NEIGHBOURHOODS OF INDEPENDENT SETS FOR (a, b, k)-CRITICAL GRAPHS

SIZHONG ZHOU ${ }^{\boxtimes}$ and YANG XU

(Received 11 July 2007)

Abstract

Let G be a graph of order n. Let a, b and k be nonnegative integers such that $1 \leq a \leq b$. A graph G is called an (a, b, k)-critical graph if after deleting any k vertices of G the remaining graph of G has an $[a, b]$-factor. We provide a sufficient condition for a graph to be (a, b, k)-critical that extends a well-known sufficient condition for the existence of a k-factor.

2000 Mathematics subject classification: 05C70.
Keywords and phrases: graph, minimum degree, neighbourhood, $[a, b]$-factor, (a, b, k)-critical graph.

1. Introduction

In this paper we consider only finite undirected graphs without loops or multiple edges. Let G be a graph with vertex set $V(G)$ and edge set $E(G)$. For any $x \in V(G)$, the degree of x in G is denoted by $d_{G}(x)$. The minimum degree of G is denoted by $\delta(G)$. The neighbourhood $N_{G}(x)$ of x is the set of all vertices in $V(G)$ adjacent to x, and for $X \subseteq V(G)$ we write $N_{G}(X)=\bigcup_{x \in X} N_{G}(x)$. For disjoint subsets S and T of $V(G)$, we denote by $e_{G}(S, T)$ the number of edges from S to T, by $G[S]$ the subgraph of G induced by S, and by $G-S$ the subgraph obtained from G by deleting all the vertices in S together with the edges incident to vertices in S. A vertex set $S \subseteq V(G)$ is called independent if $G[S]$ has no edges.

Let $1 \leq a \leq b$ and $k \geq 0$ be integers. A spanning subgraph F of G is called an [a, b]-factor if $a \leq d_{F}(x) \leq b$ for each $x \in V(G)$ (where of course d_{F} denotes the degree in F). And if $a=b=r$, then an $[a, b]$-factor of G is called an r-factor of G. A graph G is called an (a, b, k)-critical graph if after deleting any k vertices of G the remaining graph of G has an $[a, b]$-factor. If G is an (a, b, k)-critical graph, then we also say that G is (a, b, k)-critical. If $a=b=r$, then an (a, b, k)-critical graph is simply called an (r, k)-critical graph. In particular, a $(1, k)$-critical graph is simply

[^0]called a k-critical graph. Terminology and notation not given in this paper can be found in [1].

Favaron [2] studied the properties of k-critical graphs. Liu and Yu [6] gave the characterization of (r, k)-critical graphs. Li [3] gave two sufficient conditions for graphs to be (a, b, k)-critical. Li [4] showed a degree condition for graphs to be (a, b, k)-critical. Zhou [8-10] investigated (a, b, k)-critical graphs and obtained some sufficient conditions for graphs to be (a, b, k)-critical. Liu and Wang [5] gave a necessary and sufficient condition for graphs to be (a, b, k)-critical. In this paper, we obtain a new sufficient condition for graphs to be (a, b, k)-critical. The main result will be given in the following section.

The following result on k-factors is known.
THEOREM 1 [7]. Let $k \geq 2$ be an integer and G a graph of order n with $n \geq 4 k-6$. If k is odd, then n is even and G is connected. Let G satisfy

$$
\left|N_{G}(X)\right| \geq \frac{|X|+(k-1) n-1}{2 k-1},
$$

for every nonempty independent subset X of $V(G)$, and

$$
\delta(G) \geq \frac{k-1}{2 k-1}(n+2)
$$

Then G has a k-factor.

2. Main results

In this section, we prove the following theorem on (a, b, k)-critical graphs, which is an extension of Theorem 1.

THEOREM 2. Let a, b and k be nonnegative integers with $1 \leq a<b$, and let G be a graph of order n with $n \geq(((a+b)(a+b-2)) / b)+k$. Suppose that

$$
\begin{equation*}
\left|N_{G}(X)\right|>\frac{(a-1) n+|X|+b k-1}{a+b-1} \tag{1}
\end{equation*}
$$

for every nonempty independent subset X of $V(G)$, and

$$
\begin{equation*}
\delta(G)>\frac{(a-1) n+a+b+b k-2}{a+b-1} . \tag{2}
\end{equation*}
$$

Then G is an (a, b, k)-critical graph.
In Theorem 2, if $k=0$, then we obtain the following corollary.
Corollary 3. Let a and b be integers such that $1 \leq a<b$, and let G be a graph of order n with $n \geq(((a+b)(a+b-2)) / b)$. Let G satisfy

$$
\left|N_{G}(X)\right|>\frac{(a-1) n+|X|-1}{a+b-1}
$$

for every nonempty independent subset X of $V(G)$, and

$$
\delta(G)>\frac{(a-1) n+a+b-2}{a+b-1} .
$$

Then G has an $[a, b]$-factor.

