THE FOURIER MULTIPLIER PROBLEM FOR SPACES OF CONTINUOUS FUNCTIONS WITH p-SUMMABLE TRANSFORMS

Dedicated to the memory of Hanna Neumann

LYNETTE M. BLOOM

(Received 29 June 1972)
Communicated by M. F. Newman

1. Introduction

In this paper we consider spaces $A^{p}, p \in[1,2]$, and multipliers (A^{p}, A^{q}), $p \in[1,2], q \in[1,2]$. In 4.4 and 6.1 we identify $\left(A^{p}, A^{q}\right)$ for $p \in[1,2], q \in[p, 2]$, and in 7.3 we identify $\left(A^{2}, A^{1}\right)$. In 7.1 we give a sufficient condition, and in 7.5 a necessary condition, for membership of $\left(A^{p}, A^{q}\right), p \in(1,2), q \in[1, p)$. We give, in 7.2, a necessary condition for membership of $\left(A^{2}, A^{q}\right), q \in[1,2)$. We include constructive proofs of some strict inclusion results for $A^{p}, p \in[1,2]$, (3.1 and 3.2), and also, in 5.3, for $\left(A^{p}, A^{p}\right), p \in[1,2]$.

The author would like to thank Professor Robert Edwards for his many helpful suggestions and for his constant guidance during the work for this paper.

2. Preliminaries

2.1 We consider functions on the circle group \boldsymbol{T}, and write

$$
A^{p}=\left\{f \in C(T): \hat{f} \in l^{p}(Z)\right\}, \quad p \in[1, \infty)
$$

compare here the author's paper [1]. It is known that A^{p} is a Banach space under the norm

$$
N_{p}: h \mapsto\|h\|_{\infty}+\|\hat{h}\|_{p}=\|h\|_{\infty}+M_{p}(h)
$$

We define e_{v} to be the function $e^{i t} \leftrightarrow e^{i v t}$ on T and note that, for $h \in A^{p}$,

$$
\begin{equation*}
N_{p}\left(e_{v} h\right)=N_{p}(h) ; M_{p}\left(e_{v} h\right)=M_{p}(h) \tag{2.1}
\end{equation*}
$$

The spectrum of $h \in L^{1}(T)$ is defined by

$$
\operatorname{sp}(h)=\{n \in Z: \hat{h}(n) \neq 0\} .
$$

If ϕ, ψ are positive functions on $\{0,1,2, \cdots\}$, we write $\phi \sim \psi$ if and only if $0<\inf \phi^{-1} \psi \leqq \sup \phi^{-1} \psi<\infty$.
2.2 In [4], p. 33, the Rudin-Shapiro polynomials $P_{m}(m=0,1,2, \cdots)$ are defined by

$$
P_{m}=\sum_{n=0}^{2 m-1} \varepsilon_{m}(n) e_{n}
$$

where the $\varepsilon_{m}(n) \in\{-1,1\}$ are chosen in such a way that

$$
\begin{equation*}
\left|P_{m}\right| \leqq 2^{(m+1) / 2} ; M_{p}\left(P_{m}\right)=2^{m / p}, \quad m=0,1,2, \cdots \tag{2.2}
\end{equation*}
$$

2.3 By a multiplier from A^{p} to $A^{q}, p \in[1,2], q \in[1,2]$, we mean a continuous linear operator $T: A^{p} \rightarrow A^{q}$ which commutes with translations. As can be seen from [2], 16.3.1, to each multiplier $T: A^{p} \rightarrow A^{q}$ there corresponds a unique distribution ϕ such that T is (the restriction to A^{p} of) the operator T_{ϕ} defined by

$$
\begin{equation*}
T_{\phi} f=\phi * f \tag{2.3}
\end{equation*}
$$

We denote the space of such distributions ϕ by $\left(A^{p}, A^{q}\right)$ and refer to $\phi \in\left(A^{p}, A^{q}\right)$ as a multiplier from A^{p} to A^{q}. A distribution ϕ belongs to $\left(A^{p}, A^{q}\right)$ if and only if

$$
\begin{equation*}
N_{q}(\phi * f) \leqq \text { const. } N_{p}(f), \forall f \in T P \tag{2.4}
\end{equation*}
$$

where TP denotes the space of trigonometric polynomials on T. In particular, a distribution ϕ belongs to $\left(A^{p}, C\right)=\left(A^{p}, A^{2}\right)$ if and only if

$$
\begin{equation*}
\|\phi * f\|_{\infty} \leqq \text { const. } N_{p}(f), \forall f \in T P \tag{2.5}
\end{equation*}
$$

or, what is equivalent, if and only if

$$
\begin{equation*}
|\phi * f(1)| \leqq \text { const. } N_{p}(f), \forall f \in T P \tag{2.6}
\end{equation*}
$$

2.4 We denote by $P M$ the space of pseudomeasures on T, and those pseudomeasures having Fourier transforms in $l^{k}, k \in(0, \infty]$, we denote by $P M^{k} . P M^{1}$ is identifiable with $A=A^{1}, P M^{2}$ with L^{2}, and $P M^{\infty}$ with $P M$. We denote by M the space of Radon measures on T, and by M^{k} those measures having Fourier transforms in $l^{k}, k \in(0, \infty] . M^{2}$ is identifiable with L^{2}.
2.5 We write p^{\prime} for the conjugate exponent of $p \in[1, \infty) . p^{\prime}$ is such that $1 / p+1 / p^{\prime}=1, p \in(1, \infty)$, and $p^{\prime}=\infty$ if $p=1$.
2.6 We define $\left(A^{p}\right)^{\prime}$ to be the set of linear functionals l on $T P$ such that

$$
\begin{equation*}
|l(f)| \leqq \text { const. } N_{p}(f), \quad \forall f \in T P \tag{2.7}
\end{equation*}
$$

