ON THE SPECTRUM OF *n*-TUPLES OF *p*-HYPONORMAL OPERATORS

by B. P. DUGGAL

(Received 27 June, 1996)

1. Introduction. Let B(H) denote the algebra of operators (i.e., bounded linear transformations) on the Hilbert space $H, A \in B(H)$ is said to be p-hyponormal $(0 , if <math>(AA^*)^p \le (A^*A)^p$. (Of course, a 1-hyponormal operator is hyponormal.) The *p*-hyponormal property is monotonic decreasing in p and a *p*-hyponormal operator is *q*-hyponormal operator for all $0 \le q \le p$. Let A have the polar decomposition A = U[A]. where U is a partial isometry and |A| denotes the (unique) positive square root of A^*A . If A has equal defect and nullity, then the partial isometry U may be taken to be unitary. Let $\mathcal{H}U(p)$ denote the class of p-hyponormal operators for which U in A = U[A] is unitary. $\mathcal{H}U(1/2)$ operators were introduced by Xia and $\mathcal{H}U(p)$ operators for a general $0 were first considered by Aluthge (see [1, 14]); <math>\mathcal{H}U(p)$ operators have since been considered by a number of authors (see [3, 4, 5, 9, 10] and the references cited in these papers). Generally speaking, $\mathcal{H}U(p)$ operators have spectral properties similar to those of hyponormal operators. Indeed, let $A \in \mathcal{H}U(p)$, (0 , have the polar decomposition A = U|A|, and define the $\mathcal{H}U(p+1/2)$ operator \hat{A} by $\hat{A} = |A|^{1/2} U|A|^{1/2}$. Let $\hat{A} = V |\hat{A}|$ with V unitary and \tilde{A} be the hyponormal operator defined by $\hat{A} =$ $|\hat{A}|^{1/2}V |\hat{A}|^{1/2}$. Then we have the following result.

LEMMA 0. $\sigma_s(A) = \sigma_s(\tilde{A})$, where σ_s denotes either of the following: point spectrum, approximate point spectrum, eigenvalues of finite multiplicity, spectrum, Weyl spectrum, and essential spectrum.

Recall that an *n*-tuple $\mathscr{A} = (A_1, A_2, \ldots, A_n)$ of operators is said to be doubly commuting if $A_iA_j - A_jA_1 = 0$ and $A_i^*A_j - A_jA_i^* = 0$, for all $1 \le i \ne j \le n$. Doubly commuting *n*-tuples \mathscr{A} of operators in $\mathscr{H}U(p)$ have been considered by Muneo Cho in [3], where it is shown that a weak Putnam theorem holds for \mathscr{A} and that \mathscr{A} is jointly normaloid. In this note we study the relationship between the spectral properties of \mathscr{A} and $\widetilde{\mathscr{A}} = (\widetilde{A}_1, \widetilde{A}_2, \ldots, \widetilde{A}_n)$, and prove that $\sigma_s(\mathscr{A}) = \sigma_s(\widetilde{\mathscr{A}})$, where σ_s is either the joint point spectrum or the joint approximate point spectrum or the joint (Taylor) spectrum. This then leads us to:

(b) if $\sigma(\mathcal{A}) \in \mathcal{R}^n$, then A_i is self-adjoint, for all $1 \le i \le n$.

We show that the (Cho-Takaguchi) joint Weyl spectrum of \mathscr{A} is contained in the (Taylor) spectrum $\sigma(\mathscr{A})$ of \mathscr{A} minus the set of isolated points of $\sigma(\mathscr{A})$ which are joint eigenvalues of finite multiplicity, and that \mathscr{A} and $\widetilde{\mathscr{A}}$ have the same (Harte) essential spectrum. We conclude this note with a result (in the spirit of Dash [8, Corollary 4.6]) on the joint eigenvalues of \mathscr{A} in the Calkin algebra.

We assume henceforth, without loss of generality, that 0 . Most of the notation that we use in this note is standard (and usually explained at the first instance of

Glasgow Math. J. 40 (1998) 123-131.

⁽a) $\|\mathscr{A}\| = \|\mathscr{A}\|;$

occurence). The following theorem, the n-tuple version of the Berberian extension theorem, will play an important role in the sequel.

THEOREM B. If $\mathcal{A} = (A_1, A_2, ..., A_n)$ is an n-tuple of commuting operators on H, then there exists a Hilbert space $H^0 \supset H$ and an isometric *-isomorphism $A_i \rightarrow A_i^0$, $(1 \le i \le n)$, preserving order such that $\sigma_{\pi}(A_i) = \sigma_{\pi}(A_i^0) = \sigma_p(A_i^0)$ and $\sigma_{\pi}(\mathcal{A}) = \sigma_{\pi}(A_1, A_2, ..., A_n) =$ $\sigma_{\pi}(A_1^0, A_2^0, ..., A_n^0) = \sigma_p(A_1^0, A_2^0, ..., A_n^0) = \sigma_p(\mathcal{A}^0)$. (Here $\sigma_p(\mathcal{A})$ and $\sigma_{\pi}(\mathcal{A})$ denote, respectively, the joint spectrum and the joint approximate point spectrum (defined below) of \mathcal{A} .)

