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Abstract

We discuss the problem of constructing large graceful trees from smaller ones and provide a partial
answer in the case of the product tree S, {S} by way of a sample of sufficient conditions on §.
Interlaced trees play an important role as building blocks in our constructions, although the resulting
valuations are not always interlaced.

1980 Mathematics subject classification (Amer. Math. Soc.): 05 C 05.

1. Discussion

A valuation 8 of a tree T on n vertices, n > 1, is a bijection between the vertex
set of T and the set N, = {1,2,..., n}. Denoting an edge with endpoints
u and v by (u, v), the edge (u, v) of T carries under 8 the weight «(u, v) =
|8(x) — 6(v)|- A valuation 8 of T is, in the usage of Golumb (1972), graceful if
distinct edges carry distinct weights, so that w is a bijection between the edge set
of T and the set N, _,. T is graceful if it has a graceful valuation. Note that if  is
a graceful valuation of T then so is § ¥ where

(N 0 *(v) =n+1-8(v).

Are all trees graceful? Kotzig (see Rosa (1967); Bermond (1979), p. 24)
conjectured that they are, but this conjecture remains open. A more specific
question was recently given prominence by Cahit (1976): are all complete binary
trees graceful? This question, it turned out, had already been answered affirma-
tively by Stanton and Zarnke (1973) in the course of a more general investiga-
tion. Nevertheless, Cahit’s note stimulated fresh activity as reported by Guy
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(1977). A conspectus of results is provided by Koh, Rogers and Tan (1979)
(hereinafter their paper is referred to as KRT) who, in addition to rediscovering
some already known constructions, extended the range of results with some new
ones. In particular, these authors showed that trees (interlaced trees) having a
type of graceful valuation known as an interlaced valuation were useful as
building blocks in these constructions. (A more comprehensive survey of work
on graceful graphs has recently been given by Bermond (1979).)

An interlaced valuation of a tree T is defined as follows. The parity set ¥ (v) of
a vertex v in T is the set of vertices # (including v) for which the number of
edges in the shortest path in T between u and v is even. The base of T under a
valuation 4 is the vertex b with §(b) = 1. A valuation 8 of T is a parity valuation
if it induces, by restriction, a bijection between % (b) and N, where b is the base
of T under 8 and p, the size of T under 8, is the cardinality of ¥ (b). Finally, an
interlaced valuation is a parity valuation which is also graceful and an interlaced
tree is a tree with an interlaced valuation. Again notice that if # is an interlaced
valuation of T then sois @ * given by (1) as is §’ where

@) 8'(v) = {p +1— 8(v) %f 8(v) < p,
n+p+1-0(v) ifp <6(v).

Several of the valuations of complete binary trees illustrated by Cahit (1976)
are interlaced as was noted by Rogers (1978). There is indeed always at least one
interlaced tree on n vertices of size p with 1 < p < [3(n + 1)] (where [x] denotes
the integer part of x) and so also, in view of (1), of size n — p. The caterpillars
(trees which on deletion of endpoints and adjacent edges leave chains) provide
easy examples, but it would be interesting to know how many interlaced trees
there are for each n and p. Of special utility in the constructions which we
describe later are interlaced trees on n vertices with size [3(n + 1)]: we call trees
with this property fair trees and their associated valuations fair valuations (see
Figure 1).

2 5 2 5 2 5

1 4 1 4 1 4

FIGURE 1. Fair trees on six vertices
We introduce this notion of fair trees as a technical device which enables us to
construct graceful trees without the ‘symmetry’ conditions previously imposed

(see KRT and Bermond (1979), p. 27). This, in itself, is a new and interesting
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departure which, in conjunction with the staggering technique introduced in
Section 2, may suggest further, similar results. But it also gives an additional,
large class of graceful trees since fair trees are themselves plentiful.

In the first place, caterpillars again readily provide a collection of examples:
for instance, the path (or chain) P, on n + 1 vertices, n > 1, has a fair valuation
under which one endpoint is the base. Further, fair trees may be constructed
recursively as follows. Let T be a fair tree with fair valuation 8 and let (a,, a,) be
an edge whose deletion decomposes 7' into two disjoint components T, and T,.
Suppose that, for i = 1 or 2, b; is a vertex of T; such that b, and b, are an odd
distance apart in 7" and

10(b)) — 8(b)| = w(ay, a3) = |0(ay) — 0(ay)].