3. Proof of Theorem 2

In order to prove our main theorem, we depend heavily on the following lemma.
Lemma 4 [5]. Let a, b and k be nonnegative integers with $a<b$, and let G be a graph of order $n \geq a+k+1$. Then G is an (a, b, k)-critical graph if and only if, for any $S \subseteq V(G)$ with $|S| \geq k$,

$$
\delta_{G}(S, T)=b|S|+d_{G-S}(T)-a|T| \geq b k,
$$

where $T=\left\{x \mid x \in V(G) \backslash S, d_{G-S}(x) \leq a-1\right\}$.
PROOF OF THEOREM 2. In order to prove the theorem by contradiction, we assume that G is not an (a, b, k)-critical graph. Then, by Lemma 4, there exists a subset S of $V(G)$ with $|S| \geq k$ such that

$$
\begin{equation*}
\delta_{G}(S, T)=b|S|+d_{G-S}(T)-a|T| \leq b k-1, \tag{3}
\end{equation*}
$$

where $T=\left\{x \mid x \in V(G) \backslash S, d_{G-S}(x) \leq a-1\right\}$. We choose such subsets S and T so that $|T|$ is as small as possible.

If $T=\emptyset$, then by (3), $b k-1 \geq \delta_{G}(S, T)=b|S| \geq b k$, a contradiction. Hence, $T \neq \emptyset$. Let

$$
h=\min \left\{d_{G-S}(x) \mid x \in T\right\}
$$

Obviously,

$$
\begin{equation*}
\delta(G) \leq h+|S| . \tag{4}
\end{equation*}
$$

According to the definition of T,

$$
0 \leq h \leq a-1
$$

We shall consider two cases according to the value of h and derive a contradiction in each case.

CASE 1. $h=0$. Let $Y=\left\{x \in T \mid d_{G-S}(x)=0\right\}$. Clearly, $Y \neq \emptyset$. Since Y is independent we obtain, by (1),

$$
\begin{equation*}
\frac{(a-1) n+|Y|+b k-1}{a+b-1}<\left|N_{G}(Y)\right| \leq|S| . \tag{5}
\end{equation*}
$$

On the other hand, from (3) and $|S|+|T| \leq n$, we obtain

$$
\begin{aligned}
b k-1 & \geq \delta_{G}(S, T)=b|S|+d_{G-S}(T)-a|T| \\
& \geq b|S|+|T|-|Y|-a|T| \\
& =b|S|-(a-1)|T|-|Y| \\
& \geq b|S|-(a-1)(n-|S|)-|Y| \\
& =(a+b-1)|S|-|Y|-(a-1) n,
\end{aligned}
$$

which implies that

$$
|S| \leq \frac{(a-1) n+|Y|+b k-1}{a+b-1}
$$

This contradicts (5).
CASE 2. $1 \leq h \leq a-1$. According to (3) and $|S|+|T| \leq n$ and $a-h \geq 1$, we obtain

$$
\begin{aligned}
b k-1 & \geq \delta_{G}(S, T)=b|S|+d_{G-S}(T)-a|T| \\
& \geq b|S|-(a-h)|T| \\
& \geq b|S|-(a-h)(n-|S|) \\
& =(a+b-h)|S|-(a-h) n,
\end{aligned}
$$

which implies that

$$
\begin{equation*}
|S| \leq \frac{(a-h) n+b k-1}{a+b-h} \tag{6}
\end{equation*}
$$

On the other hand, by (2), (4) and (6),

$$
\frac{(a-1) n+a+b+b k-2}{a+b-1}<\delta(G) \leq|S|+h \leq \frac{(a-h) n+b k-1}{a+b-h}+h,
$$

that is,

$$
\begin{equation*}
(a+b-h)\left(\frac{(a-1) n+a+b+b k-2}{a+b-1}-h\right)-(a-h) n-b k+1<0 \tag{7}
\end{equation*}
$$

Let

$$
\begin{aligned}
f(h)= & (a+b-h)((((a-1) n+a+b+b k-2) /(a+b-1))-h) \\
& -(a-h) n-b k+1
\end{aligned}
$$

Then, by $1 \leq h \leq a-1$ and $n \geq(((a+b)(a+b-2)) / b)+k$,

$$
\begin{aligned}
f^{\prime}(h) & =-\frac{(a-1) n+a+b+b k-2}{a+b-1}+h-a-b+h+n \\
& =2 h+\frac{b n-a-b-b k+2}{a+b-1}-a-b \\
& \geq 2+\frac{b n-a-b-b k+2}{a+b-1}-a-b \\
& =\frac{b n-(a+b)(a+b-2)-b k}{a+b-1} \\
& \geq \frac{b((((a+b)(a+b-2)) / b)+k)-(a+b)(a+b-2)-b k}{a+b-1} \\
& =0 .
\end{aligned}
$$

