ON TOPOLOGICAL SEQUENCE ENTROPY OF PIECEWISE MONOTONIC MAPPINGS

Jose S. Cánovas

In this paper a full classification of piecewise monotonic maps from the point of view of the topological sequence entropy is established.

1. Introduction

Let $f:[0,1] \rightarrow[0,1]$ be a continuous map. f is said to be chaotic in the sense of Li-Yorke if there are two points $x, y \in[0,1], x \neq y$, such that

$$
\begin{aligned}
\liminf _{n \rightarrow \infty}\left|f^{n}(x)-f^{n}(y)\right| & =0 \\
\limsup & \left|f^{n}(x)-f^{n}(y)\right|
\end{aligned}
$$

A useful tool to distinguish between chaotic and non-chaotic maps is the topological sequence entropy (see definition below), as stated in the following result (see [3]).

Theorem 1.1. Let $f:[0,1] \rightarrow[0,1]$ be continuous. Then f is chaotic if and only if there exists an increasing sequence of positive integers A such that $h_{A}(f)>0$.

Theorem 1.1 does not establish apparently any difference between two essentially different types of chaotic maps: chaotic maps of type 2^{∞} and of type greater than 2^{∞}. On the other hand, for chaotic maps of type greater than 2^{∞} there is a universal sequence, $A=(i)_{i=0}^{\infty}$, for which $h_{A}(f)>0\left[6\right.$, Theorem 4.19]. For chaotic maps of type 2^{∞} there is no such universal sequence (see [5]). However, we shall show that at least for piecewise monotonic maps a universal property characterises chaotic maps of type 2^{∞} : they have bounded topological sequence entropy. This property allows us to distinguish among piecewise monotonic chaotic maps of type 2^{∞} and of type greater than 2^{∞} from the topological sequence entropy point of view.

Let us introduce some definitions (see [6]). Recall that a point $x \in[0,1]$ is periodic if there exists a positive integer n for which $f^{n}(x)=x$. The smallest integer satisfying this condition is called the period of x. For $r \in \mathbb{N}, f$ is said to be of type 2^{r} if it has

[^0]Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/00 \$A2.00+0.00.
periodic points of period $1,2, \ldots, 2^{r}$, but no other periods. f is said to be of type 2^{∞} if it has periodic points of period 2^{n} for all positive integers n, but no other periods. f is said to be of type greater than 2^{∞} if it has a periodic point with period $n=2^{p} q$, where $q \in\{2 k+1: k \in \mathbb{N}\}$ and $p \in \mathbb{N} \cup\{0\}$.

Let $x \in[0,1]$. The set of limit points of the sequence $\left(f^{n}(x)\right)_{i=0}^{\infty}, \omega(x, f)$, is called the ω-limit set of x. Thus $y \in \omega(x, f)$ if and only if there is a sequence of positive integers $\left\{n_{i}\right\}_{i=1}^{\infty}$, with $\lim _{i \rightarrow \infty} n_{i}=\infty$, such that $\lim _{i \rightarrow \infty} f^{n_{i}}(x)=y . \quad \omega(x, f)$ is closed and strongly invariant $(f(\omega(x, f)=\omega(x, f)))$. Recall that a continuous map f is piecewise monotonic if there exists a partition of $[0,1]$ into intervals such that f is monotonic in each interval of the partition.

Now we introduce the notion of topological sequence entropy (see [4]). Let $A=\left(a_{i}\right)_{i=1}^{\infty}$ be an increasing sequence of positive integers and let $Y \subset[0,1]$. Fix $\varepsilon>0$. A set $E \subset Y$ is said to be $(A, n, \varepsilon, Y, f)$-separated if for any $x, y \in E, x \neq y$, there is an $i \in\{1,2, \ldots, n\}$ such that $\left|f^{a_{i}}(x)-f^{a_{i}}(y)\right|>\varepsilon$. Denote by $s_{n}(A, \varepsilon, Y, f)$ the cardinality of any maximal (A, n, ε, Y, f)-separated set in Y. Define

$$
\begin{aligned}
s(A, \varepsilon, Y, f) & :=\limsup _{n \rightarrow \infty} \frac{1}{n} \log s_{n}(A, \varepsilon, Y, f) . \\
h_{A}(f, Y) & :=\lim _{\varepsilon \rightarrow 0} s(A, \varepsilon, Y, f)
\end{aligned}
$$