If 7™ is the tree obtained from T by deleting the edge (a,, a,) and adding an
edge joining b, and b,, then # is a fair valuation of T*. Thus, T* is again a fair
tree. Some examples are shown in Figure 1. (These are examples of what Ruiz
Cornejo (1979) calls ‘path-like’ trees: more generally, ‘path-like’ trees are otained
in this recursive way from the fair valuation of the paths mentioned above.) As a
step towards the seemingly difficult problem of characterising interlaced trees it
would be interesting to characterise fair trees, although it would probably be
difficult to determine the proportion of these among all (respectively, graceful)
trees on n vertices.

Although, in full generality, Kotzig’s conjecture appears difficult, it is fruitful
to ask: when can a large graceful tree be assembled from smaller graceful trees?
As an aid in examining this problem, we now introduce the further notion of
product trees. Thus, let H be a labelled tree on m + 1 vertices and let § = G, be
a set of rooted trees G;, 0 < i < m, disjoint from each other and from H. Then
we denote by H{§} (respectively, H(9)) the tree obtained by identifying the
root of G; with the ith vertex of H for each i, 1 <i < m (respectively, 0 < i <
m). Also {8 ) is the tree obtained by identifying the roots of the G,, 0 < i < m.
The apex of H{§} or H(S) is the vertex of H labelled 0 while that of (§ ) is the
identified roots of the G,.

There is considerable flexibility in this notation since any tree may be viewed
as such a product tree in several ways. In these terms, our problem is to discover
conditions on H and § which ensure that the resulting product tree H{S} or
H(8) or {8 ) is graceful. Some sufficient conditions of this sort are presented in
KRT. The purpose of this note is to observe that more can be said in the case
where H is the star tree S,, on m + 1 vertices, m > 1, that is the tree on vertices
v and v, 1 < i < m, where v, is adjacent to v and is labelled i while v is labelled
0. In this case, we have the following theorem, Theorem A, which provides a
sample of sufficient conditions on § for S* = S, (6) to be graceful.
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THEOREM A. Let G,, 1 < i < m, be a tree on n; vertices with graceful valuation
8. with G, rooted at the base under 0,. Then some sufficient conditions for S}, to be
graceful are that for each i, 1 < i < m:

(Al) G, is an isomorphic copy of a tree G on n vertices with graceful valuation 6
and 8, is the valuation of G, induced by the isomorphism;

(A2) n; = n (independent of i) and 0, is an interlaced valuation under which G,
has size p, = p (independent of i);

(A3) 0, is a fair valuation and n;, = k[(i + r — 1)/r] + 1 where k and r are
fixed positive integers with either 3a) k > landr =1; 0or Bb)k =1,r =2 and
m = 1 (modulo4); or Bc)k 2> 2andr + 1 > m;

(A4) 6, is a fair valuation and, for some fixed integer k > 2, n, = k; n, = 2[%k]
+lor 23kl +2;n,,=2n0r2n;, — 1,2<i<m~—1; and n, =2n,_, —j,
0<j<2
Moreover, in all these cases, S}, has a graceful valuation under which the apex is
the base.

Note that if ¢ is the set of graphs J,, 1 <i < m, obtained from the G; by
adding a pendent edge adjacent to the root of G, and rerooting at the new
vertex, then ($> = S,,{9}. So this theorem, like Theorems 5 and 6 in KRT,
may also be regarded as giving sufficient conditions under which an amalga-
mated product is graceful. Indeed conditions (A1) and (A2) are straightforward
cases of the conditions in those theorems and we do not mention them further
here. However, condition (A4) comes from application of Theorem 8 of KRT
which we state and discuss, as Theorem C, in Section 3, together with a similar
result, Theorem B, not previously described, from which the sufficiency of
condition (A3c) may, for example, be deduced. Of greater interest are conditions
(A3a) and (A3b) in the proof for which we employ a new type of graceful
valuation, called a staggered valuation (see Section 2). The case k =1 = r of
(A3) has also been established by Pastel and Raynaud (1978) using a different
technique.

FiGUre 2. Examples of staggered valuations: condition {A3a)
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Although we prove, in Sections 3 and 4, some more general results than those
stated in Theorem A, we single out (A3) and (A4) as giving specific classes of
graphs not previously shown to be graceful (see Figures 2 and 4). We include the
statements of the known ‘symmetrical’ cases (A1) and (A2) for comparison with
these new ‘asymmetrical’ ones in which the G; need not have the same number
of vertices (compare Bermond (1979), p. 27).

