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Abstract. We report on the recent developments of our long-term investigation of the near-
IR luminosity-metallicity relation for dwarf irregular galaxies in nearby groups. A very well-
defined relation is emerging from our observational database, and a preliminary discussion of
its implications is given.
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1. Introduction
Since a few years, we are carrying out a program to collect near-IR imaging of dwarf

irregular (dIrr) galaxies in galaxy groups, and optical spectra of their Hii regions, to test
the existence of a luminosity-metallicity (L-Z) relation. The main purpose of the study
is to provide a sound starting point to discuss how the relation is created, which gives
insight into the interplay between processes like mass loss on galactic scales, and galactic
chemical evolution. In turn, this has implications on the identification of the sources of
metals in the intergalactic medium (IGM), and on the cosmic chemical evolution. The
existence of a L-Z relation is in fact usually explained, at least in the case of spheroids, as
the result of mass loss through galactic winds triggered by SN explosions (Larson 1974).
Notwithstanding its importance, the existence of a L-Z relation for dIrr is controversial,
with some studies finding very well defined correlations (Skillman et al. 1989; Richer
& McCall 1995; Pilyugin 2001), some finding mild relations with substantial scatter
(Skillman et al. 2003b), and some finding no correlation at all (Hidalgo-Gámez & Olofsson
1998; Hunter & Hoffman 1999). So we decided to improve the situation by devising an
observational campaign to overcome some of the existing limitations. The idea is (a) to
put together homogeneous samples of oxygen abundances; to consider only galaxies in
(b) well-defined environments, and (c) with reduced distance ranges; and finally (d) to
image galaxies in the near-IR. The campaign started as a pilot program at 4-m class
telescopes, so it had been restricted to the three nearest groups of galaxies, namely M81,
Centaurus A, and Sculptor, whose barycenters lie at similar distances (∼3Mpc) from the
Sun. They also let us probe diverse environments, since members of the Cen A and M81
groups show more interactions than those of the Scl group. A progress report based on
data for the Sculptor group has been presented in Saviane et al. (2004). More recently we
have been able to obtain and reduce data for a few galaxies in the northern M81 group,
so here we present an update of the project including data for three more galaxies.
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Figure 1. From left to right, we show the morphology of one of our targets (ESO 245-005) in
the optical (DSS), infrared H (SOFI), and Hα+R (EFOSC). The reddish, diffused nebulae in
the rightmost image are Hii regions, and the two arrows mark those for which spectra have been
obtained. The images cover ∼5 × 5 arcmin2.

2. The data sets
Nine galaxies of the Sculptor group have been observed so far, mostly in the year

2002; ESO 245-005 was re-observed in October 2003, to get a spectrum of a region closer
to the optical center of the galaxy (see Fig. 1). All data have been obtained at the La
Silla observatory using SOFI at the ESO/NTT and EFOSC at the ESO/3.6m. Typical
exposure times were of 1h for spectroscopy and 1 hr on target + 1 hr on sky for the near-IR
imaging in the H band. For the M81 group, ten galaxies have been observed in the course
of the years 2001 to 2003: interestingly, while only one galaxy of the Scl group did not
show Hα emission, in this case 50% of them did not show any emission. For this northern
group, the KAST spectrograph at the Lick/3m telescope, and the INGRID camera at the
ING/WHT telescope in La Palma were used, with exposure times comparable to those
listed above. If the suppressed SF activity (compared to the Scl group) is confirmed, it
will be telling us something about the effect of an environment that is more ‘risky’ for
dwarf galaxies. The reductions and calibrations of the data are thoroughly described in
Saviane et al. (2005, in preparation), and it is worth mentioning that, for the galaxies
in common, our abundances are consistent with those of Skillman et al. (2003b; see also
Saviane et al. 2004).

3. The near-IR luminosity-metallicity relation
To construct our near-IR luminosity-metallicity relation, ideally one would like to

include only those galaxies for which abundances based on the direct method could be
obtained. This would mean only two galaxies for the M81 group, thus, to improve the
situation, we measured oxygen abundances also using the indirect method proposed by
Pilyugin (2000, P00), which allows to include all three galaxies for which reliable spectra
could be obtained.