It is my pleasure to thank Professor Muneo Chō for supplying me with off-prints and preprints of his papers.

2. Results. Throughout the following $\mathscr{A} = (A_1, A_2, \dots, A_2)$ will denote a doubly commuting (i.e., $A_iA_j - A_jA_i = 0$ and $A_iA_j^* - A_j^*A_i = 0$, for all $1 \le i \ne j \le n$)n – tuple of $\mathscr{H}U(p)$ operators A_i ($1 \le i \le n$). Given $A_i = U_i |A_i|$, define \hat{A}_i by $\hat{A}_i = |A_i|^{1/2} U_i |A_i|^{1/2}$; also, letting \hat{A}_i have the polar decomposition $\hat{A}_i = V_i |\hat{A}_i|$, define \tilde{A}_i by

$$\tilde{A}_i = |\hat{A}_i|^{1/2} V_i |\hat{A}_i|^{1/2} \quad (1 \le i \le n).$$

The *n*-tuples $\hat{\mathcal{A}}$ and $\tilde{\mathcal{A}}$ are then defined by $\hat{\mathcal{A}} = (\hat{A}_1, \hat{A}_2, \dots, \hat{A}_n)$ and $\tilde{\mathcal{A}}_1 = (\tilde{A}_1, \tilde{A}_2, \dots, \tilde{A}_n)$.

LEMMA 1. \mathcal{A} is doubly commuting $\Rightarrow \hat{\mathcal{A}}$ is doubly commuting $\Rightarrow \tilde{\mathcal{A}}$ is doubly commuting. Also, \mathcal{A} is doubly commuting $\Rightarrow [A_i, |\hat{A}_j|] = 0 = [\tilde{A}_i, |\hat{A}_j|] = 0$, for $1 \le i \ne j \le n$, where [A, B] denotes the commutator AB - BA of A and B.

Proof. Given $A_i = U_i |A_i|$ and $\hat{A}_i = V_i |\hat{A}_i|$, the doubly commuting hypothesis on \mathcal{A} implies that

$$[U_i, U_j] = [|A_i|, |A_j|] = [|A_i|, U_j] = 0,$$

for all $1 \le i \ne j \le n$. (See [11, Theorems 2 and 4].) Consequently, $\hat{\mathscr{A}}$ is doubly commuting and so

$$[V_i, V_i] = [|\hat{A}_i|, |\hat{A}_j|] = [|\hat{A}_i|, V_j] = 0,$$

for all $1 \le i \ne j \le n$. This implies that $\tilde{\mathscr{A}}$ is doubly commuting. The argument above also implies that $[A_i, \hat{A}_j] = [A_i, \hat{A}_j^*] = [\hat{A}_i, \tilde{A}_j] = [\hat{A}_i, \tilde{A}_j^*] = 0$, for all $1 \le i \ne j \le n$. Hence, also, $[A_i, |\hat{A}_j|] = [\tilde{A}_i, |\hat{A}_j|] = 0$, for all $1 \le i \ne j \le n$.

In the following we shall denote the Taylor joint spectrum of \mathcal{A} by $\sigma(\mathcal{A})$. (See [13] for the definition of Taylor spectrum of a commuting *n*-tuple of operators.) We say that $\lambda = (\lambda_1, \lambda_2, \ldots, \lambda_n), (\lambda_i \in \mathbb{C} \text{ for all } 1 \le i \le n)$, is in the joint approximate point spectrum $\sigma_{\pi}(\mathcal{A})$ of \mathcal{A} if there exists a sequence $\{x_k\}$ of unit vectors in H such that

$$||(A_i - \lambda_i)x_k|| \to 0 \text{ as } k \to \infty,$$

for all $1 \le i \le n$; $\lambda = (\lambda_1, \lambda_2, ..., \lambda_n)$, $\lambda_i \in \mathbb{C}$ for all $1 \le i \le n$, is in the joint point spectrum $\sigma_p(\mathscr{A})$ of \mathscr{A} if there exists a non-trivial vector $x \in H$ such that

$$(A_i - \lambda_i)x = 0$$
, for all $1 \le i \le n$.

We say that $\lambda = (\lambda_1, \lambda_2, ..., \lambda_n)$ is in the normal point spectrum $\sigma_{np}(\mathcal{A})$ of \mathcal{A} if there exists a non-trivial vector $x \in H$ such that $(A_i - \lambda_i)x = 0 \Leftrightarrow (A_i - \lambda_i)^*x = 0$, for all $1 \le i \le n$.

