-commutativity of the topological sequence entropy', Ann. Inst. Fourier (Grenoble) (to appear).
- [3] N. Franzová and J. Smítal, 'Positive sequence topological entropy characterizes chaotic maps', Proc. Amer. Math. Soc. 112 (1991), 1083-1086.
- T.N.T. Goodman, 'Topological sequence entropy', Proc. London Math. Soc. 29 (1974), 331-350.
- [5] R. Hric, 'Topological sequence entropy for maps of the interval', Proc. Amer. Math. Soc. (to appear).
- [6] A.N. Sharkovsky, S.F. Kolyada, A.G. Sivak and V.V. Fedorenko, Dynamics of one-dimensional maps, Mathematics and its applications 407 (Kluwer Academic Publishers, Dordrecht, 1997).
- J. Smital, 'Chaotic functions with zero topological entropy', Trans. Amer. Math. Soc. 297 (1986), 269-282.

27

Π

Ο

Department of Applied Mathematics and Statistics Technical University of Cartagena Paseo de Alfonso XIII 30203 Cartagena (Murcia) Spain e-mail: canovas@plc.um.es