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Abstract

The development of wearable technology, which enables motion tracking analysis for human movement outside the
laboratory, can improve awareness of personal health and performance. This study used a wearable smart sock
prototype to track foot–ankle kinematics during gait movement. Multivariable linear regression and two deep
learning models, including long short-term memory (LSTM) and convolutional neural networks, were trained to
estimate the joint angles in sagittal and frontal planes measured by an optical motion capture system. Participant-
specific models were established for ten healthy subjects walking on a treadmill. The prototype was tested at various
walking speeds to assess its ability to track movements for multiple speeds and generalize models for estimating joint
angles in sagittal and frontal planes. LSTMoutperformed other models with lower mean absolute error (MAE), lower
root mean squared error, and higher R-squared values. The average MAE score was less than 1.138° and 0.939° in
sagittal and frontal planes, respectively, when training models for each speed and 2.15° and 1.14° when trained and
evaluated for all speeds. These results indicate wearable smart socks to generalize foot–ankle kinematics over various
walking speeds with relatively low error and could consequently be used to measure gait parameters without the need
for a lab-constricted motion capture system.

1. Introduction

Many researchers have addressed the development of gait analysis systems, andmany advancements have
been made, but some challenges still need addressing. Gait movement is being increasingly investigated
for two main goals: (a) monitoring and estimation of gait kinematics for movement tracking and
addressing health-related concerns (Uddin et al., 2017) and (b) gait identification and recognition
(Christ et al., 2013; Nair and Kendricks, 2016; Prakash et al., 2016; Triloka and Senanayake, 2017) for
security purposes, identifying each person based on their unique movement pattern.

In conjunction with recent advances in deep neural networks, wearable device development provides
the grounds to address the current gaps in gait analysis systems. This is the next study in our Closing the
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Wearable Gap (CWG) research (Luczak et al., 2018; Chander et al., 2019; Saucier et al., 2019a,b;
Davarzani et al., 2020; Luczak et al., 2020b; Talegaonkar et al., 2020; Carroll et al., 2021; Turner et al.,
2021) with the ultimate goal of designing a wearable solution “from the ground up” (Luczak et al., 2018)
capable of accurately measuring kinematic and kinetic features of the foot and ankle during gait
movement. The proposed study implements a wearable prototype designed by the research team, based
on soft robotic sensors (SRS) embedded into a sock to track foot–ankle movement on a treadmill at
varying speeds using deep neural networks.

The term that this publication series is based upon, “Closing the Wearable Gap” is derived from a
series of interviews and conversations with strength and conditioning coaches at the professional and
collegiate ranks across the continental United States (Luczak et al., 2020a). In 2018, when these
interviews took place and this smart sock research project was discussed, this began its project life
cycle via National Science Foundation (NSF) funding. The wearable technology space was expected to
become a $15 billionmarket by 2021 (Market Reports Hub, 2015). In 2022, this market is now projected
to be $264.5 billion by 2026, growing at a faster than expected pace (ReportLinker, 2021). Despite this
value, the coaches interviewed identified that gaps exist between what wearables vendors are
manufacturing and what human performance practitioners need; “Fools gold” was a term coined for
wearable solutions by some of the most well-known strength and conditioning coaches based on their
attempt to incorporate this technology into their training regimen (Luczak et al., 2020a). The lack of trust
for the data from these devices based on their proprietary algorithms was viewed as a key issue (Luczak
et al., 2018) and was further magnified by statements from the strength and training experts explaining
that the data being collected wasnot the information they most needed to make better health and safety
decisions for their athletes.

The common phrase used across two rounds of NSF I-Corps program interviews (Luczak et al., 2018,
2020a) was that the strength coaches needed “data collected from the ground up.”Because the lower body
is a closed kinetic chain when in contact with the ground, all lower body joints are connected. What these
strength and conditioning coaches were saying was that they wanted foot–ankle data because with it, they
could then predict knee, hip, and lower back biomechanics. “From the ground up” was the focus of this
team’s proposal to NSF for the design and productization of a wearable solution that would consistently
and accurately collect foot–ankle joint movement and ground reaction forces through pressure. The term
“Closing the Wearable Gap” is the goal of this team to make a wearable product that meet the needs
requested by the health and safety practitioner, while this article series remains our detailed account of the
studies and development processes needed to successfully build a wearable device that meets the needs of
our eventual customer: the strength and conditioning coach. With a lack of transparency around product
design and data collection of most wearable products, this series of papers continues to offer an in-depth,
first-hand account of how a lab-accurate wearable can be designed and validated for outside-of-the-
lab use.

While several previous research exists on ideal sensor placement for assessing gait (Boerema et al.,
2014; Engineering and Teichmann, 2016; Mokhlespour Esfahani and Nussbaum, 2018), these papers
predominantly use accelerometer-based sensors, which behave differently from the stretch sensors used in
this project. With the linear relationship of change in capacitance or resistance with the stretch of the
sensors, these sensors have already been validated against motion capture systems to efficiently capture
joint kinematics, when placed across a joint axis (Luczak et al., 2018; Chander et al., 2019; Saucier et al.,
2019a,b; Davarzani et al., 2020; Luczak et al., 2020b; Talegaonkar et al., 2020; Carroll et al., 2021; Turner
et al., 2021). Hence, the positioning of these sensors was determined based on our previous research to
accurately capture joint kinematics. In the Part II paper (Saucier et al., 2019b), authors investigated
multiple placements to determine the most efficient and accurate placement for each sensor. Even though
the lower extremity kinematics is seen as a closed kinematic chain, it is extremely common to analyze
joint-by-joint kinematics. As such, analyzing ankle kinematics alone provides a greater depth of
understanding of the body segment that serves as the interface between the body and the environment.
Ankle and foot kinematics are extensively studied in various scenarios such as normal gait, running,
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during sporting events, during slips, trips, and falls and even in clinical population (MacWilliams et al.,
2003; Monaghan et al., 2006; Jenkyn and Nicol, 2007; Dixon et al., 2012; Chander et al., 2015, 2017).

Some previous research studies have targeted developing sock prototypes with embedded sensors for
the purpose ofmonitoring the kinetic and kinematics of the foot ankle. Preece et al. (2011) designed a sock
prototype using a resistive strain sensor, which is knitted from a nonconductive elastomeric base material
with a low modulus of elasticity. They defined two tasks to evaluate the performance of the prototype
including identifying the three key gait events – heel lift (HL), TO, andHS – as well as estimation of ankle
joint angle in the sagittal plane. Kinematic data were processed using static calibration to calculate ankle
joint center and define segmental coordinate systems as well as to calculate foot angles using Cardan
angles. The estimations achieved correlation coefficients of 0.78 and 0.56 for no shoe and shoed
experiments of walking with participant’s self-selected speed. Previous research studies indicated
contradictory results on the effect ofwalking speed on the lower limb kinematic features and the capability
of sensors to track gait movement.

Mengüç et al. (2014) estimated gait angles of lower-body joints during walking and running with
various speeds and argued that while the sensor variability remained low even during the run, their
measured joint angles deviatedwith increasingwalking speed. They suggested that this behavior indicates
that the sensors would bemore suitable for higher-level control of movement tracking as opposed to direct
control over the absolute position of the joints. On the contrary, in another study (Gholami et al., 2019), the
authors argue that convolutional neural networks (CNN) and sensor characteristics together are robust to
change of speed and can track the foot ankle even with increasing the movement speed. Hanlon and
Anderson (2006) performed a study to examine the effect of speed on the gait kinematic on various phases
of gait movement and indicated that kinematic data is strongly influenced by speed. Researchers note an
increase in accuracy when data used for comparison originates from the same speed range as predictions.
They mention that speed depends on foot angle and gait phase; this means that altering the speed will
change the peak and the pattern of gait movement curve.

CNNs and long short-term memory (LSTM) neural networks are two architectures frequently
implemented by researchers to estimate joint angles and have provided promising results. Gholami
et al. (2019) analyzed intra and interparticipant performance of CNNmodels using nine strain sensors for
estimating joint angles in sagittal, frontal, and transverse planes during running with five different speeds:
8, 9, 10, 11, and 12 km/h. The proposedmethod achieved rootmean squared error (RMSE) lower than 2.2°
and 6.4°, and the R-squared was higher than 0.88 and 0.81, respectively, in intraparticipant and
interparticipant scenarios for hip, knee, and ankle joints in sagittal, frontal, and transverse planes.
However, the results indicate that the algorithm’s nonsagittal angle estimation is more challenging due
to the lower range of motion in the transverse and frontal planes.

The presented study aims to track the foot–ankle movement using SRS and MOCAP systems while
walking on a treadmill wearing the designed sock prototype and shoes. SRS and MOCAP measurements
are compared together, and angle estimation models are developed by mapping SRS data into MOCAP
signals. Linear regression, CNN, and LSTM models are employed to build intraparticipant models, and
various training approaches have been designed to enhance the estimation of kinematic features.
Moreover, to explore the effect of walking speed on the performance of SRS data and estimation models,
trials with different walking speeds performed on a treadmill, and the generalizability of models over
multiple speeds are examined. Finally, the estimation error of all models is compared, and reasons for
possible inaccuracies are discussed.

