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SUMMARY

The Poisson model can be applied to the count of events occurring within a specific time period.

The main feature of the Poisson model is the assumption that the mean and variance of the count

data are equal. However, this equal mean-variance relationship rarely occurs in observational

data. In most cases, the observed variance is larger than the assumed variance, which is called

overdispersion. Further, when the observed data involve excessive zero counts, the problem of

overdispersion results in underestimating the variance of the estimated parameter, and thus

produces a misleading conclusion. We illustrated the use of four models for overdispersed count

data that may be attributed to excessive zeros. These are Poisson, negative binomial, zero-inflated

Poisson and zero-inflated negative binomial models. The example data in this article deal with the

number of incidents involving human papillomavirus infection. The four models resulted in

differing statistical inferences. The Poisson model, which is widely used in epidemiology research,

underestimated the standard errors and overstated the significance of some covariates.

Key words : Excessive zero-count data, HPV infection, incidence rate, overdispersion, zero-inflated

model.

INTRODUCTION

Count data occur in many fields, including public

health, medicine and epidemiology. A few common

examples are the number of deaths, number of ciga-

rettes smoked, and number of disease cases. For such

count data the Poisson model is a commonly applied

statistical model. A key feature of the Poisson model

is that the mean and the variance are equal. However,

this equal mean-variance relationship rarely happens

with real-life data [1–4]. In most cases, the observed

variance is larger than the assumed variance, which is

known as overdispersion#. If the overdispersion is

ignored, statistical inference results in an inaccurate

conclusion by underestimating the variability of the

data [1].

Departures from a Poisson model can occur in a

variety of ways; the main reasons are : (1) some co-

variates may be omitted and/or may not have a uni-

form effect on all subjects so that population

* Author for correspondence : Dr Ji-Hyun Lee, Biostatistics
Department, H. Lee Moffitt Cancer Center, Tampa, FL, USA.
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# It is theoretically possible for data to exhibit underdispersion, the
opposite of overdispersion, relative to the Poisson distribution.
However, it is quite rare to observe underdispersed data in practice,
as this uncommon phenomenon has been well recognized by other
researchers [4, 5]. Accordingly the focus of our article remains
overdispersion.
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heterogeneity has not been accounted for, and (2) an

excess number of zero events occurred compared to

the Poisson distribution [6, 7]. For the excessive zeros

situation, it could be assumed that a sample is col-

lected from two different sub-populations ; one popu-

lation always produces zero, or no event, while the

other behaves like a Poisson distribution.

This issue of overdispersion with excessive zeros

clearly exists in a dataset we recently analysed. The

Human Papillomavirus Infection inMen (HIM) Study

established a prospective cohort of men in three

countries to determine the incidence of genital human

papillomavirus (HPV) infections. A HPV incidence

rate, along with the exact 95% confidence interval,

was estimated based on a Poisson distribution.

However, inspection of the data revealed severe over-

dispersion, as well as a very large proportion of zero

counts for specific HPV-type infections. (For more

details about the HIM Study see the papers by

Giuliano et al. [8, 9].)

There are two major approaches to adjust for over-

dispersion. First, the simplest adjustment approach is

to scale the variance of the Poisson distribution by

introducing a dispersion parameter and multiplying it

to the variance. The other approach is to introduce a

new probability distribution to handle the dispersion,

such as the negative binomial [10], zero-inflated

Poisson (ZIP) [10–12], or zero-inflated negative bi-

nomial (ZINB) [10, 13, 14].

A considerable amount of statistical methodology

has been developed to deal with overdispersed data

arising from excessive zero-count data. Applications

for the zero-inflated models can be found in several

papers [2, 11, 14–17]. However, using these alterna-

tives to the Poisson model seems to be a relatively new

approach among many researchers in applications.

This is partly because once a statistical method be-

comes widely used in published literature, alterations

to its usage are slow. This paper attempts to encourage

researchers to be clearly aware of the issues surround-

ing Poisson model usages. In addition, statistical

software packages have recently developed a pro-

cedure to fit zero-inflated models, and we believe that

a follow-up primer is necessary to increase use of the

appropriate method.