Define the topological entropy of f as

$$
h_{A}(f):=h_{A}(f,[0,1])
$$

When $A=(i)_{i=1}^{\infty}, h_{A}(f)=h(f)$ is the standard topological entropy (see [1]).
Let

$$
h_{\infty}(f):=\sup _{A} h_{A}(f) .
$$

According to [4], we say that f is null if $h_{\infty}(f)=0, f$ is bounded if $h_{\infty}(f)<\infty$ and f is unbounded if $h_{\infty}(f)=\infty$.

2. Preliminary Results

Before proving our main results, we need some additional notation and known results concerning ω-limit sets of interval maps of type 2^{∞}. For any infinite ω-limit set $\omega(x, f)$ of a map of type 2^{∞} there exists a sequence of closed intervals $J^{0} \supset J^{1} \supset J^{2} \supset \ldots \supset$ $J^{n} \supset \ldots$ satisfying the following ([7]):
(C1) $f^{2^{i}}\left(J^{i}\right)=J^{i}$ and $f^{j}\left(J^{i}\right) \cap f^{k}\left(J^{i}\right)=\emptyset$ for $0 \leqslant j<k<2^{i}$ and for all $i=0,1, \ldots$.
(C2) $\quad \omega(x, f) \subset \bigcap_{i \geqslant 0}^{2^{i}-1} \bigcup_{j=0}^{j}\left(J^{i}\right)$.

Let $\operatorname{Orb}_{f}\left(J^{i}\right)=\bigcup_{j=0}^{2^{i}-1} f^{j}\left(J^{i}\right)$ for all $i \in \mathbb{N}$. The set $\bigcap_{i \geqslant 0} \operatorname{Orb}_{f}\left(J^{i}\right)$ is called a solenoid. For any $i \in \mathbb{N}$, let J^{i} be a periodic interval of period 2^{i} with the following additional condition: if I^{i} is an interval satisfying the conditions (C1)-(C2) and $I^{i} \cap J^{i} \neq \emptyset$, then $J^{i}=I^{i}$. In this case we say that $\bigcap_{i \geqslant 0} \operatorname{Orb}_{f}\left(J^{i}\right)$ is a maximal solenoid.

In order to handle easily each interval $f^{j}\left(J^{i}\right)$ with $i \geqslant 0$ and $0 \leqslant j \leqslant 2^{i}-1$ we shall write them as follows. Consider the set of infinite sequences $\{0,1\}^{\infty}=\left\{\left(\alpha_{i}\right)_{i=1}^{\infty}\right.$: $\left.\alpha_{i} \in\{0,1\}\right\}$, and the sets $\{0,1\}^{n}=\left\{\left(\theta_{i}\right)_{i=1}^{n}: \theta_{i} \in\{0,1\}\right\}$ for any $n \in \mathbb{N}$. For each n and $\theta=\left(\theta_{1}, \theta_{2}, \ldots, \theta_{n}\right) \in\{0,1\}^{n}$, let $\tau(\theta):=\sum_{i=1}^{n} \theta_{i} 2^{i-1}$. Clearly $\tau(\theta) \neq \tau(\vartheta)$ for any $\theta, \vartheta \in\{0,1\}^{n}, \theta \neq \vartheta$. For all $\alpha \in\{0,1\}^{\infty}$, let $\left.\alpha\right|_{n}=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right) \in\{0,1\}^{n}$. Let $0=(0,0, \ldots) \in\{0,1\}^{\infty}$ and $\mathbf{1}=(1,1, \ldots) \in\{0,1\}^{\infty}$.

