ON THE SPECTRUM OF \(n \)-TUPLES OF \(p \)-HYPONORMAL OPERATORS

by B. P. DUGGAL

(Received 27 June, 1996)

1. Introduction. Let \(B(H) \) denote the algebra of operators (i.e., bounded linear transformations) on the Hilbert space \(H \). \(A \in B(H) \) is said to be \(p \)-hyponormal \((0 < p \leq 1)\), if \((AA^*)^p \leq (A^*A)^p\). (Of course, a 1-hyponormal operator is hyponormal.) The \(p \)-hyponormal property is monotonic decreasing in \(p \) and a \(p \)-hyponormal operator is \(q \)-hyponormal operator for all \(0 < q \leq p \). Let \(A \) have the polar decomposition \(A = U |A| \), where \(U \) is a partial isometry and \(|A| \) denotes the (unique) positive square root of \(A^*A \). If \(A \) has equal defect and nullity, then the partial isometry \(U \) may be taken to be unitary. Let \(\mathcal{HU}(p) \) denote the class of \(p \)-hyponormal operators for which \(U \) in \(A = U |A| \) is unitary. \(f((1/2) \) operators were introduced by Xia and \(\mathcal{HU}(p) \) operators for a general \(0 < p < 1 \) were first considered by Aluthge (see [1, 14]); \(\mathcal{HU}(p) \) operators have since been considered by a number of authors (see [3, 4, 5, 9, 10] and the references cited in these papers). Generally speaking, \(\mathcal{HU}(p) \) operators have spectral properties similar to those of hyponormal operators. Indeed, let \(A \in \mathcal{HU}(p) \), \((0 < p < 1/2)\), have the polar decomposition \(A = U |A| \), and define the \(\mathcal{HU}(p+1/2) \) operator \(\tilde{A} \) by \(\tilde{A} = |A|^{1/2} U |A|^{1/2} \). Let \(\tilde{A} = V |\tilde{A}| \) with \(V \) unitary and \(\tilde{A} \) be the hyponormal operator defined by \(\tilde{A} = |\tilde{A}|^{1/2} V |\tilde{A}|^{1/2} \). Then we have the following result.

Lemma 0. \(\sigma_\text{s}(A) = \sigma_\text{s}(\tilde{A}) \), where \(\sigma_\text{s} \) denotes either of the following: point spectrum, approximate point spectrum, eigenvalues of finite multiplicity, spectrum, Weyl spectrum, and essential spectrum.

Recall that an \(n \)-tuple \(\mathcal{A} = (A_1, A_2, \ldots, A_n) \) of operators is said to be doubly commuting if \(A_i A_j - A_j A_i = 0 \) and \(A_i^* A_j - A_j A_i^* = 0 \), for all \(1 \leq i \neq j \leq n \). Doubly commuting \(n \)-tuples \(\mathcal{A} \) of operators in \(\mathcal{HU}(p) \) have been considered by Munee Cho in [3], where it is shown that a weak Putnam theorem holds for \(\mathcal{A} \) and that \(\mathcal{A} \) is jointly normaloid. In this note we study the relationship between the spectral properties of \(\mathcal{A} \) and \(\mathcal{A} = (\tilde{A}_1, \tilde{A}_2, \ldots, \tilde{A}_n) \), and prove that \(\sigma_\text{s}(\mathcal{A}) = \sigma_\text{s}(\tilde{A}) \), where \(\sigma_\text{s} \) is either the joint point spectrum or the joint approximate point spectrum or the joint (Taylor) spectrum. This then leads us to:

(a) \(\| \mathcal{A} \| = \| \tilde{\mathcal{A}} \| \);
(b) if \(\sigma(\mathcal{A}) \in \mathbb{R}^n \), then \(A_i \) is self-adjoint, for all \(1 \leq i \leq n \).

We show that the (Cho-Takaguchi) joint Weyl spectrum of \(\mathcal{A} \) is contained in the (Taylor) spectrum \(\sigma(\mathcal{A}) \) of \(\mathcal{A} \) minus the set of isolated points of \(\sigma(\mathcal{A}) \) which are joint eigenvalues of finite multiplicity, and that \(\mathcal{A} \) and \(\tilde{\mathcal{A}} \) have the same (Harte) essential spectrum. We conclude this note with a result (in the spirit of Dash [8, Corollary 4.6]) on the joint eigenvalues of \(\mathcal{A} \) in the Calkin algebra.

We assume henceforth, without loss of generality, that \(0 < p < 1/2 \). Most of the notation that we use in this note is standard (and usually explained at the first instance of

occurrence). The following theorem, the n-tuple version of the Berberian extension theorem, will play an important role in the sequel.