Since $T P$ is dense in A^{p}, the restriction from A^{p} to $T P$ gives a $1-1$ map of the dual of A^{p} onto $\left(A^{p}\right)^{\prime}$.
2.7 For $a \in T$, we define translation operators τ_{a} by

$$
\begin{equation*}
\tau_{a} f: x \mapsto f(a x), \forall x \in \boldsymbol{T} \tag{2.8}
\end{equation*}
$$

3. Strict inclusion results for $A^{p}, p \in[1,2]$

In this section we will prove constructively the following strict inclusions:

$$
\begin{equation*}
\bigcup_{p \in[1, q)} A^{p} \underset{\neq}{\subsetneq} A^{q} \text { if } q \in(1,2] \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
A^{q} \subsetneq \bigcap_{p \in(q .2]} A^{p} \text { if } q \in[1,2) \tag{3.2}
\end{equation*}
$$

Construction 3.1 The strict inclusion (3.1).
Consider a given $q \in(1,2]$. Define $f_{k} \in T P$ by

$$
\begin{equation*}
f_{k}=\beta_{k, q} P_{k} e_{v_{k}}, \quad k=0,1,2, \cdots \tag{3.3}
\end{equation*}
$$

where the sequences $\left(\beta_{k . q}\right)$ and $\left(v_{k}\right)$ will be chosen appropriately, the latter in such a way to ensure that the $S_{k}=\operatorname{sp}\left(f_{k}\right)$ are disjoint. Now, from (2.1), (2.2) and (3.3) we have

$$
\begin{equation*}
N_{q}\left(f_{k}\right) \sim \beta_{k, q} 2^{k / q}, q \in(1,2] \tag{3.4}
\end{equation*}
$$

and

$$
\begin{equation*}
N_{p}\left(f_{k}\right) \sim \beta_{k, q} 2^{k / p}, p \in[1, q) . \tag{3.5}
\end{equation*}
$$

Define $f=\sum_{k=0}^{\infty} f_{k}$. Since $N_{q}(f) \leqq \sum_{k=0}^{\infty} N_{q}\left(f_{k}\right)$ it follows from (3.4) that a sufficient condition for $f \in A^{q}$ is that

$$
\begin{equation*}
\sum_{k=0}^{\infty} \beta_{k . q} 2^{k / q}<\infty, q \in(1,2] . \tag{3.6}
\end{equation*}
$$

Choose

$$
\begin{equation*}
\beta_{k . q}=(k+1)^{-2} 2^{-k / q}, \quad k=0,1,2, \cdots \tag{3.7}
\end{equation*}
$$

Then (3.6) is satisfied since

$$
\sum_{k=0}^{\infty} \beta_{k, q} 2^{k / q}=\sum_{k=0}^{\infty}(k+1)^{-2}<\infty .
$$

We will now show that, with $\left(\beta_{k . q}\right)$ as in (3.7), $f \notin \bigcup_{p \in[1 . q)} A^{p}$. Since the series defining f converges in A^{q},

$$
\hat{f}(n)= \begin{cases}\hat{f}_{k}(n) & n \in S_{k}, \quad k=0,1,2, \cdots, \tag{3.8}\\ 0 & n \notin \bigcup_{k} S_{k}\end{cases}
$$

where

$$
\hat{f}_{k}(n)= \begin{cases}\varepsilon_{k}(n)(k+1)^{-2} 2^{-k / q} & n \in S_{k} \tag{3.9}\\ 0 & n \notin S_{k}\end{cases}
$$

Also, for f_{k} defined as in (3.3),

$$
\begin{equation*}
S_{k}=\left\{n \in Z: v_{k} \leqq n \leqq v_{k}+2^{k}-1\right\} \tag{3.10}
\end{equation*}
$$

so each S_{k} is a finite set with cardinality

$$
\begin{equation*}
\left|S_{k}\right|=2^{k} \tag{3.11}
\end{equation*}
$$

Thus, making use of (3.8), (3.9) and (3.11),

$$
\begin{aligned}
M_{p}^{p}(f) & =\sum_{n \in Z}|\hat{f}(n)|^{p} \\
& =\sum_{k=0}^{\infty} \sum_{n \in S_{k}}\left|\hat{f}_{k}(n)\right|^{p} \\
& =\sum_{k=0}^{\infty}(k+1)^{-2 p} 2^{-k p / q} 2^{k} \\
& =\sum_{k=0}^{\infty}(k+1)^{-2 p} 2^{k(1-p / q)} \\
& =\infty \text { for } q \in(1,2], p \in[1, q)
\end{aligned}
$$

and so $f \notin \bigcup_{p \in[1, q)} A^{p}$.
We still need to choose $\left(v_{k}\right)$ appropriately. It is sufficient to choose $\left(v_{k}\right)$ to be a strictly monotonic increasing sequence such that

$$
\begin{equation*}
v_{k+1}>v_{k}+2^{k}-1, \quad k=0,1,2, \cdots, \tag{3.12}
\end{equation*}
$$