1.1. New contributions to Closing the Wearable Gap research

The contributions of this study in comparison to previous studies conducted within Closing theWearable
Gap research are as follows:

• A new dataset of foot ankle kinematics of walking with multiple speeds and self-selected speed on a
treadmill.
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• Validation of a newly developed sock prototype during walking on a treadmill using two different
deep learning methods.

• A step detection algorithm using pressure-based capacitive sensor located at the heel that uses an
adaptive threshold.

• Assessment of longer walking trials in a gait study for wearable prototype validation.
• Further validation of the accuracy of stretch sensor technology compared to gold standard optical
motion capture.

2. Material and methods

2.1. Participants

Ten healthy participants (four males: height, 170–178 cm;mass, 84–99 kg; foot size, 9.5–11 [US]; and six
females: height, 157–175 cm; mass, 54–75 kg; foot size, 7–9.5 [US]) with no known gait impairments
participated in the study. Participants were briefed about the experiment. Physical activity readiness
Questionnaire (PAR-Q) (Shephard, 1988) and informed consent was obtained from the participants based
on the approved protocol from the University’s Institutional Review Board) after fully explaining the
protocol along with the risks and benefits (Protocol ID: IRB-19-502).

2.2. Data collection devices

The experimental procedure includes measurements of gait and dynamic ankle functions while walking
on a treadmill using an SRS-based sock prototype, MOCAP, and GoPro recording systems. The study
uses a new sock prototype developed by theMSUAthlete Engineering Team for estimating joint angles at
the ankle joint complex. The sock comprises four stretch-based SRS and one pressure-based SRS,
(StretchSense, Auckland, New Zealand), measuring four-foot movements – Plantarflexion (PFX),
Dorsiflexion (DFX), Inversion (INV), and Eversion (EVR) – at the foot–ankle complex during static
and dynamic movements. The pressure sensor is attached to the heel of the sock prototype to identify HS
and automate gait cycle notation. This prototype is the most updated version, which is described in great
detail in CWG P7 (Talegaonkar et al., 2020) and was used in CWG P9 (Carroll et al., 2021). Each sensor
consists of an elastomer dielectric and elastomer electrode layer with silicon being used as the elastomer,
which is then pressed onto a jersey knit backing. This backing allows for the sewing of the hook and eyes
on the sensors so that they can be added or removed from the sock. The characteristic mechanism of the
capacitance of the sensor is described in equation (1), where ε0 is the dielectric’s vacuum or permittivity of
free space, εr is the dieletric’s relative permittivity, A is the area of the overlapping electrodes, and d is the
thickness of the dielectric layer (Keplinger et al., 2008; Huang et al., 2017). Measurement of the SRS was
implemented using the StretchSense SPI sensing board (StretchSense, Auckland, New Zealand).

C ¼ ϵr� ϵ0�Að Þ=d: (1)

This prototype uses an updatedwire management systemwith individual wraps for eachwire. In addition,
a mesh sock was used to cover the smart sock while participants were wearing shoes, since the movement
of putting on the shoe could snag the edges of sensors and cabling, damaging the prototype. The sensors
are tightly conformed to the body using hook-and-eye mounts sewn to the sock. Two elastic bands sewn
together are also wrapped around the foot and ankle to conform the substrate of the sensor to the sock,
which are then further secured by the outer layer of the mesh sock. Figure 1 provides an illustration of the
experiment setup with the sock prototype. Twelve Bonita 10 cameras were used as for the optical three-
dimensional (3D) MOCAP system (Vicon, Oxford, UK), two GoPro cameras (placed to the lateral and
rear of the participant), and a custom-developed SRS application was used to record the experiment data.
GoPro cameras were used for review of the data after the data collection was completed.
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2.3. Experimental setup and methodology

Height, weight, and shoe size were recorded for participant calibration into the MOCAP system. The
participant was asked to don the smart sock embeddedwith the SRS and shoes. The researcher then placed
seven retro-reflective marker clusters on the participant’s feet, on the middle third of each shank, the
middle third of each thigh, and the lower back (L5S1). Joint centers were subsequently calibrated using an
acrylic stylus (Innovative Sports Training, Inc., Chicago, IL) to create a relative 3D reference for the
MOCAP system. The kinematic data were collected at a sampling rate of 125 and 250 Hz by SRS and
MOCAP system, respectively. MOCAP system outputs two values, Flexion (FLX) and Inversion (INV).
Flexion’s positive and negative values are related to SRS DFX and PFX, respectively, and positive and
negative values of Inversion are related to SRS INVand EVR, respectively.

The treadmill (iFIT, NordicTrack, Logan, UT) walking experiment comprised of five trials. Prior to
data collection, a 2-min warm-up session was conducted at 0.67 m/s for familiarization with the treadmill.
The participant was instructed first to set their feet on the treadmill’s side rails to avoid tripping. The
researcher would then set the treadmill speed to 0.67 m/s. Once the speed was set, the participant was
asked to step on the treadmill carefully, keeping his or her arms to the sides and looking straight ahead,
resembling normal walking. Once the participant walked for 2 min, the researcher stopped the treadmill,
and the other researchers prepared the recording systems for the initial data collection. The MOCAP,
MSU-built SRS application, and GoPros were utilized to record the gait data following this warm-up trial.

The researcher operating theMOCAP gave the command “3, 2, 1, GO,”wherein the researchers hit the
record button on “2” for all three recording systems tomanually sync the recording. One of the researchers
also clapped to create a signal for audio synchronization of the two GoPro cameras. Next, the participant
was instructed to get on the treadmill and briefly stand up on their toes before returning to normal standing,
which served as a kinematic signal synchronization prompt for the MOCAP, GoPros, and SRS-app in

Figure 1.Participant right foot wearing designed sock prototype and shoes. Stretch sensor, and hardware
module plus the protective sock liner, and wire covers are marked. MOCAP clusters mounted on the
midfoot are also indicated. Two markers also are attached to the foot for GoPro video analysis.
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time. The participant was then asked to set the treadmill speed at 0.67 m/s and walk for 3 min. After
beginning this trial, the treadmill speed on the display was concealed so that the participant could not read
it. At the end of this trial, recording devices were stopped, and the participant was asked to select a
comfortable self-selected walking speed using the selection keys on the treadmill key control. Once a
comfortable speedwas selected, the researcher controlling the treadmill speed noted the participant’s self-
selected speed, and the treadmill was paused briefly for a break.

The participant was then asked to start the treadmill and walk at their self-selected speed for 3 min
following the break. For the third, fourth, and fifth trials, the participant was asked to repeat the same
synchronization procedure, and the trials were conducted at 0.89, 1.12, and 1.34 m/s, respectively. A rest
break of 2 min was provided after each trial. Experiments were performed in the same order of speeds for
all participants: 0.67 m/s, self-selected pace, 0.89, 1.12, and 1.34 m/s. This data collection protocol is
summarized in Figure 2. Four walking speeds from 0.67 to 1.34 m/s (Boonstra et al., 1993; Meijer et al.,
2009) were selected to include slow to fast walking speeds, as well as a self-selected speed. Participants
walked for 3 min to gather enough gait cycles of stable walking while being adequate for training deep
learning algorithms.

2.4. Data preprocessing

The difference in sampling frequency of the raw signals from the prototype and MOCAP system must be
reconciled. SRS data were sampled at 125 Hz, while MOCAP data were sampled at 250 Hz. Next, SRS
data were up-sampled using linear interpolation to match theMOCAP data rate. In the next step, SRS and
MOCAP data were time-aligned using cross-correlation according to Rhudy (2014). For this purpose, the
delay between SRS PFX sensor and MOCAP FLX signal has been calculated and data are shifted
accordingly to mitigate the delay. The reason for considering PFX data for this purpose is that the
participant standing on their toes at the beginning of each trial creates a high peak in the data acquired from
this sensor to easily identify the time delay between the two systems. There are some trials where one of
the measurement systems starts recording late and fails to record the timesteps when participant stand on
their toes. These trials were alignedmanually, when possible, otherwise they have been discarded from the
dataset. The trials for participant 9 with 0.89m/s and participant 10 with self-selected speed (0.94m/s) are
removed from the dataset due to this issue.

The last step of preprocessing is to remove gait cycles with noisy and outlier data. Outliers are removed
only based on the MOCAP data. If the signals from the MOCAP system have outliers, the corresponding
steps will be removed from both SRS and MOCAP data. For this purpose, we need to first annotate each
gait cycle. The start of a gait cycle is marked according to the initial contact event (or HS) identified based
on the heel pressure sensor data. A two-step algorithm has been designed for this purpose. The highest
increase in the heel pressure sensor happens between HS and foot flat when the foot touches the ground.
Therefore, in the first step, the algorithm finds the maxima of the first derivative of heel pressure sensor.