Theorem B. If \(\mathcal{A} = (A_1, A_2, \ldots, A_n) \) is an n-tuple of commuting operators on \(H \), then there exists a Hilbert space \(H^0 \supset H \) and an isometric \(*\)-isomorphism \(A_i \to A^0_i \), \((1 \leq i \leq n) \), preserving order such that \(\sigma_p(A_i) = \sigma_p(A^0_i) = \sigma_A(\mathcal{A}) \) and \(\sigma_A(\mathcal{A}) = \sigma_A(A_1, A_2, \ldots, A_n) = \sigma_p(A_1^0, A_2^0, \ldots, A_n^0) = \sigma_p(\mathcal{A}^0) \). (Here \(\sigma_p(\mathcal{A}) \) and \(\sigma_A(\mathcal{A}) \) denote, respectively, the joint spectrum and the joint approximate point spectrum (defined below) of \(\mathcal{A} \).)

It is my pleasure to thank Professor Muneo Cho for supplying me with off-prints and preprints of his papers.

2. Results. Throughout the following \(\mathcal{A} = (A_1, A_2, \ldots, A_2) \) will denote a doubly commuting (i.e., \(A_i A_j - A_j A_i = 0 \) and \(A_i^* A_j - A_j^* A_i = 0 \), for all \(1 \leq i \neq j \leq n \)) n-tuple of \(\mathcal{H} U(p) \) operators \(A_i \), \((1 \leq i \leq n) \). Given \(A_i = U_i |A_i| \), define \(\hat{A}_i \) by \(\hat{A}_i = |A_i|^{1/2} U_i |A_i|^{1/2} \); also, letting \(\hat{A}_i \) have the polar decomposition \(\hat{A}_i = V_i |\hat{A}_i| \), define \(\hat{A}_i \) by

\[
\hat{A}_i = |\hat{A}_i|^{1/2} V_i |\hat{A}_i|^{1/2} \quad (1 \leq i \leq n).
\]

The n-tuples \(\mathcal{A} \) and \(\mathcal{A}_1 \) are then defined by \(\mathcal{A} = (\hat{A}_1, \hat{A}_2, \ldots, \hat{A}_n) \) and \(\mathcal{A}_1 = (\hat{A}_1, \hat{A}_2, \ldots, \hat{A}_n) \).

Lemma 1. \(\mathcal{A} \) is doubly commuting \(\Rightarrow \mathcal{A} \) is doubly commuting \(\Rightarrow \mathcal{A}_1 \) is doubly commuting. Also, \(\mathcal{A} \) is doubly commuting \(\Rightarrow [A_i, |\hat{A}_i|] = 0 = [\hat{A}_i, |\hat{A}_j|] = 0 \), for \(1 \leq i \neq j \leq n \), where \([A, B]\) denotes the commutator \(AB - BA \) of \(A \) and \(B \).

Proof. Given \(A_i = U_i |A_i| \) and \(\hat{A}_i = V_i |\hat{A}_i| \), the doubly commuting hypothesis on \(\mathcal{A} \) implies that

\[
[U_i, U_j] = [A_i, A_j] = [A_i, A_j^*] = 0,
\]

for all \(1 \leq i \neq j \leq n \). (See [11, Theorems 2 and 4].) Consequently, \(\mathcal{A}_1 \) is doubly commuting and so

\[
[V_i, V_j] = [|\hat{A}_i|, |\hat{A}_j|] = [|\hat{A}_i|, V_j] = 0,
\]

for all \(1 \leq i \neq j \leq n \). This implies that \(\mathcal{A}_1 \) is doubly commuting. The argument above also implies that \([A_i, \hat{A}_j] = [A_i, \hat{A}_j^*] = [\hat{A}_i, \hat{A}_j] = [\hat{A}_i, \hat{A}_j^*] = 0\), for all \(1 \leq i \neq j \leq n \). Hence, also,

\[
[A_i, |\hat{A}_j|] = [\hat{A}_i, |\hat{A}_j|] = 0,
\]

for all \(1 \leq i \neq j \leq n \).

In the following we shall denote the Taylor joint spectrum of \(\mathcal{A} \) by \(\sigma(\mathcal{A}) \). (See [13] for the definition of Taylor spectrum of a commuting n-tuple of operators.) We say that \(\lambda = (\lambda_1, \lambda_2, \ldots, \lambda_n) \), \((\lambda_i \in \mathbb{C} \text{ for all } 1 \leq i \leq n) \), is in the joint approximate point spectrum \(\sigma_A(\mathcal{A}) \) of \(\mathcal{A} \) if there exists a sequence \(\{x_k\} \) of unit vectors in \(H \) such that

\[
\|(A_i - \lambda_i)x_k\| \to 0 \quad \text{as } \quad k \to \infty,
\]