LEMMA 2.
$$\sigma_p(\mathscr{A}) = \sigma_{np}(\mathscr{A}) = \sigma_{np}(\mathscr{\tilde{A}}) = \sigma_p(\mathscr{\tilde{A}}).$$

Proof. Let $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_n) \in \sigma_p(\mathscr{A})$ and let $x \in H$ be such that $x \neq 0$ and $(A_i - \lambda_i)x = 0$, for all $1 \le i \le n$. It is easily seen that $\tilde{A}_i |\hat{A}_i|^{1/2} |A_i|^{1/2} = |\hat{A}_i|^{1/2} |A_i|^{1/2} A_i$; hence

$$\tilde{A}_{i} |\hat{A}_{i}|^{1/2} |A_{i}|^{1/2} x = \lambda_{i} |\hat{A}_{i}|^{1/2} |A_{i}|^{1/2} x,$$

for all $1 \le i \le n$. Let

$$y = \prod_{t=1}^{n'} |\hat{A}_t|^{1/2} |A_t|^{1/2} x,$$

where "'" on the product " $\prod_{t=1}^{n}$ " denotes that only those $|A_t|s$, (and so also $|\hat{A}_t|s$), appear in the product for which λ_t in $A_t x = \lambda_t x$ does not equal 0. Then y is non-trivial, and

 $\tilde{A}_i y = \lambda_i y$, for all i = 1, 2, ..., n for which $\lambda_i \neq 0$.

If $\lambda_i = 0$, i.e. $A_i x = 0$, then $|A_i|^{1/2} x = 0$. This implies that $\hat{A}_i x = 0$. Since this in turn implies that $|\hat{A}_i|^{1/2} x = 0$, we conclude that $\tilde{A}_i x = 0$. Since $[A_i, \tilde{A}_j] = 0$ for all $1 \le i \ne j \le n$, we have that $\tilde{A}_i y = 0$. Consequently, $\lambda \in \sigma_p(\tilde{\mathcal{A}})$ and $\sigma_p(\mathcal{A}) \subseteq \sigma_p(\tilde{\mathcal{A}})$.

If, on the other hand, $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_n) \in \sigma_p(\tilde{\mathcal{A}})$, then there is a non-trivial $x \in H$ such that $(\tilde{A}_i - \lambda_i)x = 0$ and $(\tilde{A}_i^* - \bar{\lambda}_i)x = 0$ for all $1 \le i \le n$. Since $A_i^* |A_i|^{1/2} |\hat{A}_i|^{1/2} = |A_i|^{1/2} |\hat{A}_i|^{1/2} \tilde{A}_i^*$,

$$A_i^* |A_i|^{1/2} |\hat{A}_i|^{1/2} x = \bar{\lambda}_i |A_i|^{1/2} |\hat{A}_i|^{1/2} x$$

for all $1 \le i \le n$. Defining $(0 \ne)y$ by

$$y = \prod_{t=1}^{n'} |A_t|^{1/2} |\hat{A}_t|^{1/2} |x,$$

where $\prod_{i=1}^{n} i$ has meaning similar to that above, we have $A_i^* y = \overline{\lambda}_i y$, for all i = 1, 2, ..., nsuch that $\lambda_i \neq 0$. Since $\lambda_i \in \sigma_p(\tilde{A}_i)$ implies $\lambda_i \in \sigma_p(A_i) = \sigma_{np}(A_i)$ (see Lemma 0), $A_i y = \lambda_i y$ for all i = 1, 2, ..., n such that $\lambda_i \neq 0$. Now if $\tilde{A}_i x = 0$, then $0 \in \sigma_p(\tilde{A}_i) = \sigma_p(A_i)$ and

$$\tilde{A}_{i}^{*}x = 0 \Rightarrow |\hat{A}_{i}|^{1/2} V_{i}^{*} |\hat{A}_{i}|^{1/2} x = 0$$

$$\Rightarrow \hat{A}_{i}^{*} |\hat{A}_{i}|^{1/2} x = 0 \Leftrightarrow \hat{A}_{i} |\hat{A}_{i}|^{1/2} x = 0$$

$$\Rightarrow |\hat{A}_{i}|^{1/2} x = 0 \Rightarrow \hat{A}x = 0 \Leftrightarrow \hat{A}^{*}x = 0$$

$$\Rightarrow A_{i}^{*} |A_{i}|^{1/2} x = 0 \Leftrightarrow A_{i} |A_{i}|^{1/2} x = 0$$

$$\Rightarrow |A_{i}|^{1/2} x = 0 \Rightarrow A_{i}x = 0 \Leftrightarrow A_{i}^{*}x = 0.$$

(Line 2 follows since $0 \in \sigma_p(A_i)$). Line 4 follows because $0 \in \sigma_p(A_i) = \sigma_{np}(A_i)$.) Consequently, $A_i y = 0$ for such an *i*. Hence $\sigma_p(\tilde{\mathcal{A}}) \subseteq \sigma_p(\mathcal{A})$. Since $\sigma_p(A_i) = \sigma_{np}(A_i)$ and $\sigma_p(\tilde{\mathcal{A}}_i) = \sigma_{np}(\tilde{\mathcal{A}}_i)$, for all $1 \le i \le n$, this completes the proof. LEMMA 3. $\sigma_{\pi}(\mathscr{A}) = \sigma_{n\pi}(\mathscr{A}) = \sigma_{n\pi}(\tilde{\mathscr{A}}) = \sigma_{\pi}(\tilde{\mathscr{A}}).$

Proof. Letting $A^0 = (A_1^0, A_2^0, \dots, A_n^0)$ denote the Berberian extension of \mathscr{A} (see Theorem B), it follows from Lemma 2 that

$$\sigma_{\pi}(\mathscr{A}) = \sigma_{0}(\mathscr{A}^{0}) = \sigma_{np}(\mathscr{A}^{0}) = \sigma_{np}(\tilde{\mathscr{A}}^{0}) = \sigma_{p}(\tilde{\mathscr{A}}^{0}) = \sigma_{\pi}(\tilde{\mathscr{A}})$$

We are now in a position to prove the equality of the (Taylor) spectra of \mathcal{A} and $\tilde{\mathcal{A}}$.