Figure 2. Data collection protocol. m and m/s stand for minute and meter per second respectively.
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Then in the next step, the algorithm searches the neighborhood of this timestep to find HS. In both steps,
thresholds are implemented based on a specific percentile of timesteps to find the local maxima or HS.

After partitioning data, steps with outliers are identified and removed from dataset. First, the initial
boundaries (IB) are determined based on all the gait cycles’ minimum and maximum values. The lower
bound is the 0.25 quartile of the minimum values and the upper bound is equal to the 0.75 quartile of the
maximum values. Then based on the following criteria the outlier steps are determined:

• MOCAP loses tracking in a few timesteps and creates lots of signal fluctuations: This type of noise is
detected based on 1.5 IB.

• A few timesteps out of upper and lowers bounds determined based on two conditions: 10% of
timesteps in one step are beyond the 3 IB or any timestep outside of 15 IB.

• The mean value of the signal is outside of 3 IB.

The cycles identified by each of these criteria are discarded from SRS and MOCAP datasets. A visual
inspection of data indicated that the trial for participant 9with 1.12m/s right foot shifted upward at the first
20,000 timesteps. This trial (for the right foot) also has been removed from dataset.

Data from SRS and MOCAP then were smoothed using Savitzky–Golay (SG) filter to remove high-
frequency noise without distorting the signal tendency. The window length and polynomial order of SG
have been set to 31 and 5, respectively. New features have been generated and added to the input data
based on SRS signals’ first and second derivatives using differential filtering in the time domain. SRS and
MOCAP signals for each participant from all trials are normalized to have the mean of zero and standard
deviation of one before feeding into the angle estimationmodels. Data from each trial has been partitioned
into three parts, training data (first 60% of timesteps), validation (the following 20% of timesteps), and
testing data (the last 20% of timesteps) before normalization. For the linear regression model there is no
need for validation data and the training data consists of the first 80% of time steps. Normalization was
performed based on the training data, and the same transformation has been applied on the validation and
test data. Training data from each participant (all trials) was transformed so that have the mean of zero and
the standard deviation of one.

2.5. Data analysis

This study implemented multivariate linear regression, LSTM, and CNN networks to model the
relationship between SRS and MOCAP signals and estimate joint angles in sagittal and frontal planes.
Models estimate FLX and INV signals ofMOCAP system based on the DFX, PFX, INV, and EVR signals
of the SRS system and their first and second derivatives. Data analysis was performed using Python 3.7.
Regression models were trained using Sklearn library. All DL models are developed using TensorFlow
2.4.0. and Nvidia Cuda 11.0.3 on an Nvidia GTX 980 with i7-5960X CPU and 128 GB of RAM.

2.5.1. Linear regression model
Linear regression develops a model to explain the linear relationship between one or more (multivariable)
explanatory features and dependent variable. This method has been applied on gait movement data to
analyze foot ankle kinematic features (Saucier et al., 2019a,b). A multivariate regression analysis is
developed in this study to evaluate the linear relationship between the data from SRS and MOCAP
signals. The least-squares approach was employed to fit the best-fitting line on the experiments’
observations and estimate the regression model’s coefficients.

2.5.2. LSTM model
LSTM is a Recurrent Neural Network (RNN) architecture. RNN is a DL method designed and imple-
mented for analyzing time-series data capable of capturing the sequential information hidden in time-
series data. RNNs train the network based on gradient-based learning methods (Sra et al., 2012) and
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backpropagation (Chauvin and Rumelhart, 2013). This method has been successfully applied on many
problems that deal with sequential data. However, when there is a long-term dependency among data, this
method might encounter the vanishing or exploding gradient problem. LSTMs are designed to overcome
the vanishing gradient problem by making modifications in cell design and operations. The long-term
dependencies are encoded into thememory cell and three gates control its state – an input gate, output gait,
and forget gait. By controlling the activations of forget gate and additive structure of cell operations,
LSTM addresses the vanishing problem. More detailed explanations of RNN and LSTM networks are
presented in (Sherstinsky, 2020).

Angle estimation models developed and trained using various recurrent network architectures are
presented in this study. The network architecture consists of two to three LSTM layers, followed by a
dropout layer to increase the model generalizability. Also, the effect of batch normalization has been
evaluated by adding this layer in the architectures. At the end, one or two dense layers are added to find the
nonlinear relationships between features and estimate the outputs. The number of units in LSTM and
dense layers and the dropout rate (p) in dropout layers are tuned by trying 32, 64, and 128 units in LSTM
layers with p equal to 0.2, 0.3, and 0.4. A learning schedule function has been designed to decrease the
learning rate through the iterations. Models performed better with learning rate equal to 0.05 and
decreased to 0.04. The model is trained for 40 epochs and a callback model checkpoint saved the best
model based on the validation data to avoid overfitting on the training data. TheAdamoptimizer andmean
absolute error (MAE) loss function were employed to train the network.

2.5.3. CNN model
CNNs (LeCun et al., 1989 Lecun and Kavukcuoglu, 2010) that were originally designed to address the
imagery data and automatically learn their spatial features from the data, are another type of neural
network applied successfully on other applications including time series data analysis. The Convolutional
(CONV), pooling, and fully connected (FC) layers are three main layers implemented in developing a
CNN model. A CONV layer is the core building block of CNNs. In CONV layer a kernel convolves
through an input layer to extract certain features. Various feature maps are extracted from the data by
applying different kernels on a series of CONV layers. Then these features are mapped to the output
through FC layers. Finally, pooling layers are applied on the feature maps and summarize the extracted
features to reduce computational cost and increase the robustness of the model to noise and outlier
(Mukhaimar et al., 2015).

Several CNN models are designed to find the best architecture on the gait data of this study. The
baseline CNN model and parameters have been developed based on the network architecture introduced
by Gholami et al. (2019) applied on the gait movement data for lower body kinematics estimation. Then
the layers and parameters of the model have been tuned to achieve better performance on the dataset in the
present study. Four to six CONV layers, and max pooling layers with the pool size of (2,1), which is
applied only on the time dimension after some of CONV layers, have been implemented in building CNN
models. GlorotUniform andGlorotNormal initializers, andRelu and LeakyRelu activation functionswere
employed in designing CONV layers. Then, a flatten layer followed by two FC layers to map these
extracted features to the output features is added to themodel. The number of filters varies between 50 and
256, and the kernel size was set to (3,1) and (5,1) to apply it on the time dimension to extract the sequential
information of raw signals (Mukhaimar et al., 2015). Other parameters of models including learning rate,
number of iterations, optimizer, and loss function follow the settings explained in LSTM models.

2.5.4. Training strategies
To investigate the effect of varyingwalking speed in the performance of sensors, models have been trained
and evaluated by three different strategies:

• Speed-specific:Models are trained by one specific walking speed, and the samewalking speed as the
test data to evaluate the performance of model.
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• Multi-speed: Models are trained by all the walking speeds, and all the walking speeds are used as the
test data to evaluate the performance of model.

• Speed-independent: Models are trained by all the walking speeds, and one specific walking speed is
used as the test data to evaluate the performance of the model. This is similar to the previous
approach in the training phase, except only data from one speed has been implemented to evaluate
the performance.

A sliding window procedure has been employed to extract frames and shape the inputs for deep learning
models.A slidingwindowwith a length ofN timesteps has been applied to each input signal and its derivatives
to shape a frame of input data. The sliding window has been shifted by one timestep to extract the next frame.
The shape of each input frame in the model is 12�N and its corresponding output vector is the value of FLX
and INVMOCAP signals at the timestepNwith the shape of 2� 1. This process is depicted in Figure 3. Only
original SRS signals (not their derivatives) are shown on the plot for the sake of visual comprehension.

The value of parameterN needs to be tuned for eachmodel, and different values have been evaluated to
find the optimal input shape. For this purpose, an initial network structure for LSTM and CNN has been
set and evaluated using several values forN and the data from the left foot. The LSTMbasemodel consists
of twoLSTM layers with 128 and 64 units each. The LSTM layer is followed by a dropout layer with a rate
of 0.3, and there is a dense layer with the size of two to estimate two output values corresponding to FLX
and INV signals of MOCAP system. The architecture of LSTM base model is presented in Figure 4.

The CNN base model is based on the study of Gholami et al. (2019) and consists of two CONV layers
with 50 filters in each layer followed by aMaxPooling layer. Then, there are two additional CONV layers
each with 100 filters, a flatten layer, a dense layer with 100 units, and another dense layer with two units
for estimation of outputs. Figure 5 shows the CNN base model’s architecture.