to ensure that the $S_{k}, k=0,1,2, \cdots$, are disjoint. (3.12) is satisfied by the choice

$$
\begin{equation*}
v_{k}=2^{k+1}, \quad k=0,1,2, \cdots, \tag{3.13}
\end{equation*}
$$

and our construction is completed.
Construction 3.2. The strict inclusion (3.2).
The method employed here is the same as in 3.1. Similar reasoning shows that, given $q \in[1,2)$,

$$
f=\sum_{k=0}^{\infty} f_{k},
$$

where

$$
f_{k}=(k+1)^{-1 / q} 2^{-k / q} P_{k} e_{2^{k+1}}, \quad k=0,1,2, \cdots,
$$

is such that $f \notin A^{q}$, but $f \in \bigcap_{p \in(q, 2]} A^{p}$.

4. The multipliers $\left(A^{p}, A^{p}\right), p \in[1,2]$

Lemma 4.1. $\left(A^{p}, A^{p}\right)=\left(A^{p}, C\right), p \in[1,2]$.
Proof. Since, for $p \in[1,2], A^{p} \subseteq C$ with a continuous injection,

$$
\begin{equation*}
\left(A^{p}, A^{p}\right) \subseteq\left(A^{p}, C\right) \tag{4.1}
\end{equation*}
$$

Conversely, suppose $\phi \in\left(A^{p}, C\right), p \in[1,2]$. Then

$$
\begin{equation*}
\|\phi * f\|_{\infty} \leqq \text { const. }\|f\|_{\infty}, \forall f \in T P \tag{4.2}
\end{equation*}
$$

Also, using (2.5),

$$
\begin{equation*}
|\hat{\phi}(n) \cdot \hat{f}(n)| \leqq\|\phi * f\|_{\infty} \leqq \text { const. } N_{p}(f), \forall f \in T P, \forall n \in Z \tag{4.3}
\end{equation*}
$$

Put $f=e_{n}$ in (4.3) to get

$$
\begin{equation*}
|\hat{\phi}(n)| \leqq \text { const., } \forall n \in Z \tag{4.4}
\end{equation*}
$$

Thus $\phi \in P M$, and so

$$
\begin{equation*}
\|\hat{\phi} \cdot \hat{f}\|_{p} \leqq\|\hat{\phi}\|_{\infty}\|\hat{f}\|_{p}<\infty, \quad \forall f \in A^{p} \tag{4.5}
\end{equation*}
$$

Hence, combination of (4.2) and (4.5) shows that

$$
N_{p}(\phi * f) \leqq \text { const. } N_{p}(f)
$$

and so by (2.4) $\phi \in\left(A^{p}, A^{p}\right)$. Thus

$$
\begin{equation*}
\left(A^{p}, C\right) \subseteq\left(A^{p}, A^{p}\right) \tag{4.6}
\end{equation*}
$$

Combination of (4.1) and (4.6) completes our proof.
4.2 In view of what was said in 2.3 and 2.6 , there is a $1-1$ correspondence $l \leftrightarrow \phi$ between $\left(A^{p}\right)^{\prime}$ and $\left(A^{p}, C\right)$ under which

$$
\begin{equation*}
l(f)=\phi * f(1), \quad \forall f \in T P . \tag{4.7}
\end{equation*}
$$

This is equivalent to

$$
\begin{equation*}
l\left(\tau_{x} f\right)=\phi * f(x), \quad \forall f \in T P, \quad \forall x \in T \tag{4.8}
\end{equation*}
$$

Lemma 4.3. To every $l \in\left(A^{p}\right)^{\prime}$ corresponds $\mu \in M$ and $\sigma \in P^{p^{\prime}}$ such that

$$
\begin{equation*}
l(f)=\mu * f(1)+\sigma * f(1), \quad \forall f \in T P \tag{4.9}
\end{equation*}
$$

The converse is also true.
Proof. Consider the mapping $f \mapsto(f, f), f \in T P$, and define

$$
\begin{equation*}
S=\left\{(f, \vec{f}) \in C \times l^{p}: f \in T P\right\} \tag{4.10}
\end{equation*}
$$

Take $l \in\left(A^{p}\right)^{\prime}$ and define a map l^{\prime} on S by

$$
\begin{equation*}
l^{\prime}:(f, \hat{f}) \mapsto l(f) \tag{4.11}
\end{equation*}
$$

l^{\prime} is well-defined since

$$
((f, \hat{f})=(g, \hat{g})) \Rightarrow(f=g)
$$

l^{\prime} is clearly linear; and since

$$
\begin{equation*}
\left|l^{\prime}((f, f))\right|=|l(f)| \leqq \text { const. } N_{p}(f)=\text { const. }\left(\|f\|_{\infty}+\|\hat{f}\|_{p}\right) \tag{4.12}
\end{equation*}
$$

l^{\prime} is continuous on S as a subspace of $C \times l^{p}$. Thus, by the Hahn-Banach Theorem, l^{\prime} can be extended to a continuous linear functional on the whole of $C \times l^{p}$. Denote this extension by l^{\prime} also. We can now write

$$
\begin{equation*}
l(f)=l^{\prime}((f, 0))+l^{\prime}((0, \hat{f})), \quad \forall f \in T P \tag{4.13}
\end{equation*}
$$