THEOREM 1. $\sigma(\mathcal{A}) = \sigma(\tilde{\mathcal{A}}).$

Proof. Let $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_n) \in \sigma(\mathcal{A})$. Then there exists a partition

 $\{i_1,\ldots,i_m\}U\{j_1,\ldots,j_s\}$ of $\{1,2,\ldots,n\}$

and a sequence $\{x_k\}$ of unit vectors in H such that

$$(A_{i_r} - \lambda_{i_r}) x_k \to 0$$
 and $(A_{j_r}^* - \overline{\lambda}_{j_r}) x_k \to 0$ as $k \to \infty$,

for all $1 \le r \le m$ and $1 \le t \le s$. (See [7, Corollary 3.3].) Let \mathscr{A}^0 denote the Berberian extension $(A_{i_1}^0, \ldots, A_{i_m}^0, A_{i_1}^0, \ldots, A_{i_k}^0)$ of \mathscr{A} , and let $\mathscr{B} = (A_{i_1}^0, \ldots, A_{i_m}^0, A_{i_1}^{0*}, \ldots, A_{i_k}^{0*})$. Then

$$(\lambda_{i_1},\ldots,\lambda_{i_m},\overline{\lambda}_{j_1},\ldots,\overline{\lambda}_{j})\in\sigma_p(\mathscr{B}).$$

Since $\sigma_p(A_{i_r}^0) = \sigma_p(\tilde{A}_{i_r}^0) = \sigma_{np}(\tilde{A}_{i_r}^0)$, for all $1 \le r \le m$, and since

$$\tilde{A}_{j_{i}}^{*} |\hat{A}_{j_{i}}|^{1/2} V_{j_{i}}^{*} |A_{j_{i}}|^{1/2} U_{j_{i}}^{*} = |\hat{A}_{j_{i}}|^{1/2} V_{j_{i}}^{*} |A_{j_{i}}|^{1/2} U_{j_{i}}^{*} A_{j_{i}}^{*},$$

it follows (from an argument similar to that used in the proof of Lemma 2) that $\sigma_p(\mathcal{B}) \subseteq \sigma_p(\tilde{\mathcal{B}})$ and

$$\bar{\lambda} \in \sigma_p(\tilde{\mathscr{A}}^{0*}) = \sigma_\pi(\tilde{\mathscr{A}}^*) \subseteq \sigma(\tilde{\mathscr{A}}^*).$$

Hence $\lambda \in \sigma(\tilde{\mathcal{A}})$, and $\sigma(\mathcal{A}) \subseteq \sigma(\tilde{\mathcal{A}})$.

Conversely, if $\lambda \in \sigma(\tilde{\mathcal{A}})$, then (from an argument similar to that above) $\bar{\lambda} \in \sigma_p(\tilde{\mathcal{A}}^{0*})$. This implies that $\bar{\lambda} \in \sigma_\pi(\mathcal{A}^*) \subseteq \sigma(\mathcal{A}^*)$, $\lambda \in \sigma(\mathcal{A})$ and $\sigma(\tilde{\mathcal{A}}) \subseteq \sigma(\mathcal{A})$. Hence $\sigma(\mathcal{A}) = \sigma(\tilde{\mathcal{A}})$, and the proof is complete.

The joint spectral radius $r(\mathcal{T})$ and the joint operator norm $||\mathcal{T}||$ of an *n*-tuple $\mathcal{T} = (T_1, T_2, \ldots, T_n)$ are defined by

$$r(\mathcal{T}) = \sup \left\{ |\lambda| = \left(\sum_{i=1}^{n} |\lambda_i|^2 \right)^{1/2} \colon \lambda = (\lambda_1, \lambda_2, \dots, \lambda_n) \in \sigma(\mathcal{T}) \right\}$$

and

$$\|\mathcal{T}\| = \sup\left\{\left(\sum_{i=1}^{n} \|T_i x\|^2\right)^{1/2} : x \in H, \|x\| = 1\right\}.$$

See [6]. The operators \mathscr{A} and $\tilde{\mathscr{A}}$ being jointly normaloid (see [3, Theorem 9] and [6, Theorem 3.4]), $r(\mathscr{A}) = ||\mathscr{A}||$ and $r(\tilde{\mathscr{A}}) = ||\tilde{\mathscr{A}}||$. Theorem 1 thus implies the following result.