Figure 3.Preparing the sample frames of input and output datawith slidingwindow.Only the SRS signals
are plotted to keep the figure comprehensive. The number of timesteps in each sample (N) is set to 60. Top
figure shows the SRS data and each rectangular indicated the timesteps in each sample. The corre-

sponding output (MOCAP data) is plotted using triangles with the same color as rectangles.
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The results of the trained model have been evaluated based on three measurements, including MAE,
RMSE, and R-squared. MAE and RMSE scores are in degrees matching the unit of MOCAP signals,
andR-squared is a value between zero and one. Lower values inMAE and RMSE indicate lower error of
estimation of the models and better performance. In contrast, higher values of R-squared are more
desired as an indicator of better explanation of the variance in the MOCAP data.

Figure 4. LSTM base model with 60 timesteps in each input frame.

Figure 5. CNN base model with 60 timesteps in each input frame. Conv2D a@b*c: two-dimensional
CONV layer with a, b timesteps, c features. FC= fully connected layer; Kernel= (3,1); pool size= (2, 1).
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3. Results

Table 1 indicates the average performance of CNN and LSTM models when trained and tested based on
Speed-specific andMulti-speed approaches for various input sizes (N) to determine the optimal number of
timesteps in each input frame. N has been set from 60 to 100 to divide the signals to the intervals between
120 and 400 ms (60–100 timesteps at 250 Hz). Comparing the results indicate that the N equal to 70 and
90 would provide better estimations for the CNNmodel when trained by each speed separately and by all
the speeds, respectively. LSTM performs better with N equal to 90 timesteps regardless of the designing
strategy.

3.1. Multivariate regression analysis

Linear regression models were developed based on SRS capacitance andMOCAP joint angles for the left
and right foot. This regression model finds the relationship between four SRS signals and their first and
second derivatives (12 independent variables) with the independent variable that is FLX or INV signal of
MOCAP system. The regression model is trained using the first 80% of timesteps in each trial, and the
remaining data are used to evaluate the accuracy of regression models. The average of MAE, RMSE, and
R-squared values are presented in Figure 6 for Speed-specific models.

3.2. Deep learning models

Several CNN and LSTM architectures have been developed and evaluated to better understand the
network structure that fits the data. The number of layers and the units in each layer, kernel size, initializer,
activation, and dropout rate are some of the model parameters that need to be tuned in each model. The
input samples consist of 90 timesteps for all themodels and design strategies, except for CNNwith Speed-
specific strategy, 70 timesteps. To limit the search space, the various network architectures have been
evaluated using data from the left foot, and the best model architecture has been employed to train angle
estimation model for the data from the right foot. The average MAE, RMSE, and R-squared results
provided by the best architectures of CNN and LSTM are presented in Table 2. Train, validation, and test
data consist of 60, 20, and 20% stepswithout shuffling. The detail of various network architectures and the
score of performance measurements is presented in Tables A1 and A2.

Table 1. Average MAE, RMSE in degrees (°), and R-squared values for CNN and LSTM speed-specific and multi-speed models with
different input sizes

Average MAE (°) Average RMSE (°) Average R-squared

Design strategy Model N Flexion Inversion Flexion Inversion Flexion Inversion

Speed-specific CNN 60 1.635 1.131 2.295 1.464 0.877 0.807
70 1.449 1.105 2.023 1.434 0.902 0.824
80 1.987 1.195 2.739 1.536 0.812 0.754
90 1.934 1.358 2.675 1.722 0.832 0.756
100 1.636 1.069 2.333 1.400 0.873 0.802

LSTM 60 0.959 0.739 1.396 0.988 0.969 0.916
70 0.953 0.746 1.393 0.994 0.969 0.915
80 0.950 0.739 1.384 0.984 0.970 0.916
90 0.944 0.734 1.377 0.980 0.970 0.918
100 0.963 0.734 1.398 0.978 0.969 0.918

Multi-speed CNN 60 2.770 1.626 3.718 2.081 0.827 0.730
80 2.866 1.591 3.825 2.046 0.811 0.744
90 2.632 1.632 3.578 2.116 0.837 0.727
100 3.674 1.959 4.946 2.537 0.656 0.553

LSTM 60 2.258 1.270 3.082 1.661 0.878 0.831
80 2.232 1.264 3.061 1.660 0.885 0.835
90 2.239 1.243 3.064 1.626 0.881 0.842
100 2.298 1.279 3.174 1.672 0.879 0.834

Note: The best N in each category is indicated in bold font, and the best performance score is in italics.
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The violin plots ofMAE scores are presented in Figure 7. This graph shows kernel density distributions
for different error values, the horizontal lines indicate the MAE score for each trial in Speed-specific, and
Speed-independent models, and each participant in Multi-speed models.

Figure 8 illustrates theMAE scores for the FLX and INVangle estimations by the LSTMmodels to see
the effect of speed change on the performance of SRS module and the generalizability of deep learning
models over altering speeds. In each subfigure,MAE trend lines for each participant (dashed lines) and the
average over various participants are presented.

Figure 6. Average MAE (°), RMSE (°), and R-squared values for regression models for speed-specific
design strategy.

Table 2. Angle estimation results of CNN and LSTM models for three design strategies

Speed-specific Multi-speed Speed-independent

Foot Model Flexion Inversion Flexion Inversion Flexion Inversion

Left CNN MAE (°) 1.184 0.865 2.592 1.551 2.571 1.540
RMSE (°) 1.663 1.153 3.490 2.008 3.094 1.881
R-squared 0.959 0.89 0.839 0.743 0.825 0.643

Right MAE (°) 1.366 1.034 2.035 1.647 2.000 1.624
RMSE (°) 1.817 1.355 2.742 2.239 2.555 1.981
R-squared 0.946 0.859 0.893 0.718 0.880 0.670

Left LSTM MAE (°) 0.944 0.734 2.140 1.211 2.125 1.201
RMSE (°) 1.377 0.98 2.905 1.584 2.540 1.472
R-squared 0.97 0.918 0.889 0.844 0.877 0.775

Right MAE (°) 1.138 0.939 1.767 1.432 1.710 1.415
RMSE (°) 1.558 1.238 2.492 1.991 2.239 1.754
R-squared 0.957 0.875 0.912 0.772 0.903 0.730
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Finally, the average MAE errors for each participant are presented in Figure 9 for Speed-specific and
Multi-speed models. The MAE scores vary over different participants, and to some extend this could be
explained by the issues explained above. Also, different gait cycle patterns while walking with various
speeds account for the variation of MAE scores.

Several factors, including altering movement speed, contribute to determining how much a person’s
gait pattern varies over different walking trials, which is an area for future work. The more severe
estimation error for INV signal in participant 3, right footwith LSTMMulti-speed (Purple line in the right-
hand side plot in Figure 9) initiates from different gait pattern of this participant over trials even with the
same speed.

4. Discussion

Comparing the findings of this study with similar studies for the estimation of gait kinematics indicated
that the performance of SRS and deep learning models are comparable to the literature. Gholami et al.
(2019) designed similar experiments and achieved high R2 values equal to 0.97 and 0.88 and RMSE
values of 1.33° and 1.56° for the sagittal and frontal plane, respectively for the intraparticipant models.
Gholami et al. (2019) also mentioned the performance of sensor and model remains consistent over
various walking speeds, which is in agreement with the findings of the present study.Mengüç et al. (2014)
used hyperelastic strain sensors based on microchannels of liquid metal embedded within elastomer and
estimated ankle joint angle via linear regression. The authors set multiple walking speeds from 0.89 m/s
(walking) to 2.7m/s (running) and theRMSEvalues changed from 5° to 15°, indicating that increasing the
walking speed reduced the accuracy of estimations. Sivakumar et al. (2021) developed a model for
estimation of ankle joint angle using ground reaction forces measured from foot kinetic sensors and

Figure 7. Violin plots of best trained model by regression, CNN, and LSTM for all three design strategies.
Top figures are for the left foot and bottom figures for the right foot. Plots in the first column indicate the
results of speed-specific models, plots in the second column correspond to themulti-speedmodels, and the
last column of figures show the results of speed-independent models. The horizontal lines inside violin
plots indicate MAE scores corresponding to each trained model (each trial in speed-specific, and speed-

independent models, and each participant in multi-speed models).
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Figure 8.MAE scores trend lines over various walking speeds. The dotted lines indicate the MAE scores
of angle estimations provided by LSTM models. The solid gray line in each figure is the average MAE
scores over various participants. Part figures (a)–(d) are corresponding to speed-specific models and (e)–
(h) for speed-independent models. The lower MAE scores are achieved by the speeds of 0.89–1.12 m/s.
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wavelet neural network with Gait Intervals feature selection (WNN)-GI and achieved RMSE of
2.772°� 1.070°.

In all three design strategies, LSTM achieved better performance followed by CNN model. This
indicates that there is nonlinearity in the data that linear regression models could not successfully capture.
The regression models trained by all the speeds were not able to follow the pattern of gait cycles and
perform poor in estimating the peaks and are not reported. Generally, LSTMs are designed to process
timeseries data while in contrast CNN is designed for analyzing visual imagery and exploiting the spatial
structure of data, this could explain the superiority of LSTM as the gait data has time dependency over
timesteps. Moreover, LSTMs capture the longer-time domain correlations while CNNs only generate
local features depending on the kernel size.