The mapping $f \mapsto l^{\prime}((f, 0))$ is a continuous linear functional on C, so it can be represented by a measure, $\mu \in M$, such that

$$
\begin{equation*}
l^{\prime}((f, 0))=\langle\check{\mu}, f\rangle=\mu * f(1), \quad \forall f \in C . \tag{4.14}
\end{equation*}
$$

Also, $\theta \mapsto l^{\prime}((0, \theta))$ is a continuous linear functional on $l^{p}, p \in[1,2]$, so it can be represented by an element, $\alpha \in l_{.}^{p^{\prime}}$, such that

$$
\begin{equation*}
l^{\prime}((0, \theta))=\sum_{n \in Z} \alpha(n) \theta(n) \tag{4.15}
\end{equation*}
$$

Define $\sigma \in P M^{p^{\prime}}$ by

$$
\begin{equation*}
\hat{\sigma}(n)=\alpha(n), \quad \forall n \in Z . \tag{4.16}
\end{equation*}
$$

Then, for $f \in T P$,

$$
\begin{equation*}
\sigma * f=\sum_{n \in Z} \hat{\sigma}(n) \hat{f}(n) e_{n} \tag{4.17}
\end{equation*}
$$

Thus, by (4.15), we can write

$$
\begin{equation*}
\sigma * f(1)=\sum_{n \in Z} \alpha(n) \hat{f}(n)=l^{\prime}((0, \hat{f})), \quad \forall f \in T P \tag{4.18}
\end{equation*}
$$

Combination of (4.13), (4.14) and (4.18) gives

$$
l(f)=\mu * f(1)+\sigma * f(1), \quad \forall f \in T P
$$

where $\mu \in M$ and $\sigma \in P M^{p^{\prime}}$.
Conversely, suppose $\mu \in M$ and $\sigma \in P M^{p^{\prime}}$. Consider the map $l: f \mapsto \mu * f(1)$ $+\sigma * f(1)$ on $T P$. We see that, for every $f \in T P$,

$$
\begin{aligned}
|l(f)| \leqq|\mu * f(1)|+|\sigma * f(1)| & \leqq\|\mu * f\|_{\infty}+\|\sigma * f\|_{\infty} \\
& \leqq\|\mu\|\|f\|_{\infty}+\|\hat{\sigma}\|_{p^{\prime}}\|\hat{f}\|_{p} \\
& \leqq \text { const. } N_{p}(f) .
\end{aligned}
$$

Thus $l \in\left(A^{p}\right)^{\prime}$.
THEOREM 4.4. $\left(A^{p}, C\right)=\left(A^{p}, A^{p}\right)=M+P M^{p^{\prime}}, \quad p \in[1,2]$.
Proof. By 4.1, $\left(A^{p}, A^{p}\right)=\left(A^{p}, C\right)$ for $p \in[1,2]$. By 4.2, $\phi \in\left(A^{p}, C\right)$ if and only if ϕ is such that

$$
\phi * f(x)=l\left(\tau_{x} f\right), \quad \forall f \in T P, \quad \forall x \in T
$$

for some $l \in\left(A^{p}\right)^{\prime}$. Thus, by $4.3, \phi \in\left(A^{p}, C\right)$ if and only if there exist $\mu \in M, \sigma \in P M^{p^{\prime}}$ such that, for every $f \in T P$ and ever $y x \in T$,

$$
\begin{aligned}
\phi * f(x)=l\left(\tau_{x} f\right) & =\mu * \tau_{x} f(1)+\sigma * \tau_{x} f(1) \\
& =\mu * f(x)+\sigma * f(x)
\end{aligned}
$$

This signifies that $\phi=\mu+\sigma$.
5. Strict inclusion results for $\left(A^{p}, A^{p}\right), p \in[1,2]$

Firstly, we will prove the following strict inclusion results:

$$
\begin{equation*}
\left(A^{q}\right)^{\prime} \underset{\neq}{\neq} \bigcap_{p \in[1, q)}\left(A^{p}\right)^{\prime} \text { if } q \in(1,2] \tag{5.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\bigcup_{p \in(q, 2]}\left(A^{p}\right)^{\prime} \nsubseteq\left(A^{q}\right)^{\prime} \text { if } q \in[1,2) . \tag{5.2}
\end{equation*}
$$

We note here that the wide inclusion " \subseteq " in (5.1) and (5.2) is trivial, since N_{r} is stronger than N_{s} if $r<s$.

Construction 5.1. The strict inclusion (5.1).
Consider a given $q \in(1,2]$. We wish to construct a linear functional, l say, on the space $T P$, such that

$$
\begin{equation*}
l(f)=\sum_{n \in Z} c_{n} \hat{f}(n), \quad f \in T P \tag{5.3}
\end{equation*}
$$

where $\left(c_{n}\right)$ is chosen so that l is not continuous in the topology induced by A^{q}, but l is continuous in the topology induced by \boldsymbol{A}^{p}, for every $p \in[1, q)$. For $p \in(1, q)$ it is sufficient to choose $\left(c_{n}\right) \in l^{p^{\prime}}$, for then, for every $f \in T P$,

$$
|l(f)| \leqq\left|\sum_{n \in Z} c_{n} \hat{f}(n)\right| \leqq\left\|\left(c_{n}\right)\right\|_{p^{\prime}} M_{p}(f) \leqq\left\|\left(c_{n}\right)\right\|_{p^{\prime}} N_{p}(f)
$$