Oxygen abundances vs. apparent H magnitudes are presented in Fig. 2: the left panel
shows the whole data set, while the right panel shows a fiducial subsample. Since the
galaxies are at a similar average distance, we do not need to correct for distance modulus:
in any case the horizontal error bars show the variation in luminosity due to a 1 Mpc
distance uncertainty at 3 Mpc. The external region of ESO 245-005 (at H = 11) is under-
abundant by ∼0.5 dex compared to the central one. The region we measured in DDO 42
(near H = 10) is also external, but we cannot make a comparison with a central one.
Finally, metallicities estimated with the P00 method differ by at most ±0.2 dex from
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Figure 2. Metallicity of Hii regions vs. apparent H luminosity of galaxies in the Scl and M81
groups. In the left panel, the diamonds represent Hii regions of the Scl group galaxies: filled
diamonds are regions near the center of each galaxy, while the open diamond is the external
region of ESO 245-005 (see also Fig. 1). M81 galaxies are represented by filled circles (abundances
obtained through the direct method) and stars (abundances measured with the P00 method).
The dashed line marks the metallicity reached if the chemical evolution is truncated when the
remaining gas mass goes below 2×107 m�. In the right panel, our best data are compared with
evolutionary tracks for closed-box models with reduced yields (see text).

those measured using the direct method, in agreement with the findings of Skillman
et al. (2003b). In the right panel of the figure we plot only the central Hii regions,
including the one having the abundance estimated with the P00 method, to which we
assign a 50% error bar. With this selection, a clear relation emerges, in the usual sense
of having higher oxygen abundances for more massive galaxies. Our strategy has allowed
to construct a relation that is much better defined than the existing ones. It also seems
like the dependence on luminosity ‘saturates’ when the brightest galaxy in our sample is
reached (NGC 625): excluding this galaxy, a linear regression has a correlation coefficient
r = −0.996, and a slope of −0.22 ± 0.01 dex/mag.

The interpretation of the relation is not straightforward, though. As it was recalled in
the Introduction, in the case of dE/dSph galaxies the L-Z relation is explained in the
scenario of mass-loss through galactic winds. However, dIrrs are still evolving systems,
so if we want to maintain the mass-loss scenario, then we have to assume that it leaves
behind a L-Z relation very early in the history of galaxies. Recently Skillman et al.
(2003b) and Pilyugin et al. (2004) have found that the chemical evolution of dIrrs can be
approximated by a closed-box, provided that a low effective yield (≈1/3 of the standard)
is adopted: this is a typical signature of gas exchange with the environment. Pushing
this hypothesis further, we plot such closed-box models† in the right panel of Fig. 2,
for total masses mtot = mgas + mstars varying between 5 × 107 m� and 109 m�. We
adopted the proposed low yield p(O/H) = 1.6 × 10−4, and we assumed M/L = 1.2,
MH,� = 3.1 and (m − M) = 28 for both groups. The gas mass fraction µ = mgas/mtot

decreases monotonically along each track as abundance increases, so if one assumes that
all galaxies were born at the same time, then the figure is telling us that more massive
galaxies evolve faster along their tracks. This is confirmed by plotting dµ/dt vs. total
mass from data published in Skillman et al. (2003a): one can see a general trend of dµ/dt
increasing with total mass, i.e. larger galaxies being more effective in converting their
gas into stars. A similar conclusion was reached by Pilyugin & Ferrini (2000), who found
that the L-Z relation is a combined effect of smaller gas loss and higher astration level as
the mass increases. More detailed modeling is needed to clarify the role of other processes
such like infall (e.g. Hidalgo-Gámez et al. 2003).

† More appropriately, one should perhaps call these models “open-boxes simulating low-yield
closed-boxes”
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Figure 3. Oxygen abundances vs. H luminosity for both the S05 emission-line galaxies (KBG
calibration) and our dwarf irregulars. In the left panel we plot the direct abundances, while
abundances from the P00 method are used in the right panel. The left panel shows also the L-Z
relation that S05 fit to their galaxies, and the fit we obtain for our dwarfs. The dotted line is the
same curve shown in Fig. 2, and in the right panel the solid line is an unweighted fit through
the whole sample.