Further investigation indicates that three main reasons for the higher error rate in models with lower
performance include (a) noisyMOCAP data, (b) a shift in the readings of theMOCAP system, and (c) loss
of tracking by MOCAP marker clusters. Regardless of the design strategy, angle estimation models are
prone to errors when the signal is too noisy. Participant 1 with 0.67 m/s walking speed has the highest
MAE value equal to 3.31° and 2.25°, respectively for FLX and INV signals in Speed-specific models. The
row signals for this trial have been compared with data from participant 10, 1.34 m/s speed in Figure 9 to
better illustrate this issue and its effect on the performance of angle estimation models. Reviewing the
MOCAP recordings indicates that in some trials, marker clusters lost the movement tracking due to loose
contact with the foot or getting covered up by the participant’s limbs or the treadmill. This issue could
account for higher error rates in angle estimations.

Regarding the results in Figure 8, comparing the figures from the Speed-specific and Speed-
independent models indicates a noticeable difference between the effect of speed in various designing
strategies. In both design strategies, models for various speeds indicate similar range of performance
scores and slightly better estimations corresponding to the speeds of 0.89–1.12 m/s walking speed. Also,
looking at the data indicates that the average of participants’ self-selected speed is≈ 0.89m/s. Comparing
plots in Figure 8b,f indicates same participant walking gait were more challenging for both design
strategies (Participants 1,7, and 9) in INVestimation of the left foot. The very high MAE scores in plots
from Figure 8e–h result from other issues mentioned before rather than the effect of speed and
generalizability. Higher error rates in the plot for Figure 8e participant 6 with 1.12 m/s, participant 4 with
0.67 m/s are due to shifted MOCAP FLX signal, and participant 10 with 0.67 m/s is due to shifted SRS
PFX signal. A shift in SRS INV signal accounts for high MAE corresponding to participant 1 with

Figure 9. The average MAE scores for each participant on the FLX and INV joint angles.
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Table 3. Summarization of study results compared to previous studies

Reference Sensor type Feature Method (Metric) Metric Experiment Remarks

Preece et al., 2011 Resistive strain
sensor

Ankle joint angle
(sagittal)

Correlation
analysis

0.78 (no shoe), 0.56
(shoed)

Walking: Self-selected speed Performance decreased in trial with
shoe

Mengüç et al., 2014 Strain sensors
microchannels of
liquid metal

Joint angles lower
body

Linear regression
(RMSE)

5°–15° Walking and running: Various speeds Low Sensor variability even during
the run

Increasing the error with elevating
walking speed

Gholami et al., 2019 Nine fiber strain
sensors

Joint angles in
sagittal, frontal,
and transverse

CNN (RMSE) 2.2° (intraparticipant)
and 6.4°
(interparticipant)

Running: Five different speeds Higher correlation with sagittal
angles comparing to nonsagittal
angles

Similar accuracy at fast and slow
speeds

Mundt et al., 2020 Inertial sensor 3D lower limb joint
angle

LSTM (RMSE) 1.60 � 0.57 Walking: Self-selected speed Reduction of sensors using ANN
Best Model with three sensors:
pelvis, right and left shank

Conte Alcaraz et al., 2021 A single IMU Lower body joint
angles (sagittal
plane)

GRNN, NARX,
LSTM
(RMSE)

2.57∘ (ankle)
2.12∘ (knee)
1.91∘ (hip)

Walking: Self-selected speed LSTM has great potential in
building digital twins for gait
rehabilitation

Lu et al., 2022 8-channel sEMG
signals

Lower limb multi-
joint angles

CONV þ LSTM
(RMSE)

3.451 � 0.29 (walk)
and 3.891 � 0.12
(Run)

Walk, run, stair descent, stair ascent,
stand-to-sit, sit-to-stand, and jump
locomotion

TDFD features for estimation of
joint angles

Sivakumar et al., 2021 Foot kinetic sensors Ankle, knee, and hip
joint angles

WNN 2.86 (ankle)
3.98(knee)
2.07 (hip)

Walking: Self-selected speed barefoot Using vGRF to reduces number of
kinematics sensors

Presented work SRS Ankle joint angle
(sagittal and
frontal)

Linear
regression,
CNN, LSTM

(RMSE)

Single speed: 1.46°,
1.11°

All speeds: 2.69°,
1.78°

Walking: Five different speeds Linear regression models could not
successfully capture
nonlinearity in data

Models perform slightly lower
with walking speed around self-
selected
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1.34 m/s left foot (Figure 8f). A higher MAE score for participant 4 with 0.67 m/s in plot for Figure 8g is
also a result of shifted MOCAP FLX signal. The plot in Figure 8h visualizes severe estimation errors for
participant 6 with 2.5 and 1.34 m/s because of the shank sensors positioning, which are too high up and
thus causing calibration issues and a shift MOCAP INV signal. Moreover, participant 10 with 0.67 m/s
right foot is greater MAE scores due to noisy MOCAP signal and loss of track in the peaks of INV signal.

Foot ankle joint angles measured by MOCAP system were estimated based on data acquired by the
MSU-designed prototype during walking on a treadmill using multivariate regression, LSTM, and CNN
models. The MAE, RMSE, and R-squared were evaluated on these models to compare the SRS and
MOCAP data and determine the best model for the angle estimation of foot ankle. LSTM model with
lower MAE and RMSE scores and higher R-squared values outperformed the other methods, with two
LSTM layers having 64 and 32 units, followed by a dropout layer with rate of 0.2 and one dense layer of
size two at the end as the best LSTMmodel. Lower performance of regressionmodels indicates the degree
of nonlinearity in data and coupling between data from various sensors specially when all the trials train
models with different speeds. This nonlinearity initiates from the variation in gait movement character-
istics (even with same walking speed), altering walking speed, and variations in sensor readings.

Speed-specific models were trained to evaluate the performance of prototype and estimation models
for various speeds. Results indicated that models perform uniformly over various walking speeds and a
slightly lower estimation errors is achieved with a walking speed of 0.89 m/s, which is very close to the
average of the self-selected speed of participants (≈0.89m/s). Then, CNN and LSTMmodels were trained
by data from all the trials performed by each participant with five different speeds, and results indicated
their high performance that indicates the models can generalize over various walking speeds and estimate
joint angles with relatively low error (Table 3).

4.1. Future work

Estimation models in this study were developed for each participant, and the results indicate the designed
prototype can measure the foot ankle data on various speeds and LSTM model is performing well on
estimating joint angles in sagittal and frontal planes for each participant. The authors aim to establish
interparticipant models based on the findings of this study and incorporate other demographic features as
the future work. Lastly, the models presented herein could be compared to models generated from the
GoPro footage collected during the study, to determine how well the SRS technology compares to other
sensing modalities in predicting joint kinematic data.

4.2. Limitations

One of the limitations of this research is the sample size. With the novelty of the research and the
development of the smart sock prototype, a smaller sample size that is representative of the general
populationwas used. Additionally, previous analysis comparing these stretch sensors withmotion capture
systems have also used similar sample size, and hence this sample size was adopted based on previous
research (Chander et al., 2019; Saucier et al., 2019b; Luczak et al., 2020b; Carroll et al., 2021).

Another limitation the authors faced during data collection was the quality of data collected by
MOCAP system and its clusters. In addition, the gait cycles have been partitioned using a threshold-
based algorithm and were controlled visually. Setting up force plates and employing a supervised
algorithm for annotation of gait cycles will result in more accurate partitioning.

DataAvailability Statement. Deidentified sensor data and software analysis conducted for this experiment will be available on the
research team’s GitHub repository (https://github.com/msstate-athlete-engineering/soft-sensors-research). Standard operating pro-
cedures documents utilized for conducting the study will be included as well.

Funding Statement. This work was supported by the National Science Foundation (NSF 18511 – Partnerships for Innovation
grant number 1827652).

Ethical Standards. The authors assert that all procedures contributing to this work comply with the ethical standards of the
relevant national and institutional committees on human experimentation and with the Helsinki Declaration of 1975, as revised in

Wearable Technologies e4-17

https://doi.org/10.1017/wtc.2023.3 Published online by Cambridge University Press

https://github.com/msstate-athlete-engineering/soft-sensors-research
https://doi.org/10.1017/wtc.2023.3


2008. The study was approved by the Institutional Review Board of Mississippi State University (IRB Protocol # 19-502 approved
on 21 June 2021).