Now define

$$
\begin{equation*}
f_{k}=\beta_{k, q} P_{k} e_{v_{k}}, \quad k=0,1,2, \cdots, \tag{5.4}
\end{equation*}
$$

where $\left(\beta_{k, q}\right)$ and $\left(v_{k}\right)$ will be chosen appropriately, the latter to ensure that the $S_{k}=\operatorname{sp}\left(f_{k}\right)$ are disjoint. We have

$$
\hat{f}_{k}(n)= \begin{cases}\varepsilon_{k}(n) \beta_{k, q} & n \in S_{k} \tag{5.5}\\ 0 & n \notin S_{k}\end{cases}
$$

Put

$$
c_{n}= \begin{cases}b_{k . q} \operatorname{sgn} \hat{f}_{k}(n)\left|\hat{f}_{k}(n)\right|^{q-1} & n \in S_{k} \tag{5.6}\\ 0 & n \notin \bigcup_{k} S_{k}\end{cases}
$$

where $\left(b_{k, q}\right)$ is a sequence of positive terms which will be chosen appropriately. Then $\left(c_{n}\right) \in l^{p^{\prime}}$ if and only if

$$
\left\|\left(c_{n}\right)\right\|_{p^{\prime}}^{p^{\prime}}=\sum_{n \in Z}\left|c_{n}\right|^{p^{\prime}}=\sum_{k=0}^{\infty} b_{k, q}^{p^{\prime}} \sum_{n \in S_{k}}\left|\hat{f}_{k}(n)\right|^{(q-1) p^{\prime}}<\infty ;
$$

which is equivalent to

$$
\begin{equation*}
\left\|\left(c_{n}\right)\right\|_{p^{\prime}}^{p^{\prime}}=\sum_{k=0}^{\infty} b_{k, q}^{p^{\prime}} \beta_{k, q}^{(q-1) p^{\prime}}\left|S_{k}\right|<\infty \tag{5.7}
\end{equation*}
$$

To ensure that l is not continuous in the topology induced by A^{q}, we seek to arrange that

$$
\begin{equation*}
\sup _{k}\left(\frac{\left|l\left(f_{k}\right)\right|}{N_{q}\left(f_{k}\right)}\right)=\infty \tag{5.8}
\end{equation*}
$$

By (2.1), (2.2) and (5.4),

$$
N_{q}\left(f_{k}\right) \sim \beta_{k \cdot q} 2^{k / q}
$$

Also,

$$
\left|l\left(f_{k}\right)\right|=\left|\sum_{n \in Z} c_{n} \hat{f}_{k}(n)\right|=\sum_{n \in S_{k}} b_{k, q}\left|\hat{f}_{k}(n)\right|^{q}=b_{k, q} \beta_{k, q}^{q}\left|S_{k}\right| .
$$

Thus (5.8) can be replaced by the condition

$$
\sup _{k}\left(\frac{b_{k, q} \beta_{k, q}^{q}\left|S_{k}\right|}{\beta_{k, q} 2^{k / q}}\right)=\infty ;
$$

that is, by

$$
\begin{equation*}
\sup _{k}\left(b_{k, q} \beta_{k, q}^{(q-1)} 2^{-k / q}\left|S_{k}\right|\right)=\infty \tag{5.9}
\end{equation*}
$$

(3.10) and (3.11) apply here, so (5.9) becomes

$$
\begin{equation*}
\sup _{k}\left(b_{k, q} \beta_{k, q}^{(q-1)} 2^{-k / q} 2^{k}\right)=\infty \tag{5.10}
\end{equation*}
$$

Choose

$$
\begin{equation*}
b_{k, q}=(k+1)^{-1 / q^{\prime}} ; \beta_{k, q}=(k+1)^{2 / q} 2^{-k / q}, \quad k=0,1,2, \cdots \tag{5.11}
\end{equation*}
$$

Then (5.7) is satisfied, since

$$
\begin{aligned}
\left\|\left(c_{n}\right)\right\|_{p^{\prime}}^{p^{\prime}} & =\sum_{k=0}^{\infty}(k+1)^{-p^{\prime} / q^{\prime}}(k+1)^{2\left(q^{2} 1\right) p^{\prime} / q} 2^{-k(q-1) p^{\prime} / q} 2^{k} \\
& =\sum_{k=0}^{\infty}(k+1)^{p^{\prime} / q} 2^{-k\left(p^{\prime} / q^{\prime}-1\right)} \\
& <\infty \quad \text { for } p \in(1, q)
\end{aligned}
$$

Also, (5.9) is satisfied, since

$$
\begin{aligned}
& \sup _{k}\left((k+1)^{-1 / q^{\prime}}(k+1)^{2(q-1) / q} 2^{-k(q-1) / q} 2^{-k / q} 2^{k}\right) \\
& =\sup _{k}\left[(k+1)^{1 / q^{\prime}}\right]=\infty \quad \text { for } q \in(1,2]
\end{aligned}
$$

As in 3.1 we can choose $\left(v_{k}\right)$ such that

$$
\begin{equation*}
v_{k}=2^{k+1}, \quad k=0,1,2, \cdots \tag{5.12}
\end{equation*}
$$

