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1. Introduction
A representation of degree 3 is used in § 4 to establish the necessary and

sufficient condition
2n 2n In n

cos l-cos l-cos — <0
p q r

for the finiteness of the group (3, p | q, r) defined by

A3 = D" = (AD)q = O r 1 / ) ) ' = E (1.1)

In § 7, this condition is seen to be related to a conjecture (8, p. 267) that the
inequality

471 471 .
cos l-cos — <£

m n

is a sufficient condition for the finiteness of the group G3- m>" defined by

Bm = C" = (BC)2 = (B3C2)2 = (B2C3)2 = E (1.2)
In § 9 we summarise the work of Leech and Mennicke (14), who established
the truth of this conjecture by finding the order of G3' 7> 16. In § 11 we con-
sider a topological application, increasing the number of known members in
certain families of regular maps. Finally, in § 12, the group G3' 7> 16 is seen
to be derivable in a rather natural manner from the direct product of two
Abelian groups of order 8 and type (1, 1, 1).

This paper grew out of a lecture given at the American Mathematical
Society's Summer Institute on the Theory of Groups at Pasadena (August,
1960).

2. The Groups (l,p | q, r) and G'- m>"
The group

A1 = D" = (AD)q = {A~lD)r = E (2.1)

is conveniently denoted by
(/, P I q, r).

Clearly, we can interchange / and p, or q and r, without altering the group.
Moreover, when / = 3, the three periods p, q, r can be permuted in all the
six possible ways (3, p. 78).

Let us extend (/, p | q, r) by an involutory element R3 that transforms each

https://doi.org/10.1017/S0013091500014486 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500014486


48 H. S. M. COXETER

of the generators into its inverse, so that

R2
3 = (AR3)

2 = (R3D)2 = E.

Defining R2 = AR3, Rt = R3D, we obtain the group

R2 = R\ = R2 = (R2R3)
1 = (R3R^ = (RtR^ = (R^R.RJ = E, (2.2)

which is thus seen to contain (/, p | q, r) as a subgroup of index 2, generated by
R2R3 and R3Rt.

When / = p, we can extend (2.2) by an involutory element T that inter-
changes Rt and R2 (transforming each into the other) and commutes with
R3, so that

T2 = E, Ri = TR2T, R3T = TR3.
The extension is

T1 = R2 = R2 = (R2R3)' = (R3T)2 = (TR2)
2" = (TR2R3)

2r = E.

By writing

T = AB, R2 = ABC, R3 = 5C,

^ = i?2i?3, B = /?3/?2rs C = TR2,

we can express it in the more agreeable form

A1 = Bm = C" = G4J3)2 = (BC)2 = (CL4)2 = (^BC)2 = £, (2.3)
where m = 2r and n = 2#.

The group (2.3) is denoted by G' m> ". When / = 3, it has the more concise
presentation (1.2) (3, p. 113). Our conclusion is that Gl'2q'2r contains
(/, /1 q, r) as a subgroup of index 4. On the other hand, some of the most
remarkable groups G1* m>" have odd values for m o r n :

G3' 5- 5 s LF(2, 22) sLF(2, 5) G3- 3- 4 s PGL(2, 3),

G 3 , 7, 9 s L F ( 2 ; 2
3 ) , G3 5- 10 s PGL(2, 5),

G 5 5, 5 ^ L f . ( 2 ) n ) > G 3 , 7, 12 s G 3 , 7, 14 ̂  p G L(2 , 13),

G 3 9, 9 ^ L i r ( 2 , 19), G4' 5> 9 £ PGL(2, 19),

G3- 7- 1S s LF(2, 29), G3- 8- X1 ^ PGL(2, 23)

(3, p. 148). Because /, m, n enter symmetrically, we usually write G1'm>" with
l

The relations (2.3) are easily seen to imply A2B2C2 = E, so that, when n
is even, A and .8 generate a subgroup of index 2:

41 = F " = (AB)2 = (^2B2)*" = £ (2.4)

In fact, since (BCA)~1A.BCA = A~\BCy2 = .4"1 and

BCA.BiBCA)-1 =(CA)-2B~i = B~\

we may describe G'* m>" (n even) as being derived from (2.4) by adjoining an
involutory element BCA that transforms the generators A and B into their
inverses.
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3. Unitary Reflections of Period Two
In complex affine 3-space, consider two covertical trihedra formed by

triads of lines
ete2e3, e1e2e3,

such that the three planes exe
x, e2e

2, e3e
3, all pass through one line.