Corollary 1. $\|\mathscr{A}\| = \|\mathscr{\hat{A}}\| = \|\mathscr{\tilde{A}}\|.$

That $||A|| = ||\tilde{A}||$ for a single operator $A \in \mathcal{H}U(p)$ has been proved by M. Fujii *et al.* in [10].

Given a semi-normal (i.e., hyponormal or co-hyponormal) operator T = X + iY, a well known result of Putnam [12] states that if a real number $r \in \sigma(X)$ (or $r + is \in \sigma(T)$, for some real numbers r and s), then there exists a real number s such that $r + is \in \sigma(T)$ (resp., $r \in \sigma(X)$ and $s \in \sigma(Y)$). This result extends to doubly commuting *n*-tuples of hyponormal operators [4]. Does a similar result hold (for $A \in \mathcal{H}U(p)$ and) doubly commuting *n*-tuples in $\mathcal{H}U(p)$? The technique of this paper (seemingly) does not lend to a proof of this. We do however have the following analogue for $\mathcal{H}U(p)$ operators of a result on *n*-tuples of doubly commuting hyponormal operators with spectrum in \mathbb{R}^n . (See [4, Corollary].)

COROLLARY 2. If $\sigma(\mathcal{A}) \subseteq \mathbb{R}^n$, then A_i is self-adjoint, for all $1 \le i \le n$.

Proof. Since $\sigma(\hat{\mathscr{A}}) = \sigma(\mathscr{A}) \subseteq \mathbb{R}^n$, \tilde{A}_i is self-adjoint, for all $1 \le i \le n$, by [4]. Recall that A_i is normal if and only if \tilde{A}_i is normal [9, Corollary 2]; hence A_i is self-adjoint, for all $1 \le i \le n$.

Following Chō [2], we define the joint Weyl spectrum $\sigma_{\omega}(\mathcal{T})$ of a commuting *n*-tuple \mathcal{T} by

$$\sigma_{\omega}(\mathcal{T}) = \bigcap \{ \sigma(\mathcal{T} + \mathcal{K}); \, \mathcal{K} \text{ is an } n \text{-tuple of compact operators and } (\mathcal{T} + \mathcal{K}) \text{ is a commuting } n \text{-tuple} \}.$$

Let $\sigma_{00}(\mathcal{T})$ denote the set of isolated points of $\sigma(\mathcal{T})$ which are joint eigen-values of finite multiplicity of \mathcal{T} . It is clear from Theorem 1 that, if λ is an isolated point of $\sigma(\mathcal{A})$, then λ is an isolated point of $\sigma(\mathcal{A})$. The operator \mathcal{A} being a doubly commutitive *n*-tuple of hyponormal operators, an isolated point λ of $\sigma(\mathcal{A})$ is a point of $\sigma_p(\mathcal{A})$. Hence by Lemma 2 we have the following result.

COROLLARY 3. If λ is an isolated point of $\sigma(\mathcal{A})$, then $\lambda \in \sigma_p(\mathcal{A})$.

Recall that if A is p-hyponormal, then $\sigma_{\omega}(A) = \sigma(A) - \sigma_{00}(A)$ by [9] and if \mathcal{T} is a doubly commuting *n*-tuple of hyponormal operators, then $\sigma_{\omega}(\mathcal{T}) \subseteq \sigma(\mathcal{T}) - \sigma_{00}(\mathcal{T})$ by [2].

Theorem 2. $\sigma_{\omega}(\mathcal{A}) \subseteq \sigma(\mathcal{A}) - \sigma_{00}(\mathcal{A}).$

Proof. Suppose $(\lambda_1, \lambda_2, ..., \lambda_n) \in \sigma_{00}(\mathscr{A})$, and let $N = \ker \left\{ \sum_{i=1}^n (A_i - \lambda_i)^* (A_i - \lambda_i) \right\}$. Since $\lambda \in \sigma_p(\mathscr{A})$ if and only if $0 \in \sigma_p\left(\sum_{i=1}^n (A_i - \lambda)^* (A_i - \lambda_i)\right)$, N is finite dimensional. By

Lemma 2, $\sigma_p(\mathcal{A}) = \sigma_{np}(\mathcal{A})$; hence N reduces $\mathcal{A}, \mathcal{A}_0 = \mathcal{A} \mid N = (A_1 \mid N, A_2 \mid N, \dots, A_n \mid N)$ is normal and $\mathcal{A}_1 = \mathcal{A} \mid N^{\perp} = (A_1 \mid N^{\perp}, A_2 \mid N^{\perp}, \dots, A_n \mid N^{\perp})$ is a doubly commuting *n*-tuple of $\mathcal{H}U(p)$ operators. Let P be the orthogonal projection of H onto N. P is then a compact operator which satisfies $[A_i, P] = [A_i^*, P] = 0$, for all $i = 1, 2, \dots, n$. The operator

$$\mathscr{A} + \mathscr{P} = \left(A_1 + \frac{1}{\sqrt{n}}P, A_2 + \frac{1}{\sqrt{n}}P, \dots, A_n + \frac{1}{\sqrt{n}}P\right)$$

is a doubly commuting *n*-tuple. Let

$$\mathcal{R} = (\mathcal{A} + \mathcal{P}) \mid N = \left(\left(A_1 + \frac{1}{\sqrt{n}} P \right) \mid N, \left(A_2 + \frac{1}{\sqrt{n}} P \right) \mid N, \dots, \left(A_n + \frac{1}{\sqrt{n}} \right) P \mid N \right),$$

$$\mathcal{S} = (\mathcal{A} + \mathcal{P}) \mid N^{\perp}.$$

 \mathscr{R} and \mathscr{S} are then doubly commuting *n*-tuples such that $\sigma(\mathscr{A} + \mathscr{P}) = \sigma(\mathscr{R})U\sigma(\mathscr{S})$.