There are several other minor results on the gracefulness of S3. Thus if 7 is a
permutation of N,,, 7§ is the set of trees G,;, 0 < i < m, and S, {8} is graceful,
then so is S, {78 }. Also, if S,,{8)} has a graceful valuation under which the
apex is base, then § may be augumented by any number of trees on single
vertices and the result still holds. So the conclusions of Theorem A also follow if
k =1 in (A3c) or (A4). However, it is not true, in general, that the apex of S is
the base of a graceful valuation: the tree in Figure 3 with apex a as shown
provides a counterexample.

FIGURE 3

In order to break Kotzig’s conjecture into more manageable pieces, it may be
worthwhile investigating the gracefulness of these product trees more systemati-
cally. For example, we conjecture that (A3) is sufficient without the given
restrictions on k and r and Theorem C appears to offer some help. This note
represents only a small contribution to this project. Golomb (1972) defines the
notion of gracefulness for general graphs and we may likewise ask: when are
product graphs graceful in this extended sense?

2. Staggered valuations

Let G, 1 <i <m, be a tree on n, vertices, rooted at its base under an
interlaced valuation §,. Let p; be the size of G, under §; and write p,* = n, — p, so
that p,;* is the size of G; under 8,* (see (1)). Further, let v; ;, 1 < j < n, be the
vertex of G; for which (v, ;) = j. We also write

m m m
n=Xn; p=Xp; pt=2p =n-p.

i=1 i=] i=1

J?
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Sy is then a tree on the n + 1 vertices v and vu; o
identifications v, = v, ;, 1 <i < m.

We define a valuation 8 of Sk by staggering the vertex labels in consecutive
runs in the G, according to the underlying valuations 6. Since these are
interlaced, this arrangement produces runs of consecutive weights on the edges
of the G;. Moreover, because of the way @ is defined, there is a gap of a single
missing weight between numerically adjacent runs. Thus, to ensure that @ is
graceful, we need to arrange that these missing weights appear on the edges
(v,v,),1<i<m.

In order to define 8 explicitly, we introduce the following notation:

e(r)=1, reven; =0, rodd;
F=m~— 2[%(r + 1)];

1 €j<n;1<i<m,with the

and
n(ry=Xn; p(r)=2p; p ()= 2 p* =n(r) - p(),
i=1 i=1 i=1
where, by convention, empty or impossible sums are zero (so, for example,
n(0) = p(0) = p*(0) = 0). Then we define # on the vertex set of S* by 8(v) = 1
(so the apex is the base) and, for 0 < r < m,

(1t ntp() = p—p*(r) ~ (- + e(n), 1<) < p;

0(v =
1 +P+(F) _P+ _P(r) - (_l)rj + (nm—r + l)e(’)’ P <j<n.

m—r,j)

Some examples are illustrated in Figures 2 and 4.

FIGURE 4. Examples of staggered valuations: condition (A3b).

The weights under 8 not appearing on the edges of any G, in S are, in
descending order,

n(m —[%(r + 1)]) - n([%r]), 0<r<m
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So @ is graceful if these are equal to the weights under § on the edges
(v, 0,,_,), 0 <r < m,thatis:

3) 0(v,_,) — 1= n(m —[%(r + 1)]) - n([%r]), 0<r<m.

When condition (3) is satisfied the weights under # occur, in descending order,
on (v, v,,), on the edges of G,, on (v, v,,_,), on the edges of G,, on (v, v,,_,), on
the edges of G,,_,, on (v, v,,_3), on the edges of G,, and so on. Now (3) gives
conditions on the n; and p; for 8 to be graceful. It is easy to check that if (A3a)
or (A3b) holds then these conditions are indeed satisfied (see, for example,
Figure (2)), although they are also satisfied in many other cases.

3. Two graceful constructions

Theorems 7 and 8 of KRT are, on the surface, apparently simple results, but
they may be used to show that several families of trees are graceful, even if it
would be complicated to determine which trees arise in this way. In this section,
we establish a kindred result, Theorem B, as well as giving an application of
Theorem 8 of KRT. These results provide some conditions under which two
trees may be put together to form a larger graceful tree. The condition in
Theorem B is similar to those in Theorems 1 and 2 of KRT.