In this paper, we demonstrate four models for count

data: Poisson, negative binomial, ZIP, and ZINB

models, all with explanatory factors or confounders.

The models were compared in terms of covariate esti-

mates along with their statistical inferences. Akaike’s

Information Criterion (AIC) values were used to

consider the relative model fitting for the models as a

goodness-of-fit statistic. The illustration of the analysis

of the example data is mostly conceptual rather than

computational. We avoid undue technicalities so that

those with a broad range of professional backgrounds

will be able to follow the material presented.

METHODS

Four statistical models for count data

Naive Poisson model

The most widely used regression model for count

data is the log linear or Poisson model [12]. If we

denote m as the mean of the count data Y, then the

variance of the data equals to the mean so that

m=E(Y)=Var(Y),

which is a key feature of the Poisson model. We

designate this the naive Poisson model hereafter.

Scaled Poisson model

There is a way to account for dispersion with respect

to the Poisson model. That is, a dispersion parameter

is introduced into the Poisson variance so that the

Poisson model is scaled. This method simply gives a

correction term for testing the parameter estimates

under the Poisson model. Although this approach has

been popular, it only produces an appropriate infer-

ence if overdispersion is modest [1]. Further, if the

data are observed from a population that consists of

two subpopulations, this simple correction may not

be sufficient to describe the population. The disper-

sion parameter is estimated by deviance or Pearson’s

x2 test statistic divided by its degrees of freedom from

the fitted model. If the estimated dispersion is >1,

the data may be overdispersed, while a dispersion <1

indicates that the data may be underdispersed, a

phenomenon less common in practice. A scaled

Poisson model assumes that the variance is

Var(Y)=wm:

The model is fit in the usual way, and the parameter

estimates are not affected by the value of w, but the

estimated variance is inflated to adjust for over-

dispersion.

Negative binomial model

Another popular model for count data is the negative

binomial model. The negative binomial model can be
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derived from the Poisson distribution when the mean

parameter is not identical for all members of the popu-

lation, but itself is distributed with a gamma distri-

bution. This is a way of modelling heterogeneity in a

population, and is thus an alternative method to allow

for overdispersion in the Poisson model. The relation-

ship between mean and variance for negative bi-

nomial distribution has the form

Var(Y)=m+km2,

where k is the negative binomial dispersion par-

ameter, which can be estimated by maximum likeli-

hood.

Zero-inflated models

Count data that have an incidence of zeros greater

than that expected for the underlying probability

distribution of counts can be modelled with a zero-

inflated distribution. In this case, the population is

considered to consist of two types of individuals. The

first type involves counts of event in a Poisson or

Poisson-like process, which might also contain zeros.

The second type always gives a zero count. As a

hypothetical example, we consider the processes that

could lead to a response variable value of zero, such as

the number of STD infections in an individual. At

baseline survey, a male subject is likely to be negative

for any STDs if he has not had any sexual experiences

in the past year as a given specific time period.

Another male subject might have a negative on STD

even though he has had a single or multiple sexual

partners. These two men will have an identical num-

ber of STD infections, 0 (the same response), through

two different processes. A naive Poisson model would

not distinguish between these two processes, but a

zero-inflated model allows for and accommodates this

complication. When analysing a dataset with an ex-

cessive number of outcome zeros, which may have

two possible processes that arrive at a zero response, a

zero-inflated model needs to be considered.

ZIP model

The ZIP model incorporates excessive zeros by in-

cluding a proportion of zeros and a proportion from

the Poisson distribution, which results in greater

variance than the Poisson model. For the ZIP model,

the mean and variance are respectively

m=E(Y)=l(1xp) and Var(Y)=m+
p

1xp

� �
m2,

where p denotes the probability of being an individual

having zero count and l denotes the underlying dis-

tribution mean. With exploratory covariates, l is

fitted to a log-linear model (Poisson model) and p can

be fitted as a zero probability regression model with a

link function, such as logit or probit. The ZIP model

allows common explanatory variables to appear in

both the Poisson model and the zero-probability re-

gression model.

