

ARTIFICIAL INTELLIGENCE AND DATA-DRIVEN DESIGN 1709

INTERNATIONAL DESIGN CONFERENCE – DESIGN 2022
https://doi.org/10.1017/pds.2022.173

A Reinforcement Learning Approach to Predicting Human Design
Actions Using a Data-Driven Reward Formulation

M. H. Rahman 1, A. E. Bayrak 2 and Z. Sha 3,
1 University of Arkansas, United States of America, 2 Stevens Institute of Technology, United States of America,
3 The University of Texas at Austin, United States of America

 zsha@austin.utexas.edu

Abstract

In this paper, we develop a design agent based on reinforcement learning to mimic human design

behaviours. A data-driven reward mechanism based on the Markov chain model is introduced so that it can

reinforce prominent and beneficial design patterns. The method is implemented on a set of data collected

from a solar system design problem. The result indicates that the agent provides higher prediction accuracy

than the baseline Markov chain model. Several design strategies are also identified that differentiate high-

performing designers from low-performing designers.

Keywords: artificial intelligence (AI), human behaviour, design thinking

1. Introduction
With the advent of powerful machine learning algorithms, different types of intelligent agents have

been developed that can solve challenging problems to reduce human labour. In the design field,

although artificial agents are capable of solving well-defined design problems, human heuristics are

proved to be more efficient in certain tasks such as abstract decision-making or finding intuitive

explanations for design decisions (Raina et al., 2019; Sexton and Ren, 2017). Therefore, there is a

significant potential to partner human design thinking with state-of-the-art computational algorithms

in a human-AI collaboration framework. In such a framework, realizing an AI that can mimic human

behaviours are vital in human-AI interactions because it can predict human design decisions and

intervene when necessary to recommend designer to consider different design strategies. Such an AI

can improve design quality, shorten design iterations, and be used to train novice designers. However,

developing intelligent agents that can mimic human behaviour has many challenges. For example,

representing decision-making strategies of designers with theoretical underpinning and interpretation

is not an easy task. Additionally, systems design problems require a long design cycle that often

involves a large number of actions, thereby identifying beneficial design patterns within such a

complex design space is difficult.

There are several existing approaches to developing design agents in the literature. For example, deep-

learning agents have been developed to predict the next possible design action based on historical data

on design actions (Bayrak and Sha, 2020; Rahman et al., 2020, 2021) or on images representing

design sequences (Raina et al., 2019). Also, methods have been developed for recommending

appropriate design procedures to novice designers (Fuge et al., 2014). To mimic human search

strategy from design crowdsourcing data, artificial agent-based inverse learning methods with

Bayesian optimization have been developed (Sexton and Ren, 2017). Several other studies have

focused on explaining human strategies (Egan and Cagan, 2016; Rahman et al., 2018). These

https://doi.org/10.1017/pds.2022.173 Published online by Cambridge University Press

https://doi.org/10.1017/pds.2022.173

1710 ARTIFICIAL INTELLIGENCE AND DATA-DRIVEN DESIGN

strategies are later used to improve design optimization algorithms (McComb et al., 2016). These

previous studies, however, either focus on using historical data to provide design feedback or

extracting strategies from all designers to identify the average design patterns. The design agent

developed from these methods could not provide optimal feedback. To build an effective agent for

design recommendation and human-AI collaboration, a method is required that can learn beneficial

design strategies while mimicking human design behaviours. Reinforcement learning (RL) (Sutton

and Barto, 2018), a branch of machine learning, has gained success in developing intelligent agents in

many areas, such as video games, self-driving cars, design optimization, etc. However, its potential is

not yet fully explored in design behavioural modelling.

The objective of this study is to develop a reinforcement learning (RL)-based approach to

constructing design agents that can mimic human behaviours in support of human-AI design

collaboration. To achieve this, we integrate prior human data into the self-learning capability of RL.

More precisely, we utilize Temporal-Difference (TD) based Q-learning method, the most popular

method in RL (Jang et al., 2019), which uses a combination of the Monte Carlo method for measuring

Q-value through iterations and the advantages of dynamic programming. TD learning uses a

mathematical procedure that tries to predict the combination of immediate reward and its own reward

prediction at the next step. To integrate human design strategies into our RL agent, we introduce a

data-driven reward mechanism utilizing first-order Markov chains. The novelty lies in the integration

of this data-driven reward into what is traditionally a self-learning algorithm. The predictive

performance of the proposed RL agent is tested in a case study on a solar system design problem.

The rest of the paper is organized as follows: In Section 2, we present the technical background of the

RL (i.e., Q-learning method). Section 3 contains the design experiment procedure and data collection

method. Section 4 starts with describing the RL model formulation, then it explains the model setup

used to evaluate the performance of the RL agent. The result and the corresponding discussions are

presented in Section 5. The paper is concluded by discussing possible future work in Section 6.