for all \(1 \leq i \leq n \); \(\lambda = (\lambda_1, \lambda_2, \ldots, \lambda_n) \), \((\lambda_i \in \mathbb{C} \text{ for all } 1 \leq i \leq n) \), is in the joint point spectrum \(\sigma_p(\mathcal{A}) \) of \(\mathcal{A} \) if there exists a non-trivial vector \(x \in H \) such that

\[
(A_i - \lambda_i)x = 0, \quad \text{for all } \quad 1 \leq i \leq n.
\]
We say that $\lambda = (\lambda_1, \lambda_2, \ldots, \lambda_n)$ is in the normal point spectrum $\sigma_{np}(A)$ of A if there exists a non-trivial vector $x \in H$ such that $(A_i - \lambda_i)x = 0 \iff (A_i - \lambda_i)^*x = 0$, for all $1 \leq i \leq n$.

Lemma 2. $\sigma_p(A) = \sigma_{np}(A) = \sigma_{np}(\tilde{A}) = \sigma_p(\tilde{A})$.

Proof. Let $\lambda = (\lambda_1, \lambda_2, \ldots, \lambda_n) \in \sigma_p(A)$ and let $x \in H$ be such that $x \neq 0$ and $(A_i - \lambda_i)x = 0$, for all $1 \leq i \leq n$. It is easily seen that $\tilde{A}_i |\tilde{A}_i|^{1/2} |A_i|^{1/2} = |\tilde{A}_i|^{1/2} |A_i|^{1/2} A_i$; hence $A_i|A_i|^{1/2} |A_i|^{1/2} x = \lambda_i |\tilde{A}_i|^{1/2} |A_i|^{1/2} x$, for all $1 \leq i \leq n$. Let $y = \prod_{i=1}^{n'} |\tilde{A}_i|^{1/2} |A_i|^{1/2} x$, where """" on the product """" $\prod_{i=1}^{n'}$ """" denotes that only those $|A_i|$ s, (and so also $|\tilde{A}_i|$ s), appear in the product for which λ_i in $A_i x = \lambda_i x$ does not equal 0. Then y is non-trivial, and $A_i y = \lambda_i y$, for all $i = 1, 2, \ldots, n$ for which $\lambda_i \neq 0$.

If $\lambda_i = 0$, i.e. $A_i x = 0$, then $|A_i|^{1/2} x = 0$. This implies that $\tilde{A}_i x = 0$. Since this in turn implies that $|\tilde{A}_i|^{1/2} x = 0$, we conclude that $\tilde{A}_ix = 0$. Since $[A_i, \tilde{A}_i] = 0$ for all $1 \leq i \neq j \leq n$, we have that $\tilde{A}_i y = 0$. Consequently, $\lambda \in \sigma_p(A)$ and $\sigma_p(\tilde{A}) \subseteq \sigma_p(A)$.

If, on the other hand, $\lambda = (\lambda_1, \lambda_2, \ldots, \lambda_n) \in \sigma_p(A)$, then there is a non-trivial $x \in H$ such that $(\tilde{A}_i - \lambda_i)x = 0$ and $(\tilde{A}_i^* - \lambda_i^*)x = 0$ for all $1 \leq i \leq n$. Since $A_i^* |A_i|^{1/2} |\tilde{A}_i|^{1/2} x = |A_i|^{1/2} |\tilde{A}_i|^{1/2} \tilde{A}_i^* x$, $A_i^* |A_i|^{1/2} |\tilde{A}_i|^{1/2} x = \lambda_i |\tilde{A}_i|^{1/2} |A_i|^{1/2} x$, for all $1 \leq i \leq n$. Defining $(0 \neq)y$ by $y = \prod_{i=1}^{n'} |A_i|^{1/2} |\tilde{A}_i|^{1/2} x$, where $\prod_{i=1}^{n'}$ has meaning similar to that above, we have $A_i^* y = \tilde{A}_i y$, for all $i = 1, 2, \ldots, n$ such that $\lambda_i \neq 0$. Since $\lambda_i \in \sigma_p(\tilde{A}_i)$ implies $\lambda_i \in \sigma_p(A_i) = \sigma_{np}(A_i)$ (see Lemma 0), $A_i y = \lambda_i y$ for all $i = 1, 2, \ldots, n$ such that $\lambda_i \neq 0$. Now if $\tilde{A}_i x = 0$, then $0 \in \sigma_p(\tilde{A}_i) = \sigma_p(A_i)$ and $\tilde{A}_i x = 0 \Rightarrow |\tilde{A}_i|^{1/2} V_i^* |\tilde{A}_i|^{1/2} x = 0$

$\Rightarrow \tilde{A}_i |\tilde{A}_i|^{1/2} x = 0 \Rightarrow \tilde{A}_i x = 0$.