Fix $n \in \mathbb{N}$ and let $K_{\left.0\right|_{n}}=J^{n}\left(K=J^{0}\right)$. Put $K_{\theta}:=f^{2^{n}-\tau(\theta)}\left(J^{n}\right)$ for any $\theta \in$ $\{0,1\}^{n} \backslash\left\{\left.0\right|_{n}\right\}$. Since $\tau(\theta) \neq \tau(\vartheta)$ for any $\theta, \vartheta \in\{0,1\}^{n}, \theta \neq \vartheta$, it is clear that $K_{\vartheta} \cap K_{\theta}=\emptyset$. It is easy to check the properties summarised in the following lemma.

LEMMA 2.1. Let f be of type 2^{∞}. Let $\omega(x, f)$ be an infinite ω-limit set of f. Then there exists a family of pairwise disjoint compact intervals (possibly degenerate) $\left\{K_{\alpha}: \alpha \in\{0,1\}^{\infty}\right\}$ satisfying the following conditions:
(a) $\omega(x, f) \subset \bigcup_{\alpha \in\{0,1\}^{\infty}} K_{\alpha}$.
(b) $K_{\alpha \mid n} \subset K_{\alpha \mid m}$ if $n \geqslant m, n, m \in \mathbb{N}, \alpha \in\{0,1\}^{\infty}$. Also $K_{\alpha}=\bigcap_{n \geqslant 1} K_{\alpha \mid n}$.
(c) The set of nondegerate intervals K_{α} is at most countable. Moreover, if K_{α} in nondegenerate, then $f^{j}\left(K_{\alpha}\right) \cap f^{i}\left(K_{\alpha}\right)=\emptyset$ if $j \neq i\left(K_{\alpha}\right.$ is a wandering interval).
(d) Let $\alpha \in\{0,1\}^{\infty} \backslash\{0\}$ and let j be the first integer such that $\alpha_{j}=1$. Then $f\left(K_{\alpha}\right)=K_{\beta}$ where $\beta_{i}=1$ if $i<j, \beta_{i}=0$ and $\beta_{i}=\alpha_{i}$ if $i>j$. Additionally $f\left(K_{0}\right)=K_{1}$.
Proof: The proof is easy and we omit it.
The following lemma will be useful in what follows and was proved in [2].
Lemma 2.2. Fix $\varepsilon>0$, and let $\mathcal{A}_{\varepsilon}=\left\{K_{\alpha}:\left|K_{\alpha}\right| \geqslant \varepsilon\right\}$. Then there exists a positive integer n_{0} for which the following two conditions hold:
(a) If $K_{\alpha \mid n_{0}}^{-}$and $K_{\alpha \mid n_{0}}^{+}$denote the left and right side components of $K_{\alpha} \backslash K_{\alpha \mid n_{0}}$ and $K_{\alpha} \in \mathcal{A}_{\varepsilon}$ then $\max \left\{\left|K_{\left.\alpha\right|_{n_{0}}}^{-}\right|,\left|K_{\alpha \mid n_{0}}^{+}\right|\right\}<\varepsilon$.
(b) If $\theta \in\{0,1\}^{n_{0}}$ and $K_{\theta} \neq K_{a_{\left.\right|_{0}}}$ for all $K_{\alpha} \in \mathcal{A}_{\varepsilon}$, then $\left|K_{\theta}\right|<\varepsilon$.

Let \mathcal{S} be the set containing all the increasing sequences of positive integers. Define the shift map $\sigma: \mathcal{S} \rightarrow \mathcal{S}$ by $\sigma\left(\left(a_{i}\right)_{i=1}^{\infty}\right)=\left(a_{i+1}\right)_{i=1}^{\infty}$ for all $\left(a_{i}\right)_{i=1}^{\infty} \in \mathcal{S}$.