It is also interesting to note that, although the closed-box predicts arbitrarily large
values of Z as µ goes to zero (Z = p ln(1/µ); Searle & Sargent 1972), if we assume that the
mass of each new generation of stars, which we can call mSF, is roughly constant, then the
maximum metallicity we can measure will be Zmax = p ln(mtot/mSF) = p ln mtot − Z0.
This dependence on the mass of the galaxy is shown by the dashed curve in Fig. 2, where
we assumed mSF = 2 × 107m�, a mass of stars that can be created in ∼ 108yr for a
typical SFR ∼ 0.1 m�yr−1.

4. A dwarf vs. giant galaxy dichotomy?
The only study of the L-Z relation of giant galaxies that includes near-IR magnitudes

is that of Salzer et al. (2005; hereafter S05). They took spectra of emission-line galaxies in
fixed apertures of 1.5′′ or 2′′, and computed oxygen abundances with a reduced number of
emission lines, due to the limited spectral coverage of their data: using additional spectra,
they first obtained metallicities for a subsample of galaxies using both the direct and the
R23 methods, and then calibrated them vs. [N II]λ6583/Hα and [O III]λ5007/Hβ. For
the R23 method they used the P00 calibration for the lower branch of the 12+ log(O/H)
vs. R23 relation, and three calibrations for the upper branch: Edmunds & Pagel (1984;
EP), Kennicutt, Bresolin, & Garnett (2003; KBG), and Tremonti et al. (2004). Assuming
again an average distance modulus (m−M) = 28, in Fig. 3 we plot our data together with
Salzer’s et al. data. The figure shows that the scatter in the L-Z relation for giants is very
large, compared to that of dwarfs, perhaps due to fixed-aperture effects and uncertainties
intrinsic to the empirical methods (see also the discussion in S05). The straight lines in
the left panel are the fits obtained by S05 and by us, and taken at face value, the panel
would suggest a well-defined offset between the L-Z relation of giants and dwarfs. The
slope of the S05 L-Z relation is in fact close to what we find for dwarfs alone, namely
−0.215 ± 0.003 and −0.201 ± 0.004 for abundances obtained with the EP and KBG
calibrations, respectively. Now to be consistent with S05, in the right panel we plot our
abundances computed with the P00 method (which allows to add AM 106-382). The
offset between galaxies in the two mass ranges seems to disappear: it is in fact possible to
do a linear fit of the whole sample (solid line), although a change of slope at MH ≈ −20
would seem a better choice. The question of a dwarf-giant dichotomy is then open: moving
from the empirical to the direct abundances, the L-Z relation for dwarfs becomes much
better defined, parallel to the one for larger galaxies, and with a substantial offset. It
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remains to be seen what would happen to the L-Z relation of giant galaxies: we plan to
measure direct abundances for some of the S05 galaxies, to see if the offset is confirmed or
not. If the scenario of the top panel were confirmed, then we should conclude that dwarf
galaxies are able to make more metals than giants, which at first sight is puzzling. A
possible explanation is the following: if we assumed that the fundamental relation is that
of dIrr galaxies, then we could say that the amount of metals produced by a giant galaxy
is the same as that produced by a dwarf galaxy ca. 10 times less luminous (∼2.7 mag).
In other words, only 10% of the disk of a giant galaxy would participate in making its
metals, or perhaps only 1% if we considered that the yield in giant galaxies could be
some 3 times higher than in dwarfs. Metaphorically, one could think that metals in the
central regions of star-forming galaxies are made in universal cells, and that large cells
make metals faster than small cells. And while small cells are found in isolation (dwarf
galaxies), larger cells are found in groups of 10–100 in the centers of giant galaxies. This
argument is certainly appealing, but it needs confirmation with a follow-up of the S05
study. In fact at the moment we can somewhat reconcile the two L-Z relation only at
the price of a degradation of our data. It is finally worth mentioning that, since the S05
sample includes star-forming galaxies, one could suspect that giant galaxies are offset in
luminosity due to the presence of a star-burst: however, Lee et al. (2004) find that this
offset is a few tenths of magnitude in B, compared to quiescent galaxies. We expect that
the effect in the IR must be even lower, and certainly not comparable to the one we
observe.
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