Thus we obtain, using $1 \leq h \leq a-1$,

$$
\begin{equation*}
f(h) \geq f(1) \tag{8}
\end{equation*}
$$

In view of (7) and (8), we obtain

$$
\begin{aligned}
0 & >f(h) \geq f(1) \\
& =(a+b-1)\left(\frac{(a-1) n+a+b+b k-2}{a+b-1}-1\right)-(a-1) n-b k+1 \\
& =0
\end{aligned}
$$

which is a contradiction.
From the contradictions we deduce that G is an (a, b, k)-critical graph. This completes the proof of Theorem 2.
REMARK. Let us show that the condition

$$
\left|N_{G}(X)\right|>(((a-1) n+|X|+b k-1) /(a+b-1))
$$

in Theorem 2 cannot be replaced by

$$
\left|N_{G}(X)\right| \geq(((a-1) n+|X|+b k-1) /(a+b-1))
$$

Let $b>a \geq 2, k \geq 0$ be three integers such that $\left(\left((a+b-1)^{2}\right) /(a-1)\right)$ is an integer, and let $n=\left(\left((a+b-1)^{2}\right) /(a-1)\right)+k$. Clearly, n is an integer. Let

$$
H=K_{a+b+k} \bigvee\left((a+b) K_{1} \cup\left(\left(\left((a+b-1)^{2}\right) /(a-1)\right)-2(a+b)\right) K_{2}\right)
$$

Let $X=V\left((a+b) K_{1}\right)$. Obviously,

$$
\left|N_{H}(X)\right|=(((a-1) n+|X|+b k-1) /(a+b-1))
$$

and

$$
\delta(H)=a+b+k>(((a-1) n+a+b+b k-2) /(a+b-1)) .
$$

Let

$$
S=V\left(K_{a+b+k}\right) \subseteq V(H)
$$

and

$$
T=V\left((a+b) K_{1} \cup\left(\left(\left((a+b-1)^{2}\right) /(a-1)\right)-2(a+b)\right) K_{2}\right) \subseteq V(H)
$$

then

$$
|S|=a+b+k \geq k, \quad|T|=\left(\left((a+b-1)^{2}\right) /(a-1)\right)-(a+b)
$$

Thus,

$$
\begin{aligned}
\delta_{H}(S, T)= & b|S|+d_{H-S}(T)-a|T| \\
= & b(a+b+k)+\frac{(a+b-1)^{2}}{a-1}-2(a+b) \\
& -a\left(\frac{(a+b-1)^{2}}{a-1}-(a+b)\right) \\
= & b k-1<b k .
\end{aligned}
$$

By Lemma 4, H is not an (a, b, k)-critical graph. In the above sense, the condition

$$
\left|N_{G}(X)\right|>(((a-1) n+|X|+b k-1) /(a+b-1))
$$

in Theorem 2 is the best possible.

References

[1] J. A. Bondy and U. S. R. Murty, Graph theory with applications (Macmillan Press, London, 1976).
[2] O. Favaron, 'On k-factor-critical graphs', Discuss. Math. Graph Theory 16(1) (1996), 41-51.
[3] J. Li, 'Sufficient conditions for graphs to be (a, b, n)-critical graphs', Math. Appl. 17(3) (2004), 450-455 (in Chinese).
[4] J. Li, 'A new degree condition for graph to have [a, b]-factor', Discrete Math. 290 (2005), 99-103.
[5] G. Liu and J. Wang, ' (a, b, k)-critical graphs', Adv. Math. 27(6) (1998), 536-540 (in Chinese).
[6] G. Liu and Q. Yu, ' k-factors and extendability with prescribed components', Congr. Numer. 139(1) (1999), 77-88.
[7] D. R. Woodall, ' k-factors and neighbourhoods of independent sets in graphs', J. London Math. Soc. 41(2) (1990), 385-392.
[8] S. Zhou, 'Some sufficient conditions for graphs to have (g, f)-factors', Bull. Austral. Math. Soc. 75 (2007), 447-452.
[9] S. Zhou and J. Jiang, 'Notes on the binding numbers for (a, b, k)-critical graphs', Bull. Austral. Math. Soc. 76 (2007), 307-314.
[10] S. Zhou and M. Zong, 'Some new sufficient conditions for graphs to be (a, b, k)-critical graphs', Ars Combin. to appear.

SIZHONG ZHOU, School of Mathematics and Physics, Jiangsu University of Science and Technology, Mengxi Road 2, Zhenjiang, Jiangsu 212003, People's Republic of China
e-mail: zsz_cumt@163.com
YANG XU, Department of Mathematics, Qingdao Agricultural University, Qingdao, Shandong 266109, People's Republic of China
e-mail: xuyang_825@126.com

[^0]: This research was supported by Jiangsu Provincial Educational Department (07KJD110048).
 (C) 2008 Australian Mathematical Society 0004-9727/08 \$A2.00 +0.00