$|\tilde{A}_i|^{1/2} x = 0 \Rightarrow \tilde{A}_i x = 0$.

$A_i^* |A_i|^{1/2} x = 0 \Rightarrow A_i |A_i|^{1/2} x = 0$.

$|A_i|^{1/2} x = 0 \Rightarrow A_i x = 0$.

(Line 2 follows since $0 \in \sigma_p(A_i)$. Line 4 follows because $0 \in \sigma_p(A_i) \subseteq \sigma_p(A_i)$.) Consequently, $A_i y = 0$ for such an i. Hence $\sigma_p(\tilde{A}) \subseteq \sigma_p(A_i)$. Since $\sigma_p(A_i) = \sigma_{np}(A_i)$ and $\sigma_p(\tilde{A}) = \sigma_{np}(\tilde{A})$, for all $1 \leq i \leq n$, this completes the proof.
Lemma 3. \(\sigma_\pi(\mathcal{A}) = \sigma_{n\pi}(\mathcal{A}) = \sigma_{n\pi}(\overline{\mathcal{A}}) = \sigma_\pi(\overline{\mathcal{A}}). \)

Proof. Letting \(A^0 = (A^0_1, A^0_2, \ldots, A^0_n) \) denote the Berberian extension of \(\mathcal{A} \) (see Theorem B), it follows from Lemma 2 that

\[
\sigma_\pi(\mathcal{A}) = \sigma_\pi(\mathcal{A}^0) = \sigma_{n\pi}(\mathcal{A}^0) = \sigma_{n\pi}(\overline{\mathcal{A}}^0) = \sigma_\pi(\overline{\mathcal{A}}).
\]

We are now in a position to prove the equality of the (Taylor) spectra of \(\mathcal{A} \) and \(\overline{\mathcal{A}} \).

Theorem 1. \(\sigma(\mathcal{A}) = \sigma(\overline{\mathcal{A}}) \).

Proof. Let \(\lambda = (\lambda_1, \lambda_2, \ldots, \lambda_n) \in \sigma(\mathcal{A}) \). Then there exists a partition

\[
\{i_1, \ldots, i_m\} \cup \{j_1, \ldots, j_s\} \text{ of } \{1, 2, \ldots, n\}
\]

and a sequence \(\{x_k\} \) of unit vectors in \(H \) such that

\[
(A_{i_k} - \lambda_{i_k})x_k \to 0 \quad \text{and} \quad (A^*_{j_k} - \overline{\lambda}_{j_k})x_k \to 0 \quad \text{as} \quad k \to \infty,
\]

for all \(1 \leq r \leq m \) and \(1 \leq \ell \leq s \). (See [7, Corollary 3.3].) Let \(\mathcal{A}^0 \) denote the Berberian extension \((A^0_1, \ldots, A^0_m, A^0_{i_1}, \ldots, A^0_{i_m}) \) of \(\mathcal{A} \), and let \(\mathcal{B} = (A^0_1, \ldots, A^0_m, A^0_{i_1}, \ldots, A^0_{i_m}) \). Then

\[
(\lambda_{i_1}, \ldots, \lambda_{i_m}, \overline{\lambda}_{j_1}, \ldots, \overline{\lambda}_{j_s}) \in \sigma_p(\mathcal{B}).
\]

Since \(\sigma_p(A^0_{i_k}) = \sigma_p(\overline{A}^0_{j_k}) = \sigma_{n\pi}(\overline{A}^0_{j_k}) \), for all \(1 \leq r \leq m \), and since

\[
\overline{A}^0_{j_k} |A^*_j|^{1/2} V^*_j |A_j|^{1/2} U^*_j = |\overline{A}^0_{j_k}|^{1/2} V^*_j |A_j|^{1/2} U^*_j A^*_j,
\]

it follows (from an argument similar to that used in the proof of Lemma 2) that \(\sigma_p(\mathcal{B}) \subseteq \sigma_p(\overline{\mathcal{A}}) \) and

\[
\lambda \in \sigma_p(\overline{\mathcal{A}}) \subseteq \sigma(\overline{\mathcal{A}}) \subseteq \sigma(\overline{\mathcal{A}}^*).
\]

Hence \(\lambda \in \sigma(\overline{\mathcal{A}}) \), and \(\sigma(\mathcal{A}) \subseteq \sigma(\overline{\mathcal{A}}) \).

Conversely, if \(\lambda \in \sigma(\overline{\mathcal{A}}) \) then (from an argument similar to that above) \(\overline{\lambda} \in \sigma_p(\overline{\mathcal{A}}) \). This implies that \(\lambda \in \sigma_p(\mathcal{A}^*) \subseteq \sigma(\mathcal{A}^*) \), \(\lambda \in \sigma(\mathcal{A}) \) and \(\sigma(\mathcal{A}) \subseteq \sigma(\mathcal{A}) \). Hence

\(\sigma(\mathcal{A}) = \sigma(\overline{\mathcal{A}}) \), and the proof is complete.