Suppose that $\lambda \in \sigma(\mathcal{A} + \mathcal{P})$. Then $\lambda \notin \sigma(\mathcal{R})$ and so λ must be an isolated point of $\sigma(\mathcal{G})$. There exists a partition $\{i_1, \ldots, i_m\} \cup \{j_1, \ldots, j_s\}$ of $\{1, 2, \ldots, n\}$ and a sequence $\{x_k\}$ of unit vectors in N^{\perp} such that

$$\left(A_{i_r} - \lambda_{i_r} + \frac{1}{\sqrt{n}}P\right)x_k \to 0 \quad \text{and} \quad \left(A_{j_r}^* - \overline{\lambda}_{j_r} + \frac{1}{\sqrt{n}}P\right)x_k \to 0 \quad \text{as } k \to \infty$$

But then $\lambda \in \sigma(\mathcal{A}_1)$ and hence (by Corollary 3) $\lambda \in \sigma_p(\mathcal{A}_1)$. Thus there exists an $x \in N^{\perp}$ such that $(A_i - \lambda_i)x = 0$, for all i = 1, 2, ..., n. Since this is a contradiction, we must have $\lambda \notin \sigma_{\omega}(\mathcal{A})$.

REMARKS. (i) the Taylor-Weyl spectrum of \mathcal{T} , $\sigma_{T\omega}(\mathcal{T})$, is defined to be the set of $\lambda = (\lambda_1, \lambda_2, \ldots, \lambda_n)$ such that $(\mathcal{T} - \lambda)$ is not Taylor-Weyl (where $\mathcal{T} - \lambda$ is said to be *Taylor-Weyl* if $\mathcal{T} - \lambda$ is Fredholm and index $(\mathcal{T} - \lambda) = 0$). Theorem 2 implies that $\sigma(\mathcal{A}) \setminus \sigma_{T\omega}(\mathcal{A}) \supseteq \sigma_{00}(\mathcal{A})$. The inclusion $\sigma(\mathcal{A}) \setminus \sigma_{T\omega}(\mathcal{A}) \subseteq \sigma_{00}(\mathcal{A})$ does not hold (even for hyponormal \mathcal{A}).

(ii) Given a *p*-hyponormal operator A, $\sigma_{\omega}(A) = \sigma_{\omega}(\tilde{A})$ by [9]. Does $\sigma_{\omega}(\mathcal{A}) = \sigma_{\omega}(\tilde{A})$?

The Harte spectrum $\sigma_H(\mathcal{T})$ of the commutative *n*-tuple \mathcal{T} is defined to be $\sigma_H(\mathcal{T}) = \sigma'(\mathcal{T}) \cup \sigma'(\mathcal{T})$, where $\sigma'(\mathcal{T})$ (respectively, $\sigma'(\mathcal{T})$) is the set of $\lambda = (\lambda_1, \lambda_2, \ldots, \lambda_n)$ such that $\{T_i - \lambda_i\}_{1 \le i \le n}$ generates a proper left (resp., right) ideal in B(H). The (Harte) essential spectrum $\sigma_e(\mathcal{T})$ is defined by $\sigma_e(\mathcal{T}) = \sigma(a)$, where $a = (a_1, a_2, \ldots, a_n) = \pi(\mathcal{T})$ and π is the canonical homomorphism of B(H) onto the Calkin algebra B(H)/K(H); K(H) is the algebra of compact operators on H. For a single linear operator, the (Harte) essential spectrum coincides with the essential spectrum; the following extends the conclusion $\sigma_e(A) = \sigma_e(\tilde{A})$ of Lemma 0 to $\sigma_e(\mathcal{A})$.