The plane at infinity meets the trihedra in two perspective triangles which,
according to von Staudt's theorem (7, p. 74), are related by a unique projective
polarity. The same kind of analytic proof (ibid., pp. 201, 218) shows that
these triangles are also related by a unique antiprojective polarity, which
allows us to use the trihedra to set up dual bases for affine coordinates with
a generalised unitary metric.

The line et and plane e2e3 determine an affine reflection (of period 2)
such that, if P' is the image of P, the line PP' is parallel to e^ and the segment
PP' is bisected by e2e3 (9, p. 225). The generalised unitary metric makes this
line and plane perpendicular; accordingly we call the affine reflection a
unitary reflection, namely the reflection in the plane xx = 0.

For a group generated by three unitary reflections Ru R2, R3, we may
conveniently take the mirrors to be xt = 0, x2 = 0, x3 = 0, so that Rj reverses
the sign of x} and leaves invariant all the xk except x*, which it transforms
into (say)

(Of course, ck depends on the " fixed " number j as well as on k.)
If the unitary metric is given by the Hermitian form

X X aJkx
Jxk (ajk = dkJ),

this reflection R • transforms
xj — L ajkx

into

By addition,
0 = ajj(xJ+Y

Since this holds for all points (x), the coefficients of x7 and xk must each vanish:

Z ajkx
k.

* j

But ajj # 0 (since otherwise every ajk = 0); hence
1 + Cj = 0, ck = -2aJklajj,

that is,
Cj = - 1 , ck = -2akj/ajj (k # j).

Thus Rj leaves invariant every xk except JC*, which it transforms into

k = 1

(cf. 8, p. 245, where j and k were interchanged).
E.M.S.—D
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If the group is irreducible, the invariant form is unique (apart from the
obvious possibility of multiplying by a constant). If the group is finite (as
well as irreducible), the unique form is definite, say positive definite
(1, p. 253). In this case O//>0. By writing ajj*xj for xj, we may suppose
without essential loss of generality that ai} = I and

ck = -2akJ (k #/>.

4.

X1

Automorphs of a Ternary Hermitian Form
In the case of the form

xl + x2>

we have

The three
to right), i

so

Rt =

that

:2+x3x3-

reflections,
ire

/ - I 0
c 1

\ b 0

Kax2x3 + c

expressed

ix3x2 + bx3xl + bx\

~i", a31 = -\b,

as matrices (ready

/ I c 0\
z = (O -1 0 ,

\0 « 1/

x' + c^x' + cx2xl

for multiplication

i? 3 = ( 0

\o

0
1
0

) ...(4.1)

from left

(1 c ca+b\ (bb-\ 0

0 - 1 - a J, R3R1 = I ab +
0 a ad-\) \-b

(- 1 -(ab + c) -a(ab + c) \

c abc+ad+cc-l a(abc + ad+cc-2) ].
b d(bb-l) + bc ad(bb-l) + abc+l/

The characteristic equations for these four products reduce (after removal
of the trivial factor A— 1) to

(A+l)2-aa/l = 0, {X+Vf-b'bX = 0, {_X+\)2-ccX = 0,

(A +1)2 - (ab + cXri + c)X = 0.