For the case $q \in(1,2]$ and $p=1$, it is sufficient to have $\left(c_{n}\right) \in l^{\infty}$. From (5.6) and (5.11),

$$
\left\|\left(c_{n}\right)\right\|_{\infty}=\sup _{n \in Z}\left|c_{n}\right|=\sup _{k}\left((k+1)^{1 / q^{\prime}} 2^{-k / q^{\prime}}\right)
$$

Since

$$
(k+1)^{1 / q^{\prime}} 2^{-k / q^{\prime}} \leqq 1, \quad \forall k \geqq 0, \quad q \in(1,2]
$$

we see that $\left\|\left(c_{n}\right)\right\|_{\infty}=1<\infty$, and so $\left(c_{n}\right) \in l^{\infty}$, and our construction is completed.
Construction 5.2. The strict inclusion (5.2).
Consider a given $q \in(1,2)$. The method employed here is the same as in 5.1, and similar reasoning shows that the linear functional, l, on $T P$, defined by

$$
\begin{equation*}
l(f)=\sum_{n \in Z} c_{n} \hat{f}(n), \tag{5.13}
\end{equation*}
$$

where

$$
c_{n}= \begin{cases}b_{k, q} \operatorname{sgn} \hat{f}_{k}(n)\left|\hat{f}_{k}(n)\right| & n \in S_{k} \tag{5.14}\\ 0 & n \notin \bigcup_{k} S_{k}\end{cases}
$$

$$
\begin{equation*}
f_{k}=\beta_{k, q} P_{k} e_{v_{k}}, \quad k=0,1,2, \cdots, \tag{5.15}
\end{equation*}
$$

$$
\begin{equation*}
b_{k, q}=(k+1)^{-1 / q^{\prime}} ; \beta_{k, q}=(k+1)^{-1} 2^{-k / q^{\prime}}, \quad k=0,1,2, \cdots \tag{5.16}
\end{equation*}
$$

is such that l is continuous in the topology induced by $A^{q}, q \in(1,2)$, but l is not continuous in the topology induced by A^{p} for every $p \in(q, 2]$.

We now consider the case $q=1$. We want to construct a suitable linear functional, l, on $T P$, of the form given in (5.13). $\left(c_{n}\right) \in l^{\infty}$ is a sufficient condition for l to be continuous in the topology induced by $A^{1}=A$. Choose

$$
c_{n}= \begin{cases}b_{k} \operatorname{sgn} \hat{f}_{k}(n) & n \in S_{k} \tag{5.17}\\ 0 & n \notin \bigcup_{k} S_{k}\end{cases}
$$

where $\left(b_{k}\right)$ is a sequence of positive terms which we will choose appropriately, and

$$
\begin{equation*}
f_{k}=P_{k} e_{v_{k}}, \quad k=0,1,2, \cdots \tag{5.18}
\end{equation*}
$$

To ensure that l is not continuous in the topology induced by $A^{p}, p \in(1,2]$, we seek to arrange that

$$
\begin{equation*}
\sup _{k}\left(\frac{\left|l\left(f_{k}\right)\right|}{N_{p}\left(f_{k}\right)}\right)=\infty, \quad \forall p \in(1,2] \tag{5.19}
\end{equation*}
$$

By (2.1), (2.2) and (5.18),

$$
N_{p}\left(f_{k}\right) \sim 2^{k / p}
$$

and

$$
\left|l\left(f_{k}\right)\right|=\left|\sum_{n \in Z} c_{n} \hat{f}_{k}(n)\right|=\sum_{n \in S_{k}} b_{k}\left|\hat{f}_{k}(n)\right|=b_{k}\left|S_{k}\right|
$$

so we can replace (5.19) by

$$
\begin{equation*}
\sup _{k}\left(b_{k}\left|S_{k}\right| 2^{-k / p}\right)=\infty, \quad \forall p \in(1,2] . \tag{5.20}
\end{equation*}
$$

(3.10) and (3.11) apply here, so (5.20) becomes

$$
\begin{equation*}
\sup _{k}\left[b_{k} 2^{k(1-1 / p)}\right]=\infty, \quad \forall p \in(1,2] \tag{5.21}
\end{equation*}
$$

Choose

$$
\begin{equation*}
b_{k}=1, k=0,1,2, \cdots \tag{5.22}
\end{equation*}
$$

Then $\left(c_{n}\right) \in l^{\infty}$ since

$$
\left\|\left(c_{n}\right)\right\|_{\infty}=\sup _{n \in Z}\left|c_{n}\right|=1<\infty
$$

and (5.21) is satisfied since

$$
\sup _{k}\left(2^{k(1-1 / p)}\right)=\infty, \quad \forall p \in(1,2] .
$$

Again, as in 3.1, we can choose $\left(v_{k}\right)$ such that

$$
v_{k}=2^{k+1}, k=0,1,2, \cdots
$$

and our construction is completed.
Theorem 5.3. The following strict inclusions hold:

$$
\begin{equation*}
\left(A^{q}, A^{q}\right) \subsetneq \bigcap_{p \in[1, q)}\left(A^{p}, A^{p}\right) \text { if } q \in(1,2] \tag{5.23}
\end{equation*}
$$

and

$$
\begin{equation*}
\bigcup_{p \in(q, 2]}\left(A^{p}, A^{p}\right) \underset{\neq}{\subsetneq}\left(A^{q}, A^{q}\right) \text { if } q \in[1,2) . \tag{5.24}
\end{equation*}
$$

Proof. By 5.1, if $q \in(1,2]$, then $\exists l \in \bigcap_{p \in[1, q)}\left(A^{p}\right)^{\prime}, l \notin\left(A^{q}\right)^{\prime}$. Let ϕ correspond to l as in 4.2. Then $\phi \in\left(A^{p}, C\right), \forall p \in[1, q)$ and $\phi \notin\left(A^{q}, C\right)$. Use of 4.1 gives the result (5.23).