THEOREM 3. $\sigma_e(\mathscr{A}) = \sigma_e(\tilde{\mathscr{A}}).$

Proof. Suppose $\lambda \in \sigma_e(\tilde{\mathcal{A}})$. Then, $\tilde{\mathcal{A}}$ being a hyponormal *n*-tuple, there exists a sequence $\{x_k\}$ of unit vectors converging weakly to 0 in H such that

 $\|(\tilde{A}_i - \lambda_i)^* x_k\| \to 0$ as $k \to \infty$, for all $1 \le i \le n$,

by [8, Theorem 2.6]. Let $\{y_k\}$ be the sequence defined by

$$y_{k} = \left(\prod_{i=1}^{n} |A_{i}|^{1/2} |\tilde{A}_{i}|^{1/2} x_{k} \right) / \left\| \prod_{i=1}^{n} |A_{i}|^{1/2} |\hat{A}_{i}|^{1/2} x_{k} \right\|,$$

where "" on the product $\prod_{i=1}^{n}$ denotes that only those $|A_i|$ s and $|\hat{A}_i|$ s appear in the product

for which $\lambda_i \neq 0$. (Notice that if $||A_i|^{1/2}x_k||$ or $||A_i|^{1/2}|\hat{A}_i|^{1/2}x_k|| \to 0$ as $k \to \infty$, for some *i* with $1 \le i \le n$, then $||\hat{A}_i|^{1/2}x_k||$ and $||\tilde{A}_ix_i|| \to 0$ as $k \to \infty$.) Since $(x_k, h) \to 0$ as $k \to \infty$ for all $h \in H$, $(y_k, h) \to 0$ as $k \to \infty$ and

$$\|(A_j - \lambda_j)^* y_k\| = \left\| \frac{\prod\limits_{i=1}^{n'} |A_i|^{1/2} |\hat{A}_i|^{1/2}}{\left\| \prod\limits_{i=1}^{n'} |A_i|^{1/2} |\hat{A}_i|^{1/2} x_k \right\|} (\tilde{A}_j - \lambda_j)^* x_k \right\| \to 0 \quad \text{as } k \to \infty,$$

for all $1 \leq j \leq n$. Thus $\lambda \in \sigma_e(\mathcal{A})$ and $\sigma_e(\tilde{\mathcal{A}}) \subseteq \sigma_e(\mathcal{A})$.

Consider now $\lambda \in \sigma_e(\mathcal{A}) = \sigma'_e(\mathcal{A}) \cup \sigma'_e(\mathcal{A})$. Suppose that $\lambda \in \sigma'_e(\mathcal{A})$; then there exists a sequence $\{x_k\}$ of unit vectors converging weakly to 0 in H such that $||(A_i - \lambda_i)x_i|| \to 0$ as $k \to \infty$, for all $1 \le i \le n$. Defining the sequence $\{y_k\}$ by

$$y_{k} = \frac{\left(\prod_{i=1}^{n'} |\hat{A}_{i}|^{1/2} |A_{i}|^{1/2} x_{k}\right)}{\left\|\prod_{i=1}^{n'} |\hat{A}_{i}|^{1/2} |A_{i}|^{1/2} x_{k}\right\|},$$

(where $\prod_{i=1}^{n}$ has a meaning similar to that above), an argument similar to that above shows that $\{y_k\}$ is a sequence of unit vectors converging weakly to 0 in H such that

$$\|(\tilde{A}_i - \lambda_i)yk\| \to 0$$
 as $k \to \infty$, for all $1 \le i \le n$.

Hence $\lambda \in \sigma'_e(\tilde{\mathcal{A}})$. A similar argument shows that if $\lambda \in \sigma'_e(\mathcal{A})$ then $\lambda \in \sigma'_e(\tilde{\mathcal{A}})$. Thus $\sigma_e(\mathcal{A}) \subseteq \sigma_e(\tilde{\mathcal{A}})$, and the proof is complete.

COROLLARY 4. $\sigma_e(\mathscr{A}) = \sigma'_e(\mathscr{A}).$

Proof. The argument of the proof of Theorem 3 implies that

$$\sigma_{e}^{r}(\mathcal{A}) \subseteq \sigma_{e}(\mathcal{A}) = \sigma_{e}(\tilde{\mathcal{A}}) = \sigma_{e}^{r}(\tilde{\mathcal{A}}) \subseteq \sigma_{e}^{r}(\mathcal{A}).$$

COROLLARY 5. $\sigma_{H}(\mathcal{A}) = \sigma_{e}(\mathcal{A}) \cup \sigma_{p}(\mathcal{A}^{*})^{*}$.

Proof. Let $\sigma_{\delta}(\mathcal{A}) = \{\lambda = (\lambda_1, \lambda_2, \dots, \lambda_n): \text{ there exists a sequence } \{x_k\} \text{ of unit vectors in } H \text{ such that } \|(A_i - \lambda_i)^* x_k\| \to 0 \text{ as } k \to \infty, \text{ for all } i = 1, 2, \dots, n\} \text{ denote the joint approximate defect spectrum of } \mathcal{A}. \text{ Then }$

$$\sigma_{H}(\mathscr{A}) = \sigma'(\mathscr{A}) \cup \sigma'(\mathscr{A}) = \sigma_{\pi}(\mathscr{A}) \cup \sigma_{\delta}(\mathscr{A}).$$