The joint spectral radius \(r(\mathcal{T}) \) and the joint operator norm \(\|\mathcal{T}\| \) of an \(n \)-tuple \(\mathcal{T} = (T_1, T_2, \ldots, T_n) \) are defined by

\[
\|\mathcal{T}\| = \sup\left\{ \left(\sum_{i=1}^n \|T_i x\|^2 \right)^{1/2} : x \in H, \|x\| = 1 \right\},
\]

and

\[
r(\mathcal{T}) = \left(\sum_{i=1}^n |\lambda_i|^2 \right)^{1/2} : \lambda = (\lambda_1, \lambda_2, \ldots, \lambda_n) \in \sigma(\mathcal{T}) \right\}.
\]

See [6]. The operators \(\mathcal{A} \) and \(\overline{\mathcal{A}} \) being jointly normaloid (see [3, Theorem 9] and [6, Theorem 3.4]), \(r(\mathcal{A}) = \|\mathcal{A}\| \) and \(r(\overline{\mathcal{A}}) = \|\overline{\mathcal{A}}\| \). Theorem 1 thus implies the following result.
Corollary 1. \|A\| = \|\hat{A}\| = \|\tilde{A}\|.

That \|A\| = \|\hat{A}\| for a single operator \(A \in HU(p)\) has been proved by M. Fujii et al. in [10].

Given a semi-normal (i.e., hyponormal or co-hyponormal) operator \(T = X + iY\), a well known result of Putnam [12] states that if a real number \(r \in \sigma(X)\) (or \(r + is \in \sigma(T)\), for some real numbers \(r\) and \(s\)), then there exists a real number \(s\) such that \(r + is \in \sigma(T)\) (resp., \(r \in \sigma(X)\) and \(s \in \sigma(Y)\)). This result extends to doubly commuting \(n\)-tuples of hyponormal operators [4]. Does a similar result hold (for \(A \in HU(p)\) and) doubly commuting \(n\)-tuples in \(HU(p)\)? The technique of this paper (seemingly) does not lend to a proof of this. We do however have the following analogue for \(HU(p)\) operators of a result on \(n\)-tuples of doubly commuting hyponormal operators with spectrum in \(\mathbb{R}^n\). (See [4, Corollary].)

Corollary 2. If \(\sigma(A) \subseteq \mathbb{R}^n\), then \(A_i\) is self-adjoint, for all \(1 \leq i \leq n\).

Proof. Since \(\sigma(A) = \sigma(A) \subseteq \mathbb{R}^n\), \(A_i\) is self-adjoint, for all \(1 \leq i \leq n\), by [4]. Recall that \(A_i\) is normal if and only if \(\hat{A}_i\) is normal [9, Corollary 2]; hence \(A_i\) is self-adjoint, for all \(1 \leq i \leq n\).

Following Chô [2], we define the joint Weyl spectrum \(\sigma_w(T)\) of a commuting \(n\)-tuple \(T\) by

\[\sigma_w(T) = \bigcap \{\sigma(T + \mathcal{K}) ; \mathcal{K}\text{ is an }n\text{-tuple of compact operators and }\langle T + \mathcal{K}\rangle\text{ is a commuting }n\text{-tuple}\}. \]

Let \(\sigma_{\text{iso}}(T)\) denote the set of isolated points of \(\sigma(T)\) which are joint eigen-values of finite multiplicity of \(T\). It is clear from Theorem 1 that, if \(\lambda\) is an isolated point of \(\sigma(A)\), then \(\lambda\) is an isolated point of \(\sigma(A)\). The operator \(A\) being a doubly commutative \(n\)-tuple of hyponormal operators, an isolated point \(\lambda\) of \(\sigma(A)\) is a point of \(\sigma_p(A)\). Hence by Lemma 2 we have the following result.

Corollary 3. If \(\lambda\) is an isolated point of \(\sigma(A)\), then \(\lambda \in \sigma_p(A)\).

Recall that if \(A\) is \(p\)-hyponormal, then \(\sigma_w(A) = \sigma(A) - \sigma_{\text{iso}}(A)\) by [9] and if \(T\) is a doubly commuting \(n\)-tuple of hyponormal operators, then \(\sigma_w(T) \subseteq \sigma(T) - \sigma_{\text{iso}}(T)\) by [2].

Theorem 2. \(\sigma_w(A) \subseteq \sigma(A) - \sigma_{\text{iso}}(A)\).