AuthorshipContributions. Conceptualization, D.S., J.E.B., H.C., R.F.B.V;Data curation, S.D., D.S., P.T., E.P., A.T., C.M.,W.C.;
Formal analysis, S.D., D.S.; Funding acquisition, R.F.B.V; Investigation, S.D., D.S., P.T.; Methodology, D.S., A.T., H.C., R.F.B.V.,
A.K.; Project administration, D.S., J.E.B., H.C., R.F.B.V., B.K.S., A.K., C.F.; Resources, D.S., J.E.B., R.F.B.V.; Software, S.D.,
D.S.,W.C.; Supervision, J.E.B., A.G., H.C., R.F.B.V., B.K.S., A.K., C.F.; Validation, S.D., D.S.; Visualization, S.D., E.P.;Writing –
original draft preparation, S.D., P.T., E.P.; Writing – review and editing, D.S., J.E.B., A.G., H.C., R.F.B.V., B.K.S., A.K., C.F. All
authors have read and agreed to the published version of the manuscript.

Competing Interests. The authors declare no competing interests exist.

References
Boerema ST, Van Velsen L, Schaake L, Hermens HJ, Group T, Group Tand Science C (2014) Optimal sensor placement for

measuring physical activity with a 3D accelerometer. Sensors (Basel) 14, 3188–3206. https://doi.org/10.3390/s140203188
BoonstraAM,FidlerVandEismaWH (1993)Walking speed of normal subjects and amputees: aspects of validity of gait analysis.

Prosthetics and Orthotics International 17, 78–82.
Carroll W, Turner A, Talegaonkar P, Parker E,Middleton JC, Peranich P, Saucier D, Burch RF, Ball JE,Member S, Smith

BK, Chander H, Knight AC and Freeman CE (2021) Closing the wearable gap—Part IX: Validation of an improved ankle
motion capture wearable. IEEE Access 9, 114022–114036. https://doi.org/10.1109/ACCESS.2021.3102880

Chander H, Garner JC and Wade C (2015) Heel contact dynamics in alternative footwear during slip events. International
Journal of Industrial Ergonomics 48, 158–166. https://doi.org/10.1016/j.ergon.2015.05.009

Chander H, Stewart E, Saucier D,Nguyen P,Luczak T,Ball JE,Knight AC, Smith BK,Burch VRF and Prabhu RK (2019)
Closing the wearable gap-part III: Use of stretch sensors in detecting ankle joint kinematics during unexpected and expected slip
and trip perturbations. Electronics (Switzerland) 8(10), 1–15. https://doi.org/10.3390/electronics8101083

Chander H, Wade C, Garner JC and Knight AC (2017) Slip initiation in alternative and slip-resistant footwear. International
Journal of Occupational Safety and Ergonomics: JOSE 23(4), 558–569. https://doi.org/10.1080/10803548.2016.1262498

Chauvin Yand Rumelhart DE (2013) Backpropagation: Theory, Architectures, and Applications. London: Psychology Press.
Christ P, Werner F, Ruckert U and Mielebacher J (2013). Athlete Identification using acceleration and electrocardiographic

measurements recordedwith awireless body sensor. InProceedings of the International Conference on Bio-Inspired Systems and
Signal Processing, 11–19. https://doi.org/10.5220/0004190300110019

ConteAlcaraz J,Moghaddamnia S andPeissig J (2021) Efficiency of deep neural networks for joint anglemodeling in digital gait
assessment. EURASIP Journal on Advances in Signal Processing 2021(1), 10. https://doi.org/10.1186/s13634-020-00715-1

Davarzani S, Saucier D, Peranich P, Carroll W, Turner A, Parker E,Middleton C, Nguyen P, Robertson P, Smith B, Ball J,
Burch R,Chander H,Knight A, PrabhuR and Luczak T (2020) Closing the wearable gap—Part VI: Human gait recognition
using deep learning methodologies. Electronics 9, 796.

Dixon PC,BöhmHandDöderlein L (2012) Ankle andmidfoot kinetics during normal gait: Amulti-segment approach. Journal of
Biomechanics 45(6), 1011–1016. https://doi.org/10.1016/j.jbiomech.2012.01.001

Engineering E and Teichmann D (2016) An analysis on sensor locations of the human body for wearable fall detection devices:
Principles. Sensors (Basel) 16, 1161. https://doi.org/10.3390/s16081161

GholamiM,Rezaei A,Cuthbert TJ,Napier C andMenon C (2019) Lower body kinematics monitoring in running using fabric-
based wearable sensors and deep convolutional neural networks. Sensors (Switzerland) 19(23), 5325. https://doi.org/10.3390/
s19235325

Hanlon M and Anderson R (2006) Prediction methods to account for the effect of gait speed on lower limb angular kinematics.
Gait & Posture 24, 280–287. https://doi.org/10.1016/j.gaitpost.2005.10.007

Huang B, Li M,Mei T,McCoul D, Qin S, Zhao Z and Zhao J (2017) Wearable stretch sensors for motion measurement of the
wrist joint based on dielectric elastomers. Sensors (Basel, Switzerland) 17(12), 2708. https://doi.org/10.3390/s17122708

Jenkyn TR and Nicol AC (2007) A multi-segment kinematic model of the foot with a novel definition of forefoot motion for use in
clinical gait analysis duringwalking. Journal of Biomechanics 40(14), 3271–3278. https://doi.org/10.1016/j.jbiomech.2007.04.008

Keplinger C,KaltenbrunnerM,Arnold N and Bauer S (2008) Capacitive extensometry for transient strain analysis of dielectric
elastomer actuators. Applied Physics Letters 92, 192903–192903. https://doi.org/10.1063/1.2929383

LeCun Y, Boser B,Denker J,Henderson D,Howard R,HubbardWand Jackel L (1989) Handwritten digit recognition with a
back-propagation network. Advances in Neural Information Processing Systems, 2. Available at https://proceedings.neurips.cc/
paper/1989/hash/53c3bce66e43be4f209556518c2fcb54-Abstract.html.

LeCun Y, Kavukcuoglu K and Farabet C (2010) Convolutional networks and applications in vision: 2010 IEEE International
Symposium on Circuits and Systems: Nano-Bio Circuit Fabrics and Systems, ISCAS 2010. In ISCAS 2010 – 2010 IEEE
International Symposium on Circuits and Systems, 253–256. https://doi.org/10.1109/ISCAS.2010.5537907

Lu Y,Wang H, Zhou B,Wei C and Xu S (2022) Continuous and simultaneous estimation of lower limb multi-joint angles from
sEMG signals based on stacked convolutional and LSTMmodels.Expert Systemswith Applications 203, 117340. https://doi.org/
10.1016/j.eswa.2022.117340

e4-18 Samaneh Davarzani et al.

https://doi.org/10.1017/wtc.2023.3 Published online by Cambridge University Press

https://doi.org/10.3390/s140203188
https://doi.org/10.1109/ACCESS.2021.3102880
https://doi.org/10.1016/j.ergon.2015.05.009
https://doi.org/10.3390/electronics8101083
https://doi.org/10.1080/10803548.2016.1262498
https://doi.org/10.5220/0004190300110019
https://doi.org/10.1186/s13634-020-00715-1
https://doi.org/10.1016/j.jbiomech.2012.01.001
https://doi.org/10.3390/s16081161
https://doi.org/10.3390/s19235325
https://doi.org/10.3390/s19235325
https://doi.org/10.1016/j.gaitpost.2005.10.007
https://doi.org/10.3390/s17122708
https://doi.org/10.1016/j.jbiomech.2007.04.008
https://doi.org/10.1063/1.2929383
https://proceedings.neurips.cc/paper/1989/hash/53c3bce66e43be4f209556518c2fcb54-Abstract.html
https://proceedings.neurips.cc/paper/1989/hash/53c3bce66e43be4f209556518c2fcb54-Abstract.html
https://doi.org/10.1109/ISCAS.2010.5537907
https://doi.org/10.1016/j.eswa.2022.117340
https://doi.org/10.1016/j.eswa.2022.117340
https://doi.org/10.1017/wtc.2023.3


Luczak T, Burch R, Lewis E, Chander H and Ball J (2020a) State-of-the-art review of athletic wearable technology: What
113 strength and conditioning coaches and athletic trainers from the USA said about technology in sports. International Journal
of Sports Science & Coaching 15(1), 26–40. https://doi.org/10.1177/1747954119885244

LuczakT,BurchVRF, SmithBK,CarruthDW,Lamberth J,ChanderH,Knight A,Ball JE and PrabhuRK (2020b) Closing
the wearable gap—Part V: Development of a pressure-sensitive sock utilizing soft sensors. Sensors (Switzerland) 20(1), 1–15.
https://doi.org/10.3390/s20010208

Luczak T, Saucier D, Burch RFV, Ball JE, Chander H, Knight A, Wei P and Iftekhar T (2018) Closing the wearable gap:
Mobile systems for kinematic signal monitoring of the foot and ankle. Electronics (Switzerland) 7(7), 1–24. https://doi.org/
10.3390/electronics7070117

MacWilliamsBA,CowleyMandNicholsonDE (2003) Foot kinematics and kinetics during adolescent gait.Gait&Posture 17(3),
214–224. https://doi.org/10.1016/s0966-6362(02)00103-0

Market Reports Hub (2015) Smart sports and fitness wearables market to hit $14.9 billion by 2021. Available at https://
www.prnewswire.com/news-releases/smart-sports-and-fitness-wearables-market-to-hit-149-billion-by-2021-528461241.html
(accessed 28 November 2022).