2. Technical Background
Typical RL approaches rely on the formalism of a Markov Decision Process (MDP) to learn optimal

behaviours in sequential decision-making problems. The goal of an MDP is to find the optimal policy

for design decisions based on a reward. Q-learning helps to find such a policy by generating a Q-value

for each state-action pair that is used to determine the best design action for a given state of the design

process. The Q-values of all state and action pairs are typically stored in a Q-table that is learned

through multiple iterations in an RL process. At the beginning, we initialize the Q-table with zeros as

the state-action dynamics are not known at this phase. In the proceeding steps, the agent selects an

action either by exploitation or exploration. At the initial phase, the agent does not have much

information from the Q-table and mostly explores the action space by taking random actions. The

agent updates the Q-table based on the reward it receives from these random actions. Once the agent

performs an adequate number of iterations and collects information about the environment, it begins to

exploit. This trade-off between exploitation and exploration can be handled by the epsilon-greedy

algorithm. In short, like in a typical design process, at the initial stages, we give more preference to

exploration to concepts generation, while in the later stages, exploitation is preferred. Once the agent

selects an action, it reaches a new state, 𝑆′. In the new state, the design agent selects the best possible

action from the maximum Q-value and finds the corresponding rewards. Based on the rewards, the Q-

value is updated according to the following equation:

𝑄𝑡(𝑆, 𝐴) = 𝑄𝑡−1(𝑆, 𝐴) + 𝛼(𝑅(𝑆, 𝐴) + 𝛾 max 𝑄(𝑆′, 𝐴′) − 𝑄𝑡−1(𝑆, 𝐴)) (1)

where, 𝑄𝑡(𝑆, 𝐴) is the new Q-value for the state 𝑆 and action 𝐴 for the next iteration 𝑡. 𝑄𝑡−1(𝑆, 𝐴) is

the current Q-values. 𝛼 is the learning rate - a hyperparameter representing the weight between the

new information acquired in the current iteration vs. the old information from previous iterations.

When 𝛼 is close to zero, Q-values are never updated; whereas 𝛼 close to 1 means that learning occurs

quickly. 𝑅(𝑆, 𝐴) is the value of the reward for taking action 𝐴 at state 𝑆. 𝛾 is the discount factor that

quantifies how important the future rewards are played in updating the Q-value. max 𝑄(𝑆′, 𝐴′) is the

maximum expected future value. The agent will iterate over multiple steps to update Q-table values till

https://doi.org/10.1017/pds.2022.173 Published online by Cambridge University Press

https://doi.org/10.1017/pds.2022.173

ARTIFICIAL INTELLIGENCE AND DATA-DRIVEN DESIGN 1711

convergence. In this paper, we adopt a probabilistic model for action transition. The agent chooses one

of the actions with the following probability function based on the Q-values (Wu et al., 2021),

Pr(𝑎|𝑠) =
exp(𝜃⋅𝑄(𝑠,𝑎))

∑ exp(𝜃⋅𝑄(𝑠,𝑎𝑖))𝑎𝑖∈𝐴
, (2)

where 𝐴 denotes the action space for an agent. The equation takes values from the Q-table and

provides a probability for taking each possible action (𝑎) at a given state (𝑠). The hyperparameter 𝜃 ∈
[0, ∞) determines the agents’ decision-making strategy. When 𝜃 is zero, the equation provides

uniform distribution (i.e., all design actions are equally likely to be selected). When 𝜃 goes to ∞, the

probability of the action with the highest Q-value (most frequently occurring design action at a given

state) approaches to 1. Note that this model is similar to the logit-based choice models commonly used

in the design and marketing literature (Gensch and Recker, 1979) where Q-values correspond to the

utilities of discrete choices.

3. Experiment and Data Collection
We use the design problem of building a solarized home in Dallas to collect human design behavioural

data. The objective of this design problem is to maximize the annual net energy (ANE) while

minimizing cost. The overall budget for this design problem is $200,000. In addition, we have set

specific design constraints and design requirements as summarized in Table 1. This system design

problem involves many design variables with complex coupling relationships among these variables

(e.g., designers may want to add many solar panels for higher ANE, however, the distance between

solar panels could not be too small so there is a limit for the number of solar panels to be put). For this

reason, the design space is large, and designers take different exploitation and exploration strategies

during the design process.

To collect data from designers, human subject experiments were conducted in the form of a design

challenge. The design task is conducted on Energy3D, a computer-aided design (CAD) software for

the solar design problem (Rahman et al., 2019; Xie et al., 2018). Energy3D has several unique

features such as interactive visualization, high-fidelity simulation, and built-in evaluation.

Additionally, Energy3D collects data in a non-intrusive process where designers are not aware of the

data collection. The non-intrusive data collection process could reduce the cognitive bias during an

experiment. Energy3D logs design data at a fine-grained level. Particularly, it logs every performed

design action and collects design artefacts in every 20 seconds. Therefore, data collected from

Energy3D fully capture what designers do (i.e., design actions) throughout the design process.

Table 1. Design requirements

Design variables Design requirements

Number of floors 1

Height of wall ≥ 2.5 m

Number of windows ≥ 4

Size of window ≥ 1.44 𝑚2

Number of doors ≥ 1

Size of doors (