ZINB model

The ZINB model is based on the negative binomial

model, but with a different variance function. As a

zero-inflated model like ZIP, the ZINB model gen-

erates two separate models and then combines them.

First, a logit or probit model is generated for the cases

that always produce zeros (zero probability model).

Then, a negative binomial model is generated pre-

dicting the counts for those subjects who do not always

produce zeros. Finally, the two models are combined.

The mean and the variance of ZINB are

m=E(Y)=l(1xp) and Var(Y)=m+
p

1xp
+

k

1xp

� �
m2,

where p is the zero probability and l is the underlying

distribution mean. In addition, k is the negative bi-

nomial dispersion parameter.

RESULTS

The motivating example : description of the HIM

Study

HPV, a sexually transmitted infection, causes disease

in both men and women, and male-to-female HPV

transmission increases the risk of invasive cervical,

vaginal, and vulvar cancer in females. In particular,

HPV is known to be responsible for nearly 100% of

cervical cancers. A prospective HPV cohort study was

launched in 2004 to develop a fuller understanding of

HPV infection in men. The study was the first inter-

national study of the natural history of anogenital

HPV infection, enrolling men from the USA, Brazil,

and Mexico. A cohort of men, aged 18–70 years, who

were examined every 6 months for 4 years, was es-

tablished. Early analysis results of the study have been

reported elsewhere; see Giuliano et al. [8, 9] for a de-

scription and report of the study design, the baseline

characteristics of the study participants, and HPV

prevalence by country and age among cohort mem-

bers at enrolment.
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A participant was considered positive for oncogenic

HPV if he tested HPV-positive by polymerase chain

reaction or by genotyping. The following 13HPV types

were categorized as oncogenic: 16, 18, 31, 33, 35, 39,

45, 51, 52, 56, 58, 59, and 66 (an illustration of the type

of data analysed is shown in Fig. 1). Figure 1 illus-

trates distributions of the total number of infections,

out of a possible 13 types, through visit 4 (2 years) and

visit 8 (4 years) follow-up periods of the study. For a

positive infection, at least one visit must be positive in

the given time period. There was a considerable spike

of excessive zeros, representing HPV infection-free

men. Particularly, in the first 2-year study period the

proportion of zero counts (no infection) was very high

(70%) and up to 4 years 62% of the cohort had no

infection for oncogenic HPV type. The large number

of males with zero-value counts is typical for HPV

distributions. In this case, the Poisson distribution

inappropriately represents the data.

Analysis of HIM Study data

Oncogenic HPV is defined as the total number of

oncogenic types detected in a participant in a given

time period. Of the 1159 men at baseline, the 345 who

were infected with oncogenic HPV types were ex-

cluded from the analysis. The remaining 814 patients

who had no oncogenic HPV infection at baseline were

available for our analysis of oncogenic HPV. The

mean (variance) of the number of oncogenic HPV

types was 0.5 (0.7) over 2 years and 0.7 (1.1) over

4 years. The difference between the sample mean and

the sample variance implied a deviation from the

Poisson model assumption.

HIM Study

In the HIM Study, the scientific question focused on

the association between demographic and social

behaviour variables with the probability of type-

specific HPV infections, as well as the grouped types,

such as any HPV types, oncogenic HPV types, and

non-oncogenic HPV types. The outcome variable we

chose to focus on was the number of oncogenic HPV

types infected for eight follow-up visits, and was

related to the factors: country (USA=1, Brazil=2,

Mexico=3), age (at enrolment in years), number

of female partners in the past 6 months (NP), and

circumcision status (CS; 1 if circumcised vs. 0 if not

circumcised). Smoking (heavy, moderate, mild, non-

smoking) and STD status (yes vs. no) variables were

initially tested, but they contributed insignificantly

to model, showing that the two variables did not im-

prove the model, and therefore were excluded from

the final model. Country and age are design effects for

the study, and therefore forced into the multivariable

models regardless of significance.