Comparing them with the charaeteristic equation
(X + l)2- (2 cos - ) /I = 0

for an ordinary rotation of period n, we see that the reflections satisfy the
relations (2.2) if and only if

aa = 4cos —, bb = 4 cos —, cc = 4 cos —,
I P <1

(ab.+ c)(ab + c) = 4 cos2- (4.2)
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If /, p, q, r are all greater than 2, we can solve these equations for a, b, c.
The form (4.1), having determinant

2 -c -b
-c 2 -a
-b -a 2

= i(8-2ad-2bb-2cc-abc-abc)

, /_ 2iz 2n 2% 2n\
= %\ 2 cos —cos cos cos — ,

\ I P q rj
is positive definite if a n d only if

_ 2TC 2n 2% 2n . .
2 cos —cos — >cos hcos —. (4.3)

I p q r
Accordingly, this inequality is a necessary (though possibly not sufficient)
condition for the finiteness of the group (2.2) and of its subgroup (2.1), which
is (/, p | q, r).

5. The Groups (3, p \ q, r)

When / and p are both greater than 3, this necessary condition is certainly
not sufficient; for it admits the group (4, 4 | 3, 3), which is known to be infinite
(3, p. 83).

On the other hand, we shall find a more satisfactory state of affairs when
/ = 3. In fact, the condition

2n 2n 2% _. , , ..
cos 1-cos hcos — <0, (5.1)

p q r
for the finiteness of (3, p \ q, r), is not only necessary but also sufficient, provided
we make the obvious restriction that, if p = 2, q = r. To see this, we merely
have to examine all the solutions of (5.1) and verify that each of the groups
so obtained is finite. Because p, q, r enter symmetrically, we lose no generality
by assuming t h a t p ^ q ^ r .

When p = 2, we have the polyhedral groups

(3, 2 | 2, 2) s S3, (3, 2 | 3, 3) s A*,

(3, 2 | 4, 4) s S4, ( 3 , 2 | 5 , 5 ) ^ 5
(9, pp. 270-276). For every r there is a group (3,3 | 3, r) of order 3r2 (11, p. 208;
3, p. 83). It was observed by Miller (15, pp. 364-368) that (3, 3 | 4, 4) is
Klein's simple group LF(2, 7) of order 168, and that (3, 3 | 4, 5) has order 1080.
The list of solutions of (5.1) is now complete.

Since the condition (5.1) is necessary, all other groups (3,p \ q, r) are infinite.
Apparently the only cases in which this was previously known are when
p, q, r are multiples of 3, 4, 6 (in any order) (4, p. 250).
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6. The Groups (3, 3 | q, r)

Evidently, most of the finite groups (3, p | q, r) are covered by taking/? = 3.
In fig. 1, these groups (3, 3 | q, r) are plotted as points with Cartesian co-
ordinates (q, r). The finite groups that fulfil the given relations are marked as
httle circles (with the order of each written underneath), the infinite groups
are marked as black dots, and the cases of collapse as crosses. The pattern

X

X

X

X

o
3.2*

X

o
3.72

o
3.62

O
3.52

o
3.42

o
3.32

O
3.22

1 •

\

O ^
1080

o
168

O
3.42

X

•

•

o
1080

o
3.52

•

•

•

o
3.62

X

•

•

•

•
^ — —

0
3.72

X

•

•

•

•
— —

o
3.82

X

2 3 4 5 6 7 8
FIG. 1.

along the lines q = 3 and r = 3 has been continued far enough to indicate
that it goes on for ever. These lines are the asymptotes of the curve

cos hcos — = | ,
q r

which passes through the points (4, 6), (6, 4) and separates all the remaining
black dots from all the little circles and crosses. Instead of this non-algebraic
curve we could have used the hyperbola

(<7-3)(r-3) = 3,
which happens to separate the lattice points in the same manner.
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Since (3, 3 | 4, 6) is " only just infinite," one might have expected the
representation described in § 4 to remain faithful. Setting / = p = 3, q = 4,
r = 6 in (4.2), we obtain

ad = bb = l, cc = 2, (l + c)(l + c) = 3.

Setting a = b = 1, c = \J — 2 in the matrices for R2Ri and R3Ri, we deduce
the generators

/ I V ^ 1+V^2 \ / 0 _ _ 0 1 \
i = 0 - 1 - 1 ), £= l 1-7-2 1 1 I,

\ 0 1 0 / \ - l 0 - 1 /

which leave invariant the semidefinite Hermitian form

x1*1 + x2x2 + x3x3 -\{x2x3 + x3x2 + x3xl +xix3 + 7 -2xlx2 - J^2x2xl).