Proof. Suppose \((\lambda_1, \lambda_2, \ldots, \lambda_n) \in \sigma_{\text{iso}}(A)\), and let \(N = \ker \left(\sum_{i=1}^{n} (A_i - \lambda_i)^*(A_i - \lambda_i) \right)\).

Since \(\lambda \in \sigma_p(A)\) if and only if \(0 \in \sigma_p(\sum_{i=1}^{n} (A_i - \lambda)^*(A_i - \lambda_i))\), \(N\) is finite dimensional. By Lemma 2, \(\sigma_p(A) = \sigma_{np}(A)\); hence \(N\) reduces \(A_i\) to \(N\) \(= (A_1 | N, A_2 | N, \ldots, A_n | N)\) is normal and \(A_i = A_i | N^\perp = (A_1 | N^\perp, A_2 | N^\perp, \ldots, A_n | N^\perp)\) is a doubly commuting \(n\)-tuple of \(HU(p)\) operators. Let \(P\) be the orthogonal projection of \(H\) onto \(N\); \(P\) is then a compact operator which satisfies \([A_i, P] = [A_i^*, P] = 0\) for all \(i = 1, 2, \ldots, n\). The operator

\[A + P = \left(A_1 + \frac{1}{\sqrt{n}} P, A_2 + \frac{1}{\sqrt{n}} P, \ldots, A_n + \frac{1}{\sqrt{n}} P \right) \]
is a doubly commuting n-tuple. Let

$$R = (\mathcal{A} + \mathcal{P}) | N = \left(\left(A_1 + \frac{1}{\sqrt{n}} P \right) | N, \left(A_2 + \frac{1}{\sqrt{n}} P \right) | N, \ldots, \left(A_n + \frac{1}{\sqrt{n}} P \right) | N \right),$$

$$\mathcal{F} = (\mathcal{A} + \mathcal{P}) | N^\perp.$$

\(R\) and \(\mathcal{F}\) are then doubly commuting n-tuples such that \(\sigma(\mathcal{A} + \mathcal{P}) = \sigma(R) \cup \sigma(\mathcal{F}).\)

Suppose that \(\lambda \in \sigma(\mathcal{A} + \mathcal{P}).\) Then \(\lambda \notin \sigma(R)\) and so \(\lambda\) must be an isolated point of \(\sigma(\mathcal{F}).\) There exists a partition \(\{i_1, \ldots, i_m\} \cup \{j_1, \ldots, j_s\}\) of \(\{1, 2, \ldots, n\}\) and a sequence \(\{x_k\}\) of unit vectors in \(N^\perp\) such that

$$\left(A_{i_k} - \lambda_{i_k} + \frac{1}{\sqrt{n}} P \right)x_k \to 0 \quad \text{and} \quad \left(A_{j_k} - \lambda_{j_k} + \frac{1}{\sqrt{n}} P \right)x_k \to 0 \quad \text{as} \quad k \to \infty.$$

But then \(\lambda \in \sigma(\mathcal{A}_i)\) and hence (by Corollary 3) \(\lambda \in \sigma_p(\mathcal{A}_i).\) Thus there exists an \(x \in N^\perp\) such that \((A_i - \lambda_i)x = 0,\) for all \(i = 1, 2, \ldots, n.\) Since this is a contradiction, we must have \(\lambda \notin \sigma_w(\mathcal{F}).\)

Remarks. (i) the Taylor–Weyl spectrum of \(\mathcal{F}, \sigma_{TW}(\mathcal{F}),\) is defined to be the set of \(\lambda = (\lambda_1, \lambda_2, \ldots, \lambda_n)\) such that \((\mathcal{F} - \lambda)\) is not Taylor–Weyl (where \(\mathcal{F} - \lambda\) is said to be Taylor–Weyl if \(\mathcal{F} - \lambda\) is Fredholm and index \((\mathcal{F} - \lambda) = 0).\) Theorem 2 implies that \(\sigma(\mathcal{A}) \cap \sigma_{TW}(\mathcal{A}) \subseteq \sigma_{TW}(\mathcal{F}).\) The inclusion \(\sigma(\mathcal{A}) \cap \sigma_{TW}(\mathcal{A}) \subseteq \sigma_{TW}(\mathcal{F})\) does not hold (even for hyponormal \(\mathcal{A}\)).