Meijer OG, Beek PJ, Bruijn SM and Diee JHV (2009) Is slow walking more stable? Journal of Biomechanics 42, 1506–1512.
https://doi.org/10.1016/j.jbiomech.2009.03.047

Mengüç Y,ParkY-L,Pei H,Vogt D,Aubin PM,Winchell E, Fluke L, Stirling L,WoodRJ andWalsh CJ (2014)Wearable soft
sensing suit for human gait measurement. The International Journal of Robotics Research, 33(14), 1748–1764. https://doi.org/
10.1177/0278364914543793

Mokhlespour Esfahani MI, and Nussbaum MA (2018) Preferred placement and usability of a smart textile system vs. inertial
measurement units for activity monitoring. Sensors, 18(8). https://doi.org/10.3390/s18082501

MonaghanK,Delahunt E andCaulfield B (2006)Ankle function during gait in patientswith chronic ankle instability compared to
controls. Clinical Biomechanics (Bristol, Avon) 21(2), 168–174. https://doi.org/10.1016/j.clinbiomech.2005.09.004

Mukhaimar A,Tennakoon R,Lai CYandHoseinnezhad R (2015) Robust pooling through the data mode.Computer Vision and
Pattern Recognition 14(8), 1–11.

Mundt M, Koeppe A, Bamer F, David S and Markert B (2020) Artificial neural networks in motion analysis—Applications of
unsupervised and heuristic feature selection techniques. Sensors 20(16), 6. https://doi.org/10.3390/s20164581

Nair BMandKendricks KD (2016) Deep network for analyzing gait patterns in low resolution video towards threat identification.
Electronic Imaging 28, 1–8. https://doi.org/10.2352/ISSN.2470-1173.2016.11.IMAWM-471

Prakash C, Mittal A, Tripathi S, Kumar R and Mittal N (2016) A framework for human recognition using a multimodel gait
analysis approach. In 2016 International Conference on Computing, Communication and Automation (ICCCA). Greater Noida:
IEEE, pp. 348–353. https://doi.org/10.1109/CCAA.2016.7813743

Preece SJ, Kenney LP, Major MJ, Dias T, Lay E and Fernandes BT (2011) Automatic identification of gait events using an
instrumented sock. Journal of NeuroEngineering and Rehabilitation 8(1), 32. https://doi.org/10.1186/1743-0003-8-32

ReportLinker (2021)Wearable technologymarketwas valued atUSD116.2 billion in 2021 and is anticipated to reachUSD265.4 billion
by 2026, growing at a CAGR of 18.0% between 2021 to 2026, April 23. GlobeNewswire News Room. Available at https://
www.globenewswire.com/news-release/2021/04/23/2215930/0/en/Wearable-technology-market-was-valued-at-USD-116-2-billion-
in-2021-and-is-anticipated-to-reach-USD-265-4-billion-by-2026-growing-at-a-CAGR-of-18-0-between-2021-to-2026.html.
(accessed November 28, 2022).

Rhudy M (2014) Time alignment techniques for experimental sensor data. International Journal of Computer Science &
Engineering Survey 5(2), 1–14.

Saucier D, Davarzani S, Turner A, Luczak T, Nguyen P, Carroll W, Burch V RF, Ball JE, Smith BK, Chander H,Knight A
and PrabhuRK (2019a) Closing the wearable gap—Part IV: 3Dmotion capture cameras versus soft robotic sensors comparison
of gait movement assessment. Electronics (Switzerland) 8(12), 1–16. https://doi.org/10.3390/electronics8121382

Saucier D, Luczak T, Nguyen P, Davarzani S, Peranich P, Ball JE, Burch RF, Smith BK, Chander H,Knight A and Prabhu
RK (2019b) Closing the wearable gap—Part II: Sensor orientation and Placement for foot and ankle joint kinematic measure-
ments. Sensors 19(16), 3509. https://doi.org/10.3390/s19163509

Shephard RJ (1988) PAR-Q, Canadian home fitness test and exercise screening alternatives. Sports Medicine 5(3), 185–195.
https://doi.org/10.2165/00007256-198805030-00005

Sherstinsky A (2020) Fundamentals of recurrent neural network (RNN) and long short-term memory (LSTM) network. Physica D
404, 132306. https://doi.org/10.1016/j.physd.2019.132306

Sivakumar S, Gopalai AA, Lim KH and Gouwanda D (2021) Joint angle estimation with wavelet neural networks. Scientific
Reports 0123456789, 1–15. https://doi.org/10.1038/s41598-021-89580-y

Sra S, Nowozin S and Wright SJ (2012) Optimization for Machine Learning. Cambridge, MA: MIT Press.
Talegaonkar P,Saucier D,CarrollW,Peranich P,Parker E,MiddletonC,Davarzani S,TurnerA,PersonsK,CaseyL,Burch

V RF, Ball JE, Chander H,Knight A, Luczak T, Smith BK and Prabhu RK (2020) Closing the wearable Gap—Part VII: A
retrospective of stretch sensor tool kit development for benchmark testing. Electronics 9(9). https://doi.org/10.3390/electron
ics9091457

Tong S,FuY,YueX andLingH (2018)Multi-view gait recognition based on a spatial-temporal deep neural network. IEEE Access
6, 57583–57596. https://doi.org/10.1109/ACCESS.2018.2874073

Wearable Technologies e4-19

https://doi.org/10.1017/wtc.2023.3 Published online by Cambridge University Press

https://doi.org/10.1177/1747954119885244
https://doi.org/10.3390/s20010208
https://doi.org/10.3390/electronics7070117
https://doi.org/10.3390/electronics7070117
https://doi.org/10.1016/s0966-6362(02)00103-0
https://www.prnewswire.com/news-releases/smart-sports-and-fitness-wearables-market-to-hit-149-billion-by-2021-528461241.html
https://www.prnewswire.com/news-releases/smart-sports-and-fitness-wearables-market-to-hit-149-billion-by-2021-528461241.html
https://doi.org/10.1016/j.jbiomech.2009.03.047
https://doi.org/10.1177/0278364914543793
https://doi.org/10.1177/0278364914543793
https://doi.org/10.3390/s18082501
https://doi.org/10.1016/j.clinbiomech.2005.09.004
https://doi.org/10.3390/s20164581
https://doi.org/10.2352/ISSN.2470-1173.2016.11.IMAWM-471
https://doi.org/10.1109/CCAA.2016.7813743
https://doi.org/10.1186/1743-0003-8-32
https://www.globenewswire.com/news-release/2021/04/23/2215930/0/en/Wearable-technology-market-was-valued-at-USD-116-2-billion-in-2021-and-is-anticipated-to-reach-USD-265-4-billion-by-2026-growing-at-a-CAGR-of-18-0-between-2021-to-2026.html
https://www.globenewswire.com/news-release/2021/04/23/2215930/0/en/Wearable-technology-market-was-valued-at-USD-116-2-billion-in-2021-and-is-anticipated-to-reach-USD-265-4-billion-by-2026-growing-at-a-CAGR-of-18-0-between-2021-to-2026.html
https://www.globenewswire.com/news-release/2021/04/23/2215930/0/en/Wearable-technology-market-was-valued-at-USD-116-2-billion-in-2021-and-is-anticipated-to-reach-USD-265-4-billion-by-2026-growing-at-a-CAGR-of-18-0-between-2021-to-2026.html
https://doi.org/10.3390/electronics8121382
https://doi.org/10.3390/s19163509
https://doi.org/10.2165/00007256-198805030-00005
https://doi.org/10.1016/j.physd.2019.132306
https://doi.org/10.1038/s41598-021-89580-y
https://doi.org/10.3390/electronics9091457
https://doi.org/10.3390/electronics9091457
https://doi.org/10.1109/ACCESS.2018.2874073
https://doi.org/10.1017/wtc.2023.3


Triloka J and Senanayake SMNA (2017) Neural computing for walking gait pattern identification based on multi-sensor data
fusion of lower limb muscles. Neural Computing and Applications 28(s1), 65–77. https://doi.org/10.1007/s00521-016-2312-x

Turner AJ, Carroll W, Kodithuwakku Arachchige SNK, Saucier D, Burch VRF, Ball JE, Smith BK, Freeman CE, Knight
AC and Chander H (2021) Closing the wearable gap—Part VIII: Avalidation study for a smart knee brace to capture knee joint
kinematics. Biomechanics 1(1). https://doi.org/10.3390/biomechanics1010012

Uddin MdZ, Khaksar W and Torresen J. (2017). A robust gait recognition system using spatiotemporal features and deep
learning. In 2017 IEEE International Conference onMultisensor Fusion and Integration for Intelligent Systems (MFI), 156–161.
https://doi.org/10.1109/MFI.2017.8170422