Graham Higman has pointed out that the commutator of these matrices is
of period 4. Hence the group generated by them is not (3, 3 | 4, 6), though it
may be (3, 3 | 4, 6; 4) (4, p. 150).

7. The Groups Gl- m-" with m and n even
As we remarked in §2, the group (/, /1 q, r), defined by (2.1) with p = I,

is a subgroup of index four in G1' 2q'2r. Setting

p = I, q = \m, r =\n

in (4.3), we deduce that the inequality

A% 4n . 4n ._ ..
cos l-cos — < l+cos — (7.1)

m n I
is a necessary condi t ion for the finiteness of G1' "•" wi th m and n b o t h even.
Moreover , when 1 = 3, this necessary condit ion

4TT 4n , ._ _.
cos l-cos — <i (7.2)

m n
is also sufficient. We naturally ask whether it is permissible to omit the
restriction " m and n both even ".

8. Allowing m or n to be odd

In fig. 2, which employs the same conventions as fig. 1, the groups G3' m> '
are plotted as points with Cartesian coordinates (w, n). For simplicity, we
omit the groups with m or n less than 5, as all of these collapse except

G3, 2, 6 ^ G 3 , 6 , 2 > O f o r d e r l 2 )

G3, 3, 4 s G 3 . 4. 3> o f o r d e f 2 4 >

and G 3 . 4 , 6 ^ G 3 , 6 , 4 Of order 48.
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Since (3, 3 | q, r) is a subgroup of index four in G3> 2q' 2r, the points (q, f)
in fig. 1 reappear as the points (2q, 2r) in fig. 2. However, the interest of
fig. 2 is enhanced by the " interpolated " points (m, ri) for which at least one
coordinate is odd. (In the places where these points are not marked, nothing
is known.)
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Incidentally, the curve

whose asymptotes are m = 6 and n = 6, can no longer be replaced by the
hyperbola

(m-6)(n-6) = 12,

which passes through the point (9, 10) although the group G3' 9-10 collapses
(3, p. 143).
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Of the groups G3> m>" satisfying (7.2), the only one that was not known
in 1939 is G3' 7l 16 = G3' 16> 7. Since in every other case the inequality is
a valid criterion regardless of the parity of m and n, the " principle of per-
manence " suggests that this remaining group G3' 7> 16 should be finite. The
work of Leech and Mennicke (14), shows that in fact its order is 21504.

9. Summary of the Work of Leech and Mennicke
In the case of G3> 7> 16, the subgroup (2.4) is

A3 = B1 = (AB)2 = (A~lB2f = E

or, in terms of P = B and Q = AB~2,

(Sinkov, 1937,p. 582) or, in terms of g and S = P3 (so that QP2 =P~3Q~1p-1

= S~iQ~1S2)
Q* = s1 = (QSf = (Q-'S)3 = E.

Thus (8, 7 | 2, 3) occurs in G3- 7> 16 as a subgroup of index 2. For the sake
of agreement with Leech and Mennicke (14), let us abandon our attempted
consistency of notation and call the generators A and B instead of Q and S,
so that now

As = B7 = (AB)2 = (AlB~3) = E. (9.2)
As a first step towards identifying this with Sinkov's group of order 10752,

Leech and Mennicke observe that the seven elements

a = A4, c = B~^aB, e = B~lcB, g = B'xeB,

b = B-igB, d = B~lbB, f = B~ldB,

which are transformed by A into

a, f, fd, e,

fga, b, ca,

generate a normal subgroup whose quotient group (4, 7 | 2, 3) is derived from
(9.2) by setting A* = E. The substitution S2 = AB, S-, = B~2 serves to identify
this quotient group with LF(2, 7), of order 168:

S2 = S] = (S.S,)3 = (S*S2T = E

(1, p. 422; 3, p. 54 f).
Leech and Mennicke then prove that the seven elements a, ..., g are in-

volutory, mutually commutative, and have the identity for their product,
but do not satisfy any relations independent of these. Thus the group {a, ...,g),
which occurs in (8, 7 | 2, 3) as a normal subgroup of index 168, is the Abelian
group of order 64 and type ( 1 , 1 , 1 , 1 , 1 , 1 ) : the direct product of six groups
of order 2.

t In the sentence " Fig. xv . . . " the number 7 should be 6, since in fact Fig. xv shows
{4, 6 | 3}, not {4, 7 | 3}.
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It follows that the order of (8, 7 | 2, 3) is

168 . 64 = 10752,

and that the order of G3- 7> 16 is 21504 (see fig. 2).

10. Enumerating Cosets
During the time when the finiteness of (8, 7 | 2, 3) was a mere conjecture,

various attempts were made to determine its order by enumerating cosets of
a suitable subgroup. Leech attempted an enumeration on EDSAC 2 at
Cambridge, using the octahedral subgroup generated by A2 and A~XB, but
was unsuccessful. Storage space for 800 cosets was exhausted without any
sign that the process was drawing to a close. When he and Mennicke had
established the order 24. 448, it became clear that the number of cosets is
really only 448. To see why the machine had failed, J. A. Todd performed
the same enumeration by the old-fashioned method of pencil and paper. With
extraordinary perseverance he continued until he had defined about 950
apparently distinct cosets, and then at last the inevitable end came: two
differently numbered cosets were identified, and the consequent identification
of other pairs brought the number down to 448, as predicted. He found
later that, by re-defining the successive cosets in a different order, he could
reduce the number of redundant cosets from about five hundred to as few as
63. Still later, after correcting " an extremely subtle programme error",
Haselgrove and Leech persuaded the Mercury at Manchester to enumerate
the 448 cosets in 42 minutes. (The last 15 minutes were occupied with the
reduction from about two thousand cosets to 448.) On the other hand, Todd's
tour de force can hardly have taken less than thirty hours.

11. Compound Tessellations and Maps
For any two positive integers p and q satisfying (p — 2)(q — 2)>4 there is,

in the hyperbolic plane, a regular tessellation {p, q} consisting of regular p-gom
{p}, q surrounding each vertex (10, pp. 53, 54). Any two adjacent edges
of a face {p} belong to a Petrie polygon: an infinite zig-zag in which every two
adjacent edges, but no three, belong to a face. Fig. 1 of Leech and Mennicke
(14, p. 26) is a conformal representation of part of {3, 7}. Their broken line
marked A crosses eight edges belonging to a Petrie polygon. In fact, the
generator A of the infinite group

B1 = (AB)2 = (A~XB)3 =E (11.1)

is represented as a translation that shifts this Petrie polygon two steps along
itself. Their whole figure consists of 56 faces (some bisected) of {3, 7}, forming
altogether a {14} which serves as a fundamental region for the normal sub-
group generated by the translations a, b, c, d, e, f, g. Since the {14}, like a
face of the {3, 7}, has angle 2^/7, it is one of the faces of a tessellation {14, 7}
inscribed in the {3, 7}.
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This state of affairs is analogous to the way a cube {4, 3} can be inscribed
in the regular dodecahedron {5, 3}. The 20 vertices of the dodecahedron,
each used twice, are the vertices of 5 such cubes forming a compound
polyhedron

2{5, 3}[5{4, 3}]
(6, p. 50 f). Similarly, the infinitely many vertices of the {3, 7}, each used
twice, are the vertices of 24 {14, 7}'s forming a compound tessellation

2{3, 7}[24{14, 7}]{7, 3}.

The " {7, 3} " at the end signifies that each face of a {14, 7} is concentric with
a face of a {7, 3} (namely, the dual of the original {3, 7}).

Leech and Mennicke (14, p. 27) mention also an " intermediate " tessellation
{3, 14}, which is inscribed in the {3, 7} while the {14, 7} is inscribed in it. The
corresponding compounds are

{3, 7}[S{3, 14}]2{3, 7} and 2{3, 14}[3{14, 7}]{14, 3}.