Thus, let T;, i = 1, 2, be disjoint trees on ¢ vertices having graceful valuations
¢; with bases b,. If ¢, is interlaced, then the size of T, under ¢, is ¢, i = 1, 2.
Also, @(b;) is the set of vertices in T; adjacent to b,, i = 1, 2.

THEOREM B. Suppose that @, is an interlaced valuation and that

4) {@i(v) — Lo € @(by)} = {t, + ¢, — @, (u): u € @(b))}).

Let T be the tree obtained from T, and T, by making the identification
by=0b,=0>b. Then T has a graceful valuation @ under which the base is b.
Moreover, if @, is interlaced, then so is .

ProOF. Define ¢ on the vertex set of T by

@(v), @a(v) < gy 0in T);
e(0) ={@)(v) + 1, — 1, @v) >qpvin Ty
o (v) + q,, vin T,.

Then ¢ is a valuation of T. The edges of T, carry under ¢ the weights 7, to
t; + t, — 1 while those of T not adjacent to b = b, carry under ¢ of the same
weights as they carried under ¢, and so also under ¢;" (see (1)). Condition (4)
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ensures that the sets of weights on the edges of T adjacent to b = b, under ¢
and g, are the same (as sets). Hence ¢ is a graceful valuation of T with base b.
The parity set of b in T is the union of the parity sets of the b, in the set 7. So if
@, is also interlaced, then, in view of the way ¢ is defined, ¢ is interlaced as well.

Now, by condition (A2) of Theorem A, if G;isatreeon k[(i + r — 1)/r} + 1
vertices, rooted at its base under a fair valuation 8, then S,,{S,,}, 1 <i <m <
r, is graceful with the apex as base and so (A3c) is sufficient when m < r. In
particular, with m = r, take T, = §,,{§,,} with ¢, this graceful valuation under
which the apex is the base. Also take T, to be a chain on k[(m + r)/r] + 2
vertices with ¢, a fair valuation of T, having one endpoint as base. Then, by
Theorem B, the resulting tree T is graceful and this establishes the sufficiency of
(A3c) with m = r + 1. Another illustration of Theorem B is shown in Figure 5.

T !

FIGURE 5. An example of Theorem B.

The following is a restatement of Theorem 8 of KRT.

THEOREM C. Suppose that both ¢, and @, are interlaced. Suppose further that
there are vertices u; in T,, i = 1, 2, such that either

@ @y(u) — 9x(1)) = ¢, < @y(1)
or

(i) 1, + @,(1)) — Px(u) = q, > @(uy).
Let T be the tree obtained from T, and T, by joining them at u, and u, by a new
edge. Then T has a graceful valuation ¢ under which b, is the base. Further if, in
the two cases (i) @,(u,) < q, or (i) ¢,(uy) > q,, then ¢ is interlaced.
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The proof is again a matter of defining a graceful valuation ¢ on T and, since
it is given in KRT, we omit it here. However, the following corollary is worth
noting.

COROLLARY. Suppose that S, {S, ), a tree on n vertices, has an interlaced
valuation  under which the apex is the base and that the size of S,{S,,} is p.
Suppose further that G,,, | has an interlaced valuation x under which G, , has size
n—p.Then S, {1} also has an interlaced valuation with apex as base.

ProoF. The Corollary follows from Theorem C, case (i), on taking T, =
Sp{8m} a0d Ty = Gp\is @, = ¥ (see (1) and @, = X’ (see (2)); u, = b, and
u, = b,. (Note that ¢,(¥,) = n and ¢,(¥,) = n — p so that @,(u;) — @y(u;)) = p
= ¢,.) Thus @* is an interlaced valuation of T = S, ,{6,,, )} under which the
apex is the base.

FIGURE 6. An example of Theorem C, case (i) (Corollary).

Condition (A4) then comes, by induction, from the Corollary, starting with
S,{9,} as a fair tree on k + 1 vertices in which the base has valence one and is
taken as the apex. An instance of (A4) is shown in Figure 6. Again, many other
conditions for the gracefulness of Sk may be obtained in this way. Similarly, for
the path P, on m + 1 vertices, we may establish conditions on § for the
gracefulness of P,(§) (compare Figures (9-13) of KRT).
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