(ii) Given a \(p\)-hyponormal operator \(A, \sigma_{\omega}(A) = \sigma_{\omega}(\hat{A})\) by [9]. Does \(\sigma_{\omega}(\mathcal{A}) = \sigma_{\omega}(\hat{A})?\)

The Harte spectrum \(\sigma_{\epsilon}(\mathcal{F})\) of the commutative n-tuple \(\mathcal{F}\) is defined to be \(\sigma_{\epsilon}(\mathcal{F}) = \sigma'(\mathcal{F}) \cup \sigma'^*(\mathcal{F}),\) where \(\sigma'(\mathcal{F})\) (respectively, \(\sigma'^*(\mathcal{F})\)) is the set of \(\lambda = (\lambda_1, \lambda_2, \ldots, \lambda_n)\) such that \((\mathcal{F} - \lambda_{\alpha})_{1 \leq \alpha \leq n}\) generates a proper left (resp., right) ideal in \(B(H).\) The (Harte) essential spectrum \(\sigma_{\epsilon}(\mathcal{F})\) is defined by \(\sigma_{\epsilon}(\mathcal{F}) = \sigma(a),\) where \(a = (a_1, a_2, \ldots, a_n) = \pi(\mathcal{F})\) and \(\pi\) is the canonical homomorphism of \(B(H)\) onto the Calkin algebra \(B(H)/K(H); K(H)\) is the algebra of compact operators on \(H.\) For a single linear operator, the (Harte) essential spectrum coincides with the essential spectrum; the following extends the conclusion \(\sigma_{\epsilon}(A) = \sigma_{\epsilon}(\hat{A})\) of Lemma 0 to \(\sigma_{\epsilon}(\mathcal{A}).\)

Theorem 3. \(\sigma_{\epsilon}(\mathcal{A}) = \sigma_{\epsilon}(\hat{A}).\)

Proof. Suppose \(\lambda \in \sigma_{\epsilon}(\mathcal{A}).\) Then, \(\mathcal{A}\) being a hyponormal n-tuple, there exists a sequence \(\{x_k\}\) of unit vectors converging weakly to \(0\) in \(H\) such that

$$\| (\hat{\lambda}_i - \lambda_i) x_k \| \to 0 \quad \text{as} \quad k \to \infty, \quad \text{for all} \quad 1 \leq i \leq n,$$

by [8, Theorem 2.6]. Let \(\{y_k\}\) be the sequence defined by

$$y_k = \left(\prod_{i=1}^{n} |A_i|^{1/2} |\hat{A}_i|^{1/2} x_k \right) / \left(\prod_{i=1}^{n} |A_i|^{1/2} |\hat{A}_i|^{1/2} \right),$$

where “""" on the product \(\prod_{i=1}^{n} \) denotes that only those \(|A_i|s\) and \(|\hat{A}_i|s\) appear in the product.
for which \(\lambda_i \neq 0 \). (Notice that if \(\|A_i^{1/2}x_k\| \) or \(\|A_i^{1/2}|A_i|^{1/2}x_k\| \to 0 \) as \(k \to \infty \), for some \(i \) with \(1 \leq i \leq n \), then \(\|A_i^{1/2}x_k\| \) and \(\|A_i^{1/2}x_k\| \to 0 \) as \(k \to \infty \).) Since \((x_k, h) \to 0 \) as \(k \to \infty \) for all \(h \in H \), \((y_k, h) \to 0 \) as \(k \to \infty \) and

\[
\|(A_j - \lambda_j)^*y_k\| = \left\| \frac{\prod_{i=1}^n |A_i|^{1/2} |A_i|^{1/2}x_k}{\prod_{i=1}^n |A_i|^{1/2} |A_i|^{1/2}x_k} \right\| \to 0 \quad \text{as} \quad k \to \infty,
\]

for all \(1 \leq j \leq n \). Thus \(\lambda \in \sigma_c(\mathcal{A}) \) and \(\sigma_c(\mathcal{A}) \subseteq \sigma_c(\mathcal{A}) \).

Consider now \(\lambda \in \sigma_c(\mathcal{A}) = \sigma'_c(\mathcal{A}) \cup \sigma_s(\mathcal{A}) \). Suppose that \(\lambda \in \sigma'_c(\mathcal{A}) \); then there exists a sequence \(\{x_k\} \) of unit vectors converging weakly to \(0 \) in \(H \) such that \(\|(A_i - \lambda_i)x_k\| \to 0 \) as \(k \to \infty \), for all \(1 \leq i \leq n \). Defining the sequence \(\{y_k\} \) by

\[
y_k = \frac{\left(\prod_{i=1}^n |A_i|^{1/2} |A_i|^{1/2}x_k \right)}{\left(\prod_{i=1}^n |A_i|^{1/2} |A_i|^{1/2}x_k \right)},
\]

(where \(\prod_{i=1}^n \) has a meaning similar to that above), an argument similar to that above shows that \(\{y_k\} \) is a sequence of unit vectors converging weakly to \(0 \) in \(H \) such that

\[
\|(A_j - \lambda_j)y_k\| \to 0 \quad \text{as} \quad k \to \infty, \quad \text{for all} \quad 1 \leq i \leq n.
\]

Hence \(\lambda \in \sigma'_c(\mathcal{A}) \). A similar argument shows that if \(\lambda \in \sigma'_s(\mathcal{A}) \) then \(\lambda \in \sigma'_c(\mathcal{A}) \). Thus \(\sigma_c(\mathcal{A}) \subseteq \sigma_c(\mathcal{A}) \), and the proof is complete.