Their conclusion, that when A8 = E the group generated by a, ..., g is of
order 64, shows that 64 suitably chosen faces of the {14, 7} form together a
fundamental region for the normal subgroup of (11.1) generated by A* and
its conjugates. However, these 64 {14}'s cannot be arranged to form a regular
polygon!

The subgroup generated by A* and its conjugates can be interpreted as the
fundamental group of the surface of genus 3 that is obtained by suitably
identifying pairs of sides of one {14} (10, p. 110). Hence the quotient
group (4, 7 | 2, 3), which is the simple group of order 168, is the group of direct
symmetry operations of the regular map {3, 7}8, which consists of 56 triangles
covering that surface (16, p. 479). (The subscript 8 indicates that {3, 7}8 is
derived from {3, 7} by identifying all pairs of edges that differ by 8 steps along a
Petrie polygon. Thus the Petrie polygon of {3, 7}8 is an " octagon". Two
Petrie polygons of the dual map {7, 3}8 are shown very clearly in a drawing
by Klein, (12, p. 449.)

Somewhat similarly, the subgroup generated by A8 and its conjugates can
be interpreted as the fundamental group of the surface of genus 129 that is
obtained by identifying all pairs of edges of {3, 7} that differ by 16 steps along
a Petrie polygon. Hence the quotient group (8, 7 | 2, 3), of order 10752, is
the group of direct symmetry operations of a new regular map {3, 7}16 which
consists of 3584 triangles covering that surface. Collecting these 56. 64
triangles in sets of 56, as in fig. 1 of Leech and Mennicke, we obtain, on the
same surface of genus 129, a map of type {14, 7} (" uniform," but not regular)
having 128 vertices, 448 edges, and 64 faces. Any one of these 64 {14}'s will
serve as a fundamental region for the Abelian group generated by a, ..., g.
In other words, just as the elliptic map {3, 5}5 (10, 1947, p. Il l) can be derived

t The first edition of Regular Polytopes is out of print, but a second edition (paperback) is
being published by the Macmillan Company, New York.
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from the icosahedron {3, 5} = {3, 5}10 by identifying pairs of opposite vertices,
so {3, 7} 8 can be derived from {3, 7}16 by identifying its 24 . 64 vertices in sets
of 64. Just as a Petrie polygon of {3, 5} 5 may be regarded as one half of a
Petrie polygon of the icosahedron, so a Petrie polygon of {3,7}8 may be regarded
as one half of a Petrie polygon of {3, 7}1 6 .

This information enables us to improve the tables of groups and regular
maps in some earlier papers. In fact, the table of (3, pp. 146-148) should have
the following further entries:

-0.168(Table

(Table

(Table

I)

II)
III)

(8,

(2,

G3

7

3,
. 7 ,

12,
7;

, 16

3)

8)

10752

10752

21504 256 129 -0.0473

Similarly, fig. vi of (2, p. 41) should have little circles at the points (8,7), (7, 8);
table I (p. 61) should have the extra entries

and

{4,

{5,

{3,

{3,

{3,

{7 ,8 |

{8, 7 |

table II :

6|:

6 |

111

7 |

91

,2}

,2}

,4}

,8}

,5}

13}
13}

12

24

2024

3584

12180

1536 5376

1344 5376

24

60

3036

5376

18270

1344

1536

8

20

552

1536

4060

1249

1249

3

9

231

129

1016

( 1/V7O

S 4 x 5 2

A5xS2

LF(2, 23)

48

120

6072

10752

LF(2,29)xA3 36540

Finally, table 8 of (10, p. 141) should be continued as follows:

{7, 3}! 6 3584 5376 1536 - 2 5 6 129^

{16, 3}7 3584 5376 672 -1120 _ I G 3 ' 7 - 1 6 21504

{16, 7}3 1536 5376 672 -3168 — J

(and, of course, the heading of table 9 should read " The regular maps of
genus 2 ") .