Lemma 2.3. Let $A=\left(a_{i}\right)_{i=1}^{\infty} \in S$. Let $f:[0,1] \rightarrow[0,1]$ be continuous. Let $Y \subset[0,1]$ be an invariant set such that $\left.f\right|_{Y}$ is surjective to Y. Let $Z \subset[0,1]$ satisfy
$f^{k}(Z) \subset Y$ for some positive integer k. Then for all $\varepsilon>0$ it follows that

$$
s_{n}(A, 2 \varepsilon, Z, f) \leqslant s_{n_{0}}(A, \varepsilon, Z, f) s_{n}\left(\sigma^{n_{0}}(A), \varepsilon, Y, f\right)
$$

where n_{0} is the first integer such that $f^{a_{n_{0}+1}}(Z) \subset Y$.
Proof: Let E_{1} and E_{2} be an ($A, n_{0}, \varepsilon, Z, f$)-separated set and an ($\sigma^{n_{0}}(A)$, $\left.n-n_{0}, \varepsilon, Y, f\right)$-separated set with maximal cardinalities. Let $z \in Z$ and choose $x_{z} \in Y$ such that $f^{k}\left(x_{z}\right)=f^{k}(z)$ (this can be done because $\left.f\right|_{Y}$ is surjective). Then for any $z \in Z$ one can assign a pair $\left(x_{1}, x_{2}\right) \in E_{1} \times E_{2}$ such that $\left|f^{a_{i}}(z)-f^{a_{i}}\left(x_{1}\right)\right|<\varepsilon$ if $1 \leqslant i \leqslant n_{0}$ and $\left|f^{a_{i}}(z)-f^{a_{i}}\left(x_{2}\right)\right|=\left|f^{a_{i}}\left(x_{z}\right)-f^{a_{i}}\left(x_{2}\right)\right|<\varepsilon$ if $n_{0}<i \leqslant n$. Two different points z_{1} and z_{2} of an ($\left.A, n_{0}, 2 \varepsilon, Z, f\right)$-separated set have different pairs associated. Conversely if they are not associated to the same pair, they cannot belong to the same ($A, n_{0}, 2 \varepsilon, Z, f$)-separated set. Then

$$
\begin{aligned}
s_{n}(A, 2 \varepsilon, Z, f) & \leqslant s_{n_{0}}(A, \varepsilon, Z, f) s_{n-n_{0}}\left(\sigma^{n_{0}}(A), \varepsilon, Y, f\right) \\
& \leqslant s_{n_{0}}(A, \varepsilon, Z, f) s_{n}\left(\sigma^{n_{0}}(A), \varepsilon, Y, f\right)
\end{aligned}
$$

and this concludes the proof.
Lemma 2.4. Let $A=\left(a_{i}\right)_{i=1}^{\infty} \in \mathcal{S}$. Let $f:[0,1] \rightarrow[0,1]$ be of type 2^{∞} with a finite number of maximal solenoids S^{i}, with $1 \leqslant i \leqslant k$. Let $K_{0 \mid j}^{i}$ be periodic intervals of period $2^{j}, j \in \mathbb{N}$, such that $S_{i} \subset \operatorname{Orb}_{f}\left(K_{\mathbf{o l}_{j}}^{i}\right)$. For all $n \in \mathbb{N}$ let

$$
L_{n}=\left\{x \in[0,1]: f^{a_{r}}(x) \notin \bigcup_{i=1}^{k} \operatorname{Orb}_{f}\left(K_{0_{j}}^{i}\right) \text { for } 1 \leqslant r \leqslant n\right\}
$$

Then for any $\varepsilon>0$,

$$
\limsup _{n \rightarrow \infty} \frac{1}{n} \log s_{n}\left(A, \varepsilon, L_{n}, f\right)=0
$$