For the Poisson model, a log-linear relationship

between the mean (m) and the covariate factors was

specified as

log(m)=log(n)+intercept+country+age+NP+CS:

The unknown parameters for intercept, country, age,

NP and CS were estimated by the GENMOD procedure

in SAS v. 9.2 (SAS institute Inc., USA). The logar-

ithm of n (person’s time in months) was used as an

offset (i.e. a regression variable with a constant coef-

ficient of 1 for each subject).

The scaled Poisson model was fitted using the de-

viance estimate as a dispersion parameter by specify-

ing the SCALE=DEVIANCE option in SAS.

Two zero-inflated models, ZIP and ZINB, were

fitted. For the Poisson model and the negative-

binomial model components within each of ZIP and

ZINB, the intercept and four covariates, country, age,

NP and CS, were estimated. The component of the
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Fig. 1. Distribution of oncogenic infections for the HIM study through 2 years (four visits) and 4 years (eight visits). HPV,
Human papillomavirus.
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zero-inflated model was specified as

log it(p)=intercept,

where p is the probability of being in the zero popu-

lation. We implemented the models, using the

ZEROMODEL statement in the GENMOD procedure in

SAS, in which the ZIP and the ZINB model pro-

cedures have been most recently updated.

Table 1 summarizes the results of the Poisson

(naive and scaled), negative binomial, ZIP, and ZINB

regression models. From the naive Poisson model,

there were significant associations between oncogenic

HPV infection and age, CS, and NP at a 0.05 signifi-

cance level. However, the estimated dispersion par-

ameter w in the Poisson model implied overdispersion

with 1.36. The scaled Poisson model showed that the

parameter estimates did not change, but their stan-

dard errors were inflated by the value of the scale

parameter. The resulting P values for age and NP

were no longer significant, leaving only CS as a sig-

nificant factor.

The negative binomial model indicated that

the negative binomial dispersion parameter was sig-

nificantly large (k=0.79, P<0.001), and the result

showed that none of the covariates were significantly

associated with oncogenic HPV infection. The AIC

value was lower than the naive and scaled Poisson

models, indicating the negative binomial is a better

model.

The ZIP model showed the same results as the

negative binomial model regarding the covariates at

a 0.05 significance level. The proportion of zeros pre-

dicted by the ZIP model was 0.34 for oncogenic HPV

(P<0.001, data not shown), which indicates that

the ZIP is preferred to the Poisson model and the

AIC was smaller than Poisson and negative binomial

models. The ZINB model resulted in the same con-

clusion as the ZIP model, with the negative binomial

dispersion parameter k=0.79. However, AIC was not

smaller than the ZIP model. In addition, we found

computational difficulties with a zero-inflated model

fitting in the ZINB model : the model did not always

converge or a model diagnostic indicated that the es-

timated model was not reliable. This may be due to

the sample size, skewed data, and the mixed model

fitting. Currently, the PROC GENMOD procedure does

not estimate the standard error or the P value for the

dispersion parameter, k, in the ZINB. They can be

estimated using a more complex procedure, such as

NLMIXED in SAS, which would be difficult for many

non-statisticians. In addition, the extremely largeT
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standard error for the zero-inflation model’s intercept

is clear evidence that this parameter is not well esti-

mated by the SAS procedure.

DISCUSSION

In this paper, we used several models to deal with

count data when the Poisson model assumption is not

met because of an excessive incidence of zero counts.

In addition to the Poisson model, we applied the nega-

tive binomial and zero-inflated models to the data

from a HPV study. We compared the results from the

models with several explanatory variables and high-

lighted how the statistical inferences drawn from the

models are different: the naive Poisson model yielded

the smallest standard errors and over-stated the sig-

nificance of some covariates compared to the negative

binomial and zero-inflated models. When the Poisson

model was scaled with the dispersion parameter, the

model seemed slightly closer to the other alternative

models, yet still showed a discrepancy.