12. The Structure of G3' 7- 16

As we remarked in § 9, the seven elements

a, b, c, d, e, f, g

of (8, 7 | 2, 3) are transformed by A into
a, afg, f, b, df, ac, e

and by B into
c, d, e, f, g, a, b.
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It follows that the fourteen products

Pi = abf, p2 = acd, p3 = cef, pA = aeg, ps = beg, p6 = bde, p-, = dfg,

9i = acg, q2 = aef,

are transformed by A

P6, Pi,

92, 93,

and by B into

Pi, Pi,

97, 9i,

93 = c#, t

into

Pi,

96 ,

/>4,

92,

?4 = aM,

95 ,

Ps,

93,

9 s = bfg,

P4,

94,

/>6,

94,

96 =

p3

/>7

9s

97,

96-

In other words, A and B transform the p's according to the permutations

(6321)(45) and (1234567), (12.1)

and transform the q's according to the respectively inverse permutations

(1236)(54) and (7654321) (12.2)

Either pair of permutations provides a representation of the group (4, 7 | 2, 3),
which is LF(2, 7) (3, p. 84).

Since the seven p's satisfy the relations

Pf = E, p^j = Pjph

P1P2P4 =PlViPs = P3P4P6 =P4-PsPl =PiP(,Pl =P6PlP2 = PlPlPi =E

(for instance, PXP2PA. = a2 • abedefg = E), they form with E the Abelian group
of order 8 and type (1, 1, 1): the direct product of three groups of order 2,
say those generated by pu p2, p3. The seven <jr's, satisfying exactly similar
relations, form with E another such group of order 8. Each group is trans-
formed by A and B (albeit in slightly different ways) according to automorph-
isms which generate LF(2, 7). It is interesting to compare the p's and <7's
with the basic units of the algebra of Cayley numbers which, though neither
commutative nor associative, satisfy the relations

el - el = ... = e2 = eYe2e^. = e2e3e5 = ... = e1elei = - 1

(5, p. 561) and therefore have LF{2, 7) for their group of automorphisms.
The Abelian group of order 64, which Leech and Mennicke obtained, can

now be recognised as the direct product of these two groups of order 8; in
fact,

a=p1q1, b=p4q3, c = ptq6, d = p5q2,

e =p2qs, f = p6qu g =/>394-
It is interesting to compare this with the work of Sinkov (17, p. 584), who

showed that the relations (9.1), along with either
Q*PQ*P4Q*P2 = E or Q*PQ*P2Q4P* = E,

determine a group of order 1344. (His Q and P are our A and B~2.) Leech
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(1962, § 4.2) observed that these relations are equivalent to pt = E and q{ = E,
respectively (for any /). Hence Sinkov's group of order 1344, which is, of
course, a factor group of (8, 7 | 2, 3), is the holomorph of the Abelian group
fa,} or {p,}, of order 8 (1, pp. 111-117).

The remark at the end of § 2 shows that we can derive G3' 7> 16 from
(8, 7 | 2, 3) by adjoining an involutory element that transforms A and B into
their inverses. However, these generators were the A and B of (2.4), not the
A and B of (9.2). Making the necessary adjustment, we can assert that the
new element transforms the A and B of (9.2) into

B~3A~lB3 and B~l.

Accordingly, it transforms

a, b, c, d, e, f, g
into

g, f, e, d, c, b, a,
and transforms

Pi, P2, Pz, P4, P5, P6, Pi
into

Is, 96, In, 1I, IK 93. 4U-
We see now that the group (8, 7 | 2, 3), of order 8 . 8 . 168, is derived from

the direct product {/?,-} x{^,-} by adjoining elements A and B which perform
the automorphisms (12.1) and (12.2) while satisfying

A" = Plq7, B1 = (AS)2 = {A'1 B)3 = E.

Moreover, the group G3- 7> 16 of order 2 . 8 . 8 . 168 is derived from (8, 7 | 2, 3)
by adjoining an involutory element that interchanges the p's and #'s.
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