Proof: Assume the contrary for some $\varepsilon>0$ and define the following map \widehat{f} : $[0,1] \rightarrow[0,1]$. Let $\widehat{f}(x)=f(x)$ if $x \in[0,1] \backslash \bigcup_{i=1}^{k} \operatorname{Orb}_{f}\left(K_{0 \mid j}^{i}\right)$, and define \widehat{f} on $\bigcup_{i=1}^{k} \operatorname{Orb}_{f}\left(K_{\left.0\right|_{j}}^{i}\right)$ to be continuous and linear in each subinterval. Hence, $\left(\left.\hat{f}\right|_{K_{\theta}^{i}}\right)^{2 j}$ is monotone for any $i=1,2, \ldots, k$ and $\theta \in\{0,1\}^{j}$. So $\left(\widehat{f}_{K_{\theta}^{i}}\right)^{2 j}$ has periodic points of period at most two. Then any $\omega(x, \widehat{f})$ is finite, that is, it is a periodic orbit. From [6, p.73], \widehat{f} is of type 2^{l} for some $l \in \mathbb{N}$, and therefore it is non-chaotic. On the other hand, it is obvious that $s_{n}\left(A, \varepsilon, L_{n}, f\right)=s_{n}\left(A, \varepsilon, L_{n}, \widehat{f}\right)$. Since $s_{n}\left(A, \varepsilon, L_{n}, \widehat{f}\right) \leqslant s_{n}(A, \varepsilon,[0,1], \hat{f})$ we conclude that

$$
\begin{aligned}
h_{A}(\hat{f}) & \geqslant \underset{n \rightarrow \infty}{\limsup } \frac{1}{n} \log s_{n}(A, \varepsilon,[0,1], \hat{f}) \\
& \geqslant \limsup _{n \rightarrow \infty} \frac{1}{n} \log s_{n}\left(A, \varepsilon, L_{n}, f\right)>0
\end{aligned}
$$

and this leads to a contradiction because \widehat{f} is non-chaotic and, according to Theorem 1.1, its topological sequence entropy must be zero.

3. Main Results.

Our main goal is the following theorem.
Theorem 3.1. Let f be a continuous map having a finite number of maximal solenoids. Then
(a) f is non chaotic if and only if $h_{\infty}(f)=0$ (f is null).
(b) f is chaotic of type 2^{∞} if and only if $h_{\infty}(f)=\log 2$ (f is bounded and non-null).
(c) f is chaotic of type greater than 2^{∞} if and only if $h_{\infty}(f)=\infty$ (f is unbounded).

Proof: Part (a) follows from Theorem 1.1. For part (c), let $A=\left(2^{i}\right)_{i=1}^{\infty}$. Then

$$
K(A)=\lim _{k \rightarrow \infty} \limsup _{n \rightarrow \infty} \frac{1}{n} \operatorname{Card} \bigcup_{i=1}^{n}\left\{2^{i}, 2^{i}+1, \ldots, 2^{i}+k\right\}=\infty
$$

By [4], $h_{A}(f)=K(A) h(f)$. Since f is of type greater than $2^{\infty}, h(f)>0$ (see, for example, [6]). Then $h_{A}(f)=\infty$.

Part (b). Let $S^{i}=\bigcap_{n \geqslant 1} \operatorname{Orb}_{f}\left(K_{0_{n}}^{i}\right)$ be the maximal solenoids of f with $1 \leqslant i \leqslant k$. By Lemma 2.2 , for any $\varepsilon>0$ we can find a positive integer n_{ε} such that if $\mathcal{A}_{\varepsilon}^{i}=\left\{K_{\alpha}^{i}\right.$: $\left.\left|K_{\alpha}^{i}\right| \geqslant \varepsilon\right\}, i=1,2, \ldots, k$, then:
(a) $\operatorname{Orb}_{f}\left(K_{\left.0\right|_{n}}^{i}\right) \cap \operatorname{Orb}_{f}\left(K_{\left.0\right|_{n}}^{j}\right)=\emptyset$ if $i \neq j$.
(b) If $K_{\alpha \mid n_{e}}^{-, i}$ and $K_{\alpha \mid n_{e}}^{+, i}$ denotes the left and right side components of $K_{\alpha}^{i} \backslash K_{\alpha \mid n_{\varepsilon}}^{i}$ and $K_{\alpha}^{i} \in \mathcal{A}_{\varepsilon}^{i}$ then $\max \left\{\left|K_{\alpha \mid n_{\varepsilon}}^{-, i}\right|,\left|K_{\left.\alpha\right|_{n_{\varepsilon}}}^{+, i}\right|\right\}<\varepsilon$.
(c) If $\theta \in\{0,1\}^{n_{\varepsilon}}$ and $K_{\theta}^{i} \neq K_{\alpha \mid n_{\varepsilon}}^{i}$ for all $K_{\alpha}^{i} \in \mathcal{A}_{\varepsilon}^{i}$, then $\left|K_{\theta}^{i}\right|<\varepsilon$.