Similar resoning can be used to derive (5.24) from 5.2.
6. The multipliers $\left(A^{p}, A^{q}\right), p \in[1,2], q \in[p, 2]$

Theorem 6.1. $\left(A^{p}, A^{q}\right)=\left(A^{p}, A^{p}\right)=M+P M^{p^{\prime}}, p \in[1,2], q \in[p, 2]$.
Proof. For $q \in[p, 2], A^{p} \subseteq A^{q}$ with continuous injection, so

$$
\begin{equation*}
\left(A^{p}, A^{q}\right) \supseteq\left(A^{p}, A^{p}\right), p \in[1,2], q \in[p, 2] . \tag{6.1}
\end{equation*}
$$

Conversely, since $A^{q} \subseteq C$ with continuous injection,

$$
\begin{equation*}
\left(A^{p}, A^{q}\right) \subseteq\left(A^{p}, C\right), p \in[1,2], q \in[p, 2] \tag{6.2}
\end{equation*}
$$

Use of 4.1 with (6.2) gives

$$
\begin{equation*}
\left(A^{p}, A^{q}\right) \subseteq\left(A^{p}, A^{p}\right), p \in[1,2], q \in[p, 2] . \tag{6.3}
\end{equation*}
$$

Combine (6.1) and (6.3) and then use 4.4 to deduce the required result.
7. The multipliers $\left(A^{p}, A^{q}\right), p \in[1,2], q \in[1, p)$.

Theorem 7.1. $M^{p q /(p-q)} \subseteq\left(A^{p}, A^{q}\right), p \in[1,2], q \in[1, p)$.
Proof. Consider $\mu \in M^{p q /(p-q)}$. Then, since $\mu \in M$,

$$
\begin{equation*}
\|\mu * f\|_{\infty} \leqq\|\mu\|\|f\|_{\infty}, \forall f \in T P, p \in[1,2] \tag{7.1}
\end{equation*}
$$

Also, Hölder's inequality gives for every $f \in T P$

$$
\sum_{n \in Z}|\hat{\mu}(n) \hat{f}(n)|^{q} \leqq\left(\sum_{n \in Z}|\hat{f}(n)|^{q s}\right)^{1 / s}\left(\sum_{n \in Z}|\hat{\mu}(n)|^{q s^{\prime}}\right)^{1 / s^{\prime}} .
$$

For $s=p / q, s^{\prime}=p /(p-q)$, this becomes
(7.2) $\sum_{n \in Z}|\hat{\mu}(n) \hat{f}(n)|^{q} \leqq\left(\sum_{n \in Z}|\hat{f}(n)|^{p}\right)^{q / p} \leqq\left(\sum_{n \in Z}|\hat{\mu}(n)|^{p q /(p-q)}\right)^{(p-q) / p q}, \quad \forall f \in T P$.

By (7.1) and (7.2), we have for $f \in T P$

$$
\begin{aligned}
N_{q}(\mu * f) & =\|\mu * f\|_{\infty}+\|\widehat{\mu f}\|_{q} \\
& \leqq\|\mu\|\|f\|_{\infty}+\|\hat{\mu}\|_{p q /(p-q)}\|\hat{f}\|_{p} \leqq \text { const. } N_{p}(f)
\end{aligned}
$$

Now refer to (2.4).
Theorem 7.2. $\phi \in\left(A^{2}, A^{q}\right) \Rightarrow \phi \in l^{2 q /(2-q)}, q \in[1,2)$.
Proof. From [3], Corollary 2.3, p. 468 it follows that, if $\hat{\phi} \cdot \hat{f} \in l^{q}(Z), q \in[1,2)$, for each $f \in C(T)$, then $\hat{\phi} \in l^{2 q /(2-q)}$. Since $A^{2}=C$, our result follows directly.

Theorem 7.3. $(C, A)=L^{2}$.

Proof. From 7.1,

$$
\begin{equation*}
L^{2}=M^{2} \subseteq\left(A^{2}, A^{1}\right)=(C, A) \tag{7.3}
\end{equation*}
$$

Conversely, suppose $\phi \in(C, A)$. Then, by 7.2, $\hat{\phi} \in l^{2}$, and so $\phi \in L^{2}$. Thus $(C, A) \subseteq L^{2}$.
7.4 We now establish preliminary results leading to a necessary condition for $\phi \in\left(A^{p}, A^{q}\right), p \in[1,2], q \in[1, p)$.