By Lemma 3, $\sigma_{\pi}(\mathcal{A}) = \sigma_{\pi}(\tilde{\mathcal{A}})$; applying an argument similar to that used in the proof of Lemma 2 to A_i^{0*} it is seen that $\sigma_{\delta}(\mathcal{A}) = \sigma_{\delta}(\tilde{\mathcal{A}})$. We have

$$\sigma_{H}(\mathscr{A}) = \sigma_{\pi}(\mathscr{A}) \cup \sigma_{\delta}(\mathscr{A}) = \sigma_{\pi}(\tilde{\mathscr{A}}) \cup \sigma_{\delta}(\tilde{\mathscr{A}}) = \sigma_{\delta}(\tilde{\mathscr{A}}) = \sigma_{H}(\tilde{\mathscr{A}}),$$

since $\tilde{\mathcal{A}}$ is a hyponormal *n*-tuple. Also, since

$$\sigma_{H}(\tilde{\mathscr{A}}) = \sigma_{\delta}(\tilde{\mathscr{A}}) = \sigma_{e}(\tilde{\mathscr{A}}) \cup \sigma_{p}(\tilde{\mathscr{A}}^{*})^{*} = \sigma_{e}(\mathscr{A}) \cup \sigma_{p}(\mathscr{A}^{*})^{*},$$

the proof is complete.

The *n*-tuple (A_1, A_2, \ldots, A_n) is said to be essentially doubly commuting (resp., essentially $\mathcal{H}U(p)$) if the *n*-tuple (a_1, a_2, \ldots, a_n) , where $a_i = \pi(A_i)$ for all $1 \le i \le n$, and $\pi: B(H) \to B(H) \setminus K(H)$, is doubly commuting (resp., $\mathcal{H}U(p)$). We close this note with the following result.

THEOREM 4. Suppose (A_1, A_2, \ldots, A_n) is an *n*-tuple of essentially doubly commuting essentially $\mathcal{H}U(p)$ operators. Then A_1, A_2, \ldots, A_n have a common reducing subspace "modulo the compact operators".

Proof. The hypotheses imply that $a_i \in \mathcal{H}U(p)$ for all $1 \le i \le n$ and that the a_i s are doubly commuting. Since $\sigma'_e(\mathcal{A}) \cap \sigma'_e(\mathcal{A})$ is not empty (this is consequence of the definition of essential spectrum—see [8, Lemma 4.2]), there exists $\lambda = (\lambda_1, \lambda_2, \ldots, \lambda_n) \in \sigma'_e(\mathcal{A}) \cap \sigma'_e(\mathcal{A})$ and a non-zero projection q in (the Calkin algebra) B(H)/K(H) such that

$$a_i q = \lambda_i q$$
 $(1 \le i \le n).$

Since $\sigma_p(a_i) = \sigma_{np}(a_i)$, this implies that $a_i^*q = \overline{\lambda}_i q$ $(1 \le i \le n)$. Consequently $a_i q = (\overline{\lambda}_i q)^* = (a_i^*q)^* = qa_i$ $(1 \le i \le n)$, or, letting $\pi(Q) = q$, $(A_i Q - QA_i)$ is a compact operator, for all $1 \le i \le n$. This completes the proof.

REFERENCES

1. Ariyadasa Aluthge, On *p*-hyponormal operators for 0 , Integral Equations Operator Theory**13**(1990), 307–315.

2. Muneo Chō, On the joint Weyl spectrum III, Acta Sci. Math. (Szeged) 56 (1992), 365-367.

3. Muneo Chō, spectral properties of p-hyponormal operators, Glasgow Math. J. 36 (1994), 117-122.

4. Muneo Chō and A. T. Dash, On the joint spectra of doubly commuting *n*-tuples of semi-normal operators, *Glasgow Math. J.* 26 (1985), 47-50.

5. M. Chō and M. Itoh, On spectra of *p*-hyponormal operators, *Integral Equations Operator Theory* 23 (1995), 287–293.

6. Muneo Chō and Makoto Takaguchi, Some classes of commuting *n*-tuples of operators, *Studia Math.* 80 (1984), 245–259.

7. Raul E. Curto, On the connectedness of invertible *n*-tuples, *Indiana Univ. Math. J.* 29 (1980), 393-406.

8. A. T. Dash, Joint essential spectra, Pacific J. Math. 64 (1976), 119-128.

9. B. P. Duggal, On quasi-similar *p*-hyponormal operators, *Integral Equations Operator* Theory, **26** (1996), 338-345.

10. Masatoshi Fujii, Saichi Izumino and Ritsuo Nakamoto, Classes of operators determined by the Heinz-Kato-Furuta inequality and the Hölder-McCarthy inequality, *Nihonkai Math. J.* 5 (1994), 61–67.

11. T. Furuta, On the polar decomposition of an operator, Acta Sci. Math. (Szeged) 46 (1983), 261–268.

12. C. R. Putnam, On the spectra of semi-normal operators, Trans. Amer. Math. Soc. 119 (1965), 509-523.

n-TUPLES OF *p*-HYPONORMAL OPERATORS

13. J. L. Taylor, A joint spectrum for several commuting operators, J. Functional Analysis 6 (1970), 172-191.

14. D. Xia, Spectral theory of hyponormal operators (Birkhauser Verlag, Basel, 1983).

DEPARTMENT OF MATHEMATICS AND STATISTICS College of Science, Sultan Qaboos University P.O. Box 36, Al-Khod 123

Sultanate of Oman *E-mail:* DUGGBP@SQU.EDU.OM