We claim that for any positive integer n the number $s_{n}(A, \varepsilon,[0,1], f) \leqslant q(n) 2^{n}$, where $\limsup _{n \rightarrow \infty}(\log q(n)) / n=0$. This will give us

$$
\begin{aligned}
s(A, \varepsilon,[0,1], f) & =\limsup _{n \rightarrow \infty} \frac{1}{n} \log s_{n}(A, \varepsilon,[0,1], f) \\
& \leqslant \limsup _{n \rightarrow \infty} \frac{1}{n} \log q(n) 2^{n}=\log 2
\end{aligned}
$$

for all $\varepsilon>0$, and this will imply that $h_{A}(f) \leqslant \log 2$ for any increasing sequence A. Following the proof of [3, Theorem 2.2], there is a sequence B such that $h_{B}(f) \geqslant \log 2$. Thus, we shall obtain the result.

Let $L_{0}=\bigcup_{i=1}^{k} \operatorname{Orb}_{f}\left(K_{\mathbf{0}_{n_{\varepsilon}}}^{i}\right)$, and let L_{n} be the set defined in Lemma 2.4 for any $n \in \mathbb{N}$. First, we estimate $s_{n}\left(A, \varepsilon, K_{\theta}^{i}, f\right)$ for some $1 \leqslant i \leqslant k$ and $\theta \in\{0,1\}^{n_{\varepsilon}}$. Let $\theta_{j} \in\{0,1\}^{n_{\varepsilon}}$ be such that $f^{a_{j}}\left(K_{\theta}^{i}\right)=K_{\theta_{j}}^{i}$ for $1 \leqslant j \leqslant n$. We assign to each $x \in K_{\theta}^{i}$ a code $\left(C_{1}, C_{2}, \ldots, C_{n}\right)$ as follows: if $f^{a_{j}}(x) \in K_{\theta_{j}}^{i}$ with $\left|K_{\theta_{j}}^{i}\right|<\varepsilon$, then we put $C_{j}=C$. If $\theta_{j}=\left.\alpha\right|_{n_{\varepsilon}}$ for some
$K_{\alpha}^{i} \in \mathcal{A}_{\varepsilon}^{i}$, then we put $C_{j}=L$ if $f^{a_{j}}(x) \in K_{\theta_{j}}^{-, i}$ and $C_{j}=R$ if $f^{a_{j}}(x) \in K_{\theta_{j}}^{+, i}$. Divide all the intervals $K_{\alpha}^{i} \in \mathcal{A}_{\varepsilon}^{i}$ into pairwise disjoint intervals, $K_{\alpha}^{i, 1}, K_{\alpha}^{i, 2}, \ldots, K_{\alpha}^{i, r_{\alpha}}$, each of length smaller than ε. If $f^{a_{j}}(x) \in K_{\alpha}^{i, s}$ we put $C_{j}=K_{\alpha}^{i, s}$. It is clear that

$$
\begin{equation*}
s_{n}\left(A, \varepsilon, K_{\theta}^{i}, f\right) \leqslant \operatorname{Card}\left\{\left(C_{1}, C_{2}, \ldots, C_{n}\right): C_{i} \in\left\{C, L, R, K_{\alpha}^{i, j}\right\}\right\} \tag{1}
\end{equation*}
$$