Prior to considering which statistical model should

be used for data analysis, the researcher must examine

the distribution of the data. The first step should be

the visual inspection of the data to ascertain whether

they approximately follow a certain probability dis-

tribution. The histogram is a common tool to visually

inspect data. Summary statistics can be studied (e.g.

the sample mean and variance of the observed data)

to try to gauge if the data are overdispersed along

with a histogram of the response variable.

The Poisson distribution can be applied in counting

the number of rare events. However, the Poisson

model should only be used in cases where there is

evidence that the distribution is correctly specified.

This is the case only if the mean and the variance of

the data are assumed to be equal.

As we illustrated with the scaled Poisson model in

this paper, the estimate of the dispersion parameter

(deviance or Pearson’s x2 statistic divided by the

degrees of freedom) is often used to indicate over-

dispersion or underdispersion for Poisson models,

and scaling by dispersion is simply a way to account

for overdispersion. Most Poisson computational

programs estimate these dispersion parameters so that

the validation of the assumed distribution can be

checked. However, this dispersion estimate might also

indicate other problems such as an incorrectly speci-

fied model or outliers in the data. It should be care-

fully assessed whether this type of model is

appropriate for the data.

A way of interpretation for the zero-inflated models

for the HIM Study is to consider a population that

consists of two groups: one of people who are not at

risk of developing a certain disease, and one of people

who are at risk and may develop the disease several

times. However, it is our experience that the zero-

inflated models should also be applied with caution,

as small sample size cases and variable selection of

covariates in the zero model components have not yet

been well studied in the literature.

Although currently there is no solid built-in test

from the commercial software to test whether or not

the underlying data are Poisson, a score test for the

ZIP model over the Poisson model is available in the

literature [18]. If the P value for the score test is

<0.05, a zero-inflated model may be more appropri-

ate to fit the data. However, we conducted simulation

studies for the score test and found a considerably

inflated Type I error (detailed simulation results are

not shown). Therefore, at this moment we are un-

comfortable to use it ourselves or to recommend it to

others. Consequently we decided not to present the

score test result, even though the test showed our data

involves significantly excessive zero counts and it may

be a useful test if validated. Currently we are working

on this subject.

The SAS code for the four models used in this

article is given in the Appendix, using generic dataset

and variable names.

APPENDIX. Generic SAS code for the four models used to analyse the example data

*- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -*

SAS Data File Name:=TEMP.sas7badat

Outcome variable:=Y (e.g., # of infection)

Covariates :=X1, X2, X3, X4, X5 (e.g., age, country, education,…)

Offset :=logt [e.g., (log (time)]

(*<- account for varying length of observation time per subject)

*- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -*;
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Title1 ‘Model 1-1. Naive Poisson Model ’ ;

proc genmod data=TEMP;

model Y=X1 X2 X3 X4 X5/ offset=logt dist=p link=log;

run ;

Title1 ‘Model 1-2. Scaled Poisson Model ’ ;

proc genmod data=TEMP;

model Y=X1 X2 X3 X4 X5 /offset=logt dist=p link=log scale=d;

run ;

Title1 ‘Model 2. Negative Binomial Model ’ ;

proc genmod data=TEMP;

model Y=X1 X2 X3 X4 X5/ offset=logt dist=nb link=log;

run ;

Title1 ‘Model 3. Zero Inflated Poisson (ZIP) Model ’ ;

proc genmod data=TEMP;

model Y=X1 X2 X3 X4 X5 /offset=logt dist=zip link=log;

zeromodel/link=logit ; output out=temp1 pzero=p;

run ;

proc print data=temp1 (obs=1) ;

Title2 ‘p=zero inflation probability for logistic transform of the linear predictor’ ;

var p;

run ;

Title1 ‘Model 4. Zero Inflated Negative Binomial (ZINB) Model ’ ;

proc genmod data=TEMP;

class country;

model Y=X1 X2 X3 X4 X5

/offset=logt dist=zinb link=log;

zeromodel /link=logit ;

output out=temp2 pzero=p;

run ;

proc print data=temp2 (obs=1) ;

Title2 ‘p=inflation probability for zeros logistic transform of the linear predictor’ ;

var p;

run ;
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