Appendix A
CNN and LSTM estimation models and the layers of network and parameters and the score of performance measurements is
presented in the Table A1 and Table A2. LSTM model performed better with the default initializer and Activation parameters;
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Table A1. Angle estimation results of CNN and LSTM models with Speed-Specific design on the left foot data

Model Network Kernel Initializer Activation Flexion Inversion

CNN Conv(64)-MP-Conv(64)-MP-Conv(128)-MP-Conv
(128)-MP-FL-D(128)-D(2)

(3,1) GN Relu MAE (°) 1.207 0.9
RMSE (°) 1.717 1.201
R-squared 0.958 0.881

Conv(64)-MP-Conv(64)-MP-Conv(128)-MP-Conv
(128)-MP-Conv(256)-FL-D(128)-D(2)

(3,1) GN Relu MAE (°) 1.654 1.154
RMSE (°) 2.252 1.488
R-squared 0.863 0.789

Conv(64)-Conv(64)-MP-Conv(128)-Conv(128)-FL-
D(128)-D(2)

(3,1) GN Relu MAE (°) 2.094 1.294
RMSE (°) 2.867 1.666
R-squared 0.794 0.734

Conv(64)-MP-Conv(64)-MP-Conv(128)-MP-Conv
(128)-MP-FL-D(128)-D(2)

(5,1) GN Relu MAE (°) 1.694 1.231
RMSE (°) 2.319 1.58
R-squared 0.846 0.771

Conv(64)-Conv(64)-MP-Conv(128)-Conv(128)-FL-
D(128)-D(2)

(3,1) GN Relu MAE (°) 1.664 1.07
RMSE (°) 2.327 1.399
R-squared 0.878 0.808

Conv(64)-Conv(64)-MP-Conv(128)- Conv(128)-FL-
D(128)-D(2)

(3,1) GN Leaky Relu MAE (°) 1.184 0.865
RMSE (°) 1.663 1.153
R-squared 0.959 0.89

Conv(64)-MP-Conv(64)-MP-Conv(128)-MP-Conv
(128)-MP-FL-D(128)-D(2)

(3,1) GN Leaky Relu MAE (°) 1.181 0.878
RMSE (°) 1.696 1.175
R-squared 0.958 0.886

Conv(50,3)-Conv(50,3)-MP-Conv(100,3)-Conv
(100,3)-FL-D(100)-D(2)

(3,1) GU Relu MAE (°) 1.449 1.105
RMSE (°) 2.023 1.434
R-squared 0.902 0.824

LSTM LSTM(64)-Dr(0.3)-LSTM(32)-Dr(0.3)-D(2) – Def Def MAE (°) 0.955 0.737
RMSE (°) 1.390 0.984
R-squared 0.970 0.918

LSTM(64)-BN-Dr(0.3)-LSTM(32)-BN-Dr(0.3)-D
(16)-D(2)

– Def Def MAE (°) 1.466 1.030
RMSE (°) 2.015 1.368
R-squared 0.942 0.854

LSTM(128)-Dr(0.2)-LSTM(64)-Dr(0.2)-D(2) – Def Def MAE (°) 0.946 0.743
RMSE (°) 1.377 0.992
R-squared 0.970 0.915

LSTM(128)-Dr(0.3)-LSTM(64)-Dr(0.3)-LSTM(32)-
Dr(0.3)-D(2)

– Def Def MAE (°) 1.007 0.763
RMSE (°) 1.452 1.016
R-squared 0.968 0.913

LSTM(64)-Dr(0.3)-LSTM(32)-Dr(0.3)-D16-D(2) – Def Def MAE (°) 0.973 0.748
RMSE (°) 1.409 0.994
R-squared 0.969 0.917

LSTM(128)-Dr(0.3)-LSTM(64)-Dr(0.3)-D(2) – Def Def MAE (°) 0.944 0.734
RMSE (°) 1.377 0.980
R-squared 0.970 0.918

Abbreviations:GN, GlorotNormal; GU, GlorotUniform; Conv, Convolutional layer; MP, Max pooling layer; FL, flatten layer; D, Dense layer; Dr, Dropout
rate; BN, Batch Normalization; Def, Default values of LSTM network (Default Initializer, GlorotUniform; Default Activation, tanh). Best network
architecture is highlighted in gray.
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Table A2. Angle estimation results of CNN and LSTM models with Multi-speed and Speed-independent design strategies on the left foot data

Multi_Speed Speed-independent

Model Network Initializer Activation Flexion Inversion Flexion Inversion

CNN Conv(50)-Conv(50)-MP-Conv(100,3)-Conv(100,3)-FL-D(100)-D(2) GU Relu MAE (°) 2.632 1.632 2.623 1.605
RMSE (°) 3.578 2.116 3.185 1.954
R-squared 0.837 0.727 0.826 0.62

Conv(64)-Conv(64)-MP-Conv(128)-Conv(128)-FL-D(128)-D(2) GU Relu MAE (°) 2.592 1.551 2.571 1.540
RMSE (°) 3.490 2.008 3.094 1.881
R-squared 0.839 0.743 0.825 0.643

Conv(64)-MP-Conv(64)-MP-Conv(128)-MP-Conv(128)-MP-FL-D(128)-D(2) GN Relu MAE (°) 4.18 2.214 4.176 2.152
RMSE (°) 5.499 2.826 5.238 2.641
R-squared 0.589 0.513 0.556 0.373

Conv(64)-Conv(64)-Conv(64)-MP-Conv(128)-Conv(128)-Conv(128)-FL-D(128)-D(2) GN Relu MAE (°) 3.117 2.098 3.036 2.001
RMSE (°) 4.177 2.681 3.716 2.438
R-squared 0.737 0.597 0.735 0.486

Conv(64)-Conv(64)-MP-Conv(128)-Conv(128)-FL-D(128)-D(2) GN Relu MAE (°) 3.223 1.7 3.215 1.683
RMSE (°) 4.365 2.231 3.95 2.093
R-squared 0.715 0.664 0.697 0.523

Conv(64)-Conv(64)-MP-Conv(128)-Conv(128)-FL-D(128)-D(2) GN Relu MAE (°) 3.234 1.999 3.115 1.893
RMSE (°) 4.436 2.661 3.87 2.338
R-squared 0.7 0.599 0.708 0.503

Conv(128)-Conv(128)-MP-Conv(256)-Conv(256)-FL-D(128)-D(2) GN Relu MAE (°) 2.834 1.634 2.817 1.621
RMSE (°) 3.811 2.128 3.373 1.985
R-squared 0.811 0.716 0.796 0.612

Conv(64)-Conv(64)-MP-Conv(128)-Conv(128)-FL-D(128)-D(2) GN Leaky Relu MAE (°) 2.892 1.845 2.866 1.816
RMSE (°) 4.431 2.85 3.843 2.462
R-squared 0.651 0.551 0.658 0.443

LSTM LSTM(128)-Dr(0.3)-LSTM(64)-Dr(0.3)-D(2) Def Def MAE (°) 2.239 1.243 2.234 1.228
RMSE (°) 3.064 1.626 2.677 1.516
R-squared 0.881 0.842 0.869 0.779

LSTM(64)-Dr(0.3)-LSTM(32)-Dr(0.3)-D(2) Def Def MAE (°) 2.35 1.257 2.328 1.243
RMSE (°) 3.236 1.662 2.811 1.541
R-squared 0.861 0.837 0.849 0.773

LSTM(64)-Dr(0.3)-LSTM(32)-Dr(0.3)-D(16)-D(2) Def Def MAE (°) 2.439 1.306 2.411 1.287
RMSE (°) 3.268 1.716 2.846 1.583
R-squared 0.856 0.822 0.843 0.748

LSTM(64)-BN-Dr(0.3)-LSTM(64)-BN-Dr(0.3)-LSTM(32)-BN-Dr(0.3)-D(2) Def Def MAE (°) 3.035 1.749 3.022 1.730
RMSE (°) 3.957 2.28 3.667 2.163
R-squared 0.8 0.685 0.781 0.569

LSTM(64)-Dr(0.2)-LSTM(32)-Dr(0.2)-D(2) Def Def MAE (°) 2.140 1.211 2.125 1.201
RMSE (°) 2.905 1.584 2.540 1.472
R-squared 0.889 0.844 0.877 0.775

LSTM(128)-Dr(0.4)-LSTM(64)-Dr(0.4)-D(2) Def Def MAE (°) 2.291 1.271 2.273 1.251
RMSE (°) 3.127 1.678 2.753 1.553
R-squared 0.873 0.834 0.862 0.77

Abbreviations: GN, GlorotNormal; GU, GlorotUniform; Conv, Convolutional layer; MP, Max pooling layer; FL, flatten layer; D, Dense layer; Dr, Dropout rate; BN, Batch Normalization; Def, Default values of LSTM network
(Default Initializer, GlorotUniform; Default Activation, tanh). Best network architecture is highlighted in gray.
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