Consider

$$
\begin{equation*}
S=\left\{\left(c_{n}\right) \in l^{p}: \sum_{n \in \mathbb{Z} \backslash\{0\}}\left|c_{n}\right|^{2} \log ^{1+\varepsilon}|n|<\infty, \varepsilon>0\right\} \tag{7.4}
\end{equation*}
$$

Then, from [2], 14.3.6, p. 205, for $\left(c_{n}\right) \in S$, almost all the series

$$
\sum_{n \in Z} r_{|n|}(t) c_{n} e_{n}
$$

are the Fourier series of continuous functions. (In fact, of functions in A^{p}). If $\phi \in\left(A^{p}, A^{q}\right), p \in[1,2], p \in[1,2], q \in[1, p)$, then

$$
\phi * f \in A^{q}, \forall f \in A^{p},
$$

and so

$$
\left(\sum_{n \in \mathbb{Z}}\left|\hat{\phi}(n) c_{n}\right|^{q}\right)^{1 / q}<\infty, \forall c=\left(c_{n}\right) \in S
$$

Define a map $Q_{\phi}: S \rightarrow l^{q}$ by

$$
Q_{\phi}:\left(c_{n}\right) \mapsto\left(\hat{\phi}(n) c_{n}\right)
$$

Q_{ϕ} is clearly linear. It is not hard to see that S is a Banach space under the norm

$$
\|\cdot\|_{s}:\left(c_{n}\right) \mapsto\left(\sum_{n \in Z}\left|c_{n}\right| p\right)^{1 / p}+\left(\sum_{n \in Z \backslash\{0\}}\left|c_{n}\right|^{2} \log ^{1+\varepsilon}|n|\right)^{1 / 2}
$$

An application of the Closed Graph Theorem shows that Q_{ϕ} is a continuous map from S to l^{q}, so we have

$$
\begin{equation*}
\left(\sum_{n \in \mathbb{Z}}\left|\hat{\phi}(n) c_{n}\right|^{q}\right)^{1 / q} \leqq K\left[\left(\sum_{n \in \mathbb{Z}}\left|c_{n}\right|^{p}\right)^{1 / p}+\left(\sum_{n \in \mathbb{Z} \backslash(0\}}\left|c_{n}\right|^{2} \log ^{1+\varepsilon}|n|\right)^{1 / 2}\right] \tag{7.5}
\end{equation*}
$$

where $K=K(\phi, \varepsilon)$ is a constant.
Theorem 7.5. If $\phi \in\left(A^{p}, A^{q}\right), p \in[1,2], q \in[1, p)$, then for every $\varepsilon>0$,

$$
\sum_{|n| \leqq R}|\hat{\phi}(n)|^{p q /(p-q)} \leqq \max \left[1,\left(K\left(1+J_{R}\right)\right)^{p q /(p-q)}\right]
$$

where $K=K(\phi, \varepsilon)$ is independent of R and

$$
\begin{equation*}
J_{R}=\max _{0<|n| \leqq R}\left(|\hat{\phi}(n)|^{(2-p) q /(p-q)} \log ^{1+\varepsilon}|n|\right) \tag{7.6}
\end{equation*}
$$

Proof. Suppose $\phi \in\left(A^{p}, A^{q}\right), p \in[1,2], q \in[1, p)$. Then (7.5) holds. Choose $\left(c_{n}\right) \in S$ such that

$$
c_{n}= \begin{cases}|\hat{\phi}(n)|^{q /(p-q)} & |n| \leqq R \\ 0 & |n|>R\end{cases}
$$

and consider J_{R} as defined in (7.6). Then, on writing $\sigma_{R}=\Sigma_{|n| \leqq R}|\hat{\phi}(n)|^{p q /(p-q)}$, (7.5) yields

$$
\sigma_{R}^{1 / q} \leqq K\left(\sigma_{R}^{1 / p}+J_{R} \sigma_{R}^{1 / 2}\right)
$$

that is,

$$
\sigma_{R}^{1 / q-1 / p} \leqq K\left(1+J_{R} \sigma_{R}^{1 / 2-1 / p}\right)
$$

It follows that

$$
\sigma_{R} \leqq \max \left[1,\left(K\left(1+J_{R}\right)\right)^{p q /(p-q)}\right]
$$

Corollary 7.6. If $\phi \in\left(A^{p}, A^{q}\right), p \in[1,2], q \in[1, p)$, then

$$
\sum_{|n| \leqq R}|\hat{\phi}(n)|^{p q /(p-q)}=O\left\{(\log R)^{\Delta}\right\}
$$

where $\Delta=(1+\varepsilon) p q / 2(p-q)$, and $\varepsilon>0$.
Proof. Suppose $\phi \in\left(A^{p}, A^{q}\right), p \in[1,2], q \in[1, p)$. Then $\phi \in(A, C)=P M$, and it follows that $J_{R}=O\left\{(\log R)^{(1+\varepsilon) / 2}\right\}$, where J_{R} is defined in (7.6). Application of 7.5 now gives the desired result.

Corollary 7.7. If $\phi \in\left(A^{p}, A^{q}\right), p \in[1,2], q \in[1, p)$, and $J_{R}=O(1)$, where J_{R} is defined in (7.6), then $\hat{\phi} \in l^{p q /(p-q)}$.

Proof. This result follows directly from 7.5.

References

[1] Lynette M. Butler, 'Certain non-algebras in harmonic analysis', Bull. Austral. Math. Soc. 4 (1971), 247-254.
[2] R. E. Edwards, Fourier Series: A Modern Introduction. Vol. II. (Holt, Rinehart and Winston, Inc. 1967).
[3] R. E. Edwards, 'Changing signs of Fourier coefficients', Pacific J. Math. 15 (1965), 463-475.
[4] Y. Katznelson, An Introduction to Harmonic Analysis (John Wiley, 1968).
School of General Studies
Australian National University
Canberra A.C.T. 2600