We are going to obtain an upper bound for $s_{n}\left(A, \varepsilon, K_{\theta}^{i}, f\right)$. Let $r_{i}=\operatorname{Card}\left(\mathcal{A}_{\varepsilon}^{i}\right)$ and let $R_{i}=\max \left\{r_{\alpha}: K_{\alpha}^{i} \in \mathcal{A}_{\varepsilon}^{i}\right\}$. Notice that any $K_{\alpha}^{i} \in \mathcal{A}_{\varepsilon}^{i}$ is a wandering interval. So, by Lemma 2.1, if $x \in K_{\boldsymbol{\theta}}^{i}$, then $f^{a_{j}}(x)$ belongs to at most r_{i} intervals $K_{\alpha}^{i} \in \mathcal{A}_{\varepsilon}^{i}$. Moreover, if for some $x \in K_{\theta}^{i}$ and $f^{a_{j}}(x) \in K_{\alpha}^{i} \in \mathcal{A}_{\varepsilon}^{i}$, then $f^{a_{s}}(x) \notin K_{\alpha}^{i}$ for all $s \neq j$. Hence, the number of codes is at most

$$
\begin{equation*}
\left(\binom{n}{0}+\binom{n}{1}+\ldots+\binom{n}{r_{i}}\right)\left(R_{i}\right)^{r_{i}} 2^{n} \tag{2}
\end{equation*}
$$

By (1)

$$
\begin{equation*}
s_{n}\left(A, \varepsilon, K_{\theta}^{i}, f\right) \leqslant\left(\binom{n}{0}+\binom{n}{1}+\ldots+\binom{n}{r_{i}}\right)\left(R_{i}\right)^{r_{i}} 2^{n} \tag{3}
\end{equation*}
$$

Finally, if $R=\max \left\{R_{i}: 1 \leqslant i \leqslant k\right\}, r=\max \left\{r_{i}: 1 \leqslant i \leqslant k\right\}$ and

$$
p(n)=\left(\binom{n}{0}+\binom{n}{1}+\ldots+\binom{n}{r}\right)
$$

then

$$
\begin{equation*}
s_{n}\left(A, \varepsilon, L_{0}, f\right) \leqslant k R^{r} p(n) 2^{n+n_{\varepsilon}} \tag{4}
\end{equation*}
$$

By Lemma 2.3, since $\left.f\right|_{L_{0}}$ is surjective, we obtain for $1 \leqslant i \leqslant n$ that

$$
s_{n}\left(A, 2 \varepsilon, L_{i}, f\right) \leqslant s_{i}\left(A, \varepsilon, L_{i}, f\right) s_{n}\left(\sigma^{i}(A), \varepsilon, L_{0}, f\right)
$$

By (4)

$$
s_{n}\left(A, 2 \varepsilon, L_{i}, f\right) \leqslant s_{i}\left(A, \varepsilon, L_{i}, f\right) k R^{r} p(n) 2^{n+n_{c}}
$$

Hence

$$
\begin{aligned}
s_{n}(A, 2 \varepsilon,[0,1], f) \leqslant & s_{n}\left(A, 2 \varepsilon,[0,1] \backslash \bigcup_{i=0}^{n} L_{i}, f\right)+\sum_{i=0}^{n} s_{n}\left(A, 2 \varepsilon, L_{i}, f\right) \\
\leqslant & s_{n}\left(A, \varepsilon,[0,1] \backslash \bigcup_{i=0}^{n} L_{i}, f\right)+\sum_{i=0}^{n} s_{n}\left(A, 2 \varepsilon, L_{i}, f\right) \\
\leqslant & s_{n}\left(A, \varepsilon,[0,1] \backslash \bigcup_{i=0}^{n} L_{i}, f\right) \\
& +\left(1+\sum_{i=1}^{n} s_{i}\left(A, \varepsilon, L_{i}, f\right)\right) k R^{r} p(n) 2^{n+n_{e}} \\
\leqslant & (2+n) Q(n) k R^{r} p(n) 2^{n+n_{e}}
\end{aligned}
$$

where

$$
Q(n)=\max \left\{\left\{s_{i}\left(A, \varepsilon, L_{i}, f\right): i=1,2, \ldots, n\right\} \cup\left\{s_{n}\left(A, \varepsilon,[0,1] \backslash \bigcup_{i=0}^{n} L_{i}, f\right)\right\}\right\}
$$