Corollary 4. \(\sigma_c(\mathcal{A}) = \sigma'_c(\mathcal{A}) \).

Proof. The argument of the proof of Theorem 3 implies that

\[
\sigma'_c(\mathcal{A}) \subseteq \sigma_c(\mathcal{A}) = \sigma'_c(\mathcal{A}) \subseteq \sigma'_c(\mathcal{A}).
\]

Corollary 5. \(\sigma_H(\mathcal{A}) = \sigma_c(\mathcal{A}) \cup \sigma_p(\mathcal{A})^* \).

Proof. Let \(\sigma_\pi(\mathcal{A}) = \{\lambda = (\lambda_1, \lambda_2, \ldots, \lambda_n) \} \) there exists a sequence \(\{x_k\} \) of unit vectors in \(H \) such that \(\|(A_i - \lambda_i)x_k\| \to 0 \) as \(k \to \infty \), for all \(i = 1, 2, \ldots, n \) denote the joint approximate defect spectrum of \(\mathcal{A} \). Then

\[
\sigma_H(\mathcal{A}) = \sigma'(\mathcal{A}) \cup \sigma^*(\mathcal{A}) = \sigma_\pi(\mathcal{A}) \cup \sigma_\delta(\mathcal{A}).
\]

By Lemma 3, \(\sigma_\pi(\mathcal{A}) = \sigma_\pi(\mathcal{A}) \); applying an argument similar to that used in the proof of Lemma 2 to \(A_i^{|1/2|} \) it is seen that \(\sigma_\pi(\mathcal{A}) = \sigma_\pi(\mathcal{A}) \). We have

\[
\sigma_H(\mathcal{A}) = \sigma_\pi(\mathcal{A}) \cup \sigma_\delta(\mathcal{A}) = \sigma_\pi(\mathcal{A}) \cup \sigma_\delta(\mathcal{A}) = \sigma_\delta(\mathcal{A}) = \sigma_H(\mathcal{A}),
\]
since A is a hyponormal n-tuple. Also, since

$$\sigma_H(A) = \sigma_\varepsilon(A) = \sigma_\varepsilon(A) \cup \sigma_p(A)^* = \sigma_\varepsilon(A) \cup \sigma_p(A^*)^*,$$

the proof is complete.

The n-tuple (A_1, A_2, \ldots, A_n) is said to be essentially doubly commuting (resp., essentially $\mathcal{HU}(p)$) if the n-tuple (a_1, a_2, \ldots, a_n), where $a_i = \pi(A_i)$ for all $1 \leq i \leq n$, and $\pi : B(H) \to B(H) \setminus K(H)$, is doubly commuting (resp., $\mathcal{HU}(p)$). We close this note with the following result.

Theorem 4. Suppose (A_1, A_2, \ldots, A_n) is an n-tuple of essentially doubly commuting essentially $\mathcal{HU}(p)$ operators. Then A_1, A_2, \ldots, A_n have a common reducing subspace “modulo the compact operators”.

Proof. The hypotheses imply that $a_i \in \mathcal{HU}(p)$ for all $1 \leq i \leq n$ and that the a_is are doubly commuting. Since $\sigma'_\varepsilon(A) \cap \sigma'_\varepsilon(A)$ is not empty (this is consequence of the definition of essential spectrum—see [8, Lemma 4.2]), there exists $\lambda = (\lambda_1, \lambda_2, \ldots, \lambda_n) \in \sigma'_\varepsilon(A) \cap \sigma'_\varepsilon(A)$ and a non-zero projection q in (the Calkin algebra) $B(H)/K(H)$ such that

$$a_i q = \lambda_i q \quad (1 \leq i \leq n).$$

Since $\sigma_\varepsilon(a_i) = \sigma_{np}(a_i)$, this implies that $a_i^* q = \lambda_i q \quad (1 \leq i \leq n)$. Consequently $a_i q = (\lambda_i q)^* = (a_i^* q)^* = q a_i$ (1 \leq i \leq n), or, letting $\pi(Q) = q$, $(A_i Q - QA_i)$ is a compact operator, for all $1 \leq i \leq n$. This completes the proof.

REFERENCES

DEPARTMENT OF MATHEMATICS AND STATISTICS
COLLEGE OF SCIENCE, SULTAN QABOOS UNIVERSITY
P.O. BOX 36, AL-KHOD 123

SULTANATE OF OMAN
E-mail: DUGGBP@SQU.EDU.OM