By Lemma 2.4, $\limsup _{n \rightarrow \infty}(\log Q(n)) / n=0$, and this concludes the proof.
Theorem 3.2. Let $f:[0,1] \rightarrow[0,1]$ be piecewise monotonic. Then:
(a) f is non-chaotic if and only if $h_{\infty}(f)=0$ (f is null).
(b) f is chaotic of type 2^{∞} if and only if $h_{\infty}(f)=\log 2$ (f is bounded and non-null).
(c) f is chaotic of type greater than 2^{∞} if and only if $h_{\infty}(f)=\infty$ (f is unbounded).

Proof: Let $I_{1}, I_{2}, \ldots, I_{k}$ be maximal subintervals of $[0,1]$ such that $\left.f\right|_{I_{i}}$ is monotone and $[0,1]=\bigcup_{i=1}^{k} I_{i}$ for some $k \in \mathbb{N}$. By Theorem 3.1 it suffices to prove that the number of maximal solenoids is smaller than k. Let $\omega(x, f)$ be an infinite ω-limit set contained in a solenoid $\bigcap_{n \geqslant 1} \bigcup_{\theta \in\{0,1\}^{n}} K_{\theta}$. Then for any positive integer n there must exist an interval K_{θ} with $\theta \in\{0,1\}^{n}$ for which $\left.f\right|_{K_{\theta}}$ is not monotone. Assume the contrary: let $n \in \mathbb{N}$ be such that $\left.f\right|_{K_{\theta}}$ is monotonic for any $\theta \in\{0,1\}^{n}$. Then $\left(\left.f\right|_{K_{\theta}}\right)^{2^{n}}$ has at most periodic points of period 2 and this leads to a contradiction because $\bigcup_{\theta \in\{0,1\}^{n}} K_{\theta}$ could not contain an infinite ω-limit set of f. So the number of maximal solenoids is smaller than k and the proof is complete.

References

[1] R.L. Adler, A.G. Konheim and M.H. McAndrew, 'Topological entropy', Trans. Amer. Math. Soc. 114 (1965), 309-319.
[2] F. Balibrea, J. Cánovas and V. Jiménez López, 'Commutativity and non-commutativity of the topological sequence entropy', Ann. Inst. Fourier (Grenoble) (to appear).
[3] N. Franzová and J. Smítal, 'Positive sequence topological entropy characterizes chaotic maps', Proc. Amer. Math. Soc. 112 (1991), 1083-1086.
[4] T.N.T. Goodman, 'Topological sequence entropy', Proc. London Math. Soc. 29 (1974), 331-350.
[5] R. Hric, 'Topological sequence entropy for maps of the interval', Proc. Amer. Math. Soc. (to appear).
[6] A.N. Sharkovsky, S.F. Kolyada, A.G. Sivak and V.V. Fedorenko, Dynamics of one-dimensional maps, Mathematics and its applications 407 (Kluwer Academic Publishers, Dordrecht, 1997).
[7] J. Smital, 'Chaotic functions with zero topological entropy', Trans. Amer. Math. Soc. 297 (1986), 269-282.

Department of Applied Mathematics and Statistics
Technical University of Cartagena
Paseo de Alfonso XIII
30203 Cartagena (Murcia)
Spain
e-mail: canovas@plc.um.es

[^0]: Received May 2, 2000
 This paper has been partially supported by the grant PB/2/FS/97 (Fundación Séneca, Comunidad Autónoma de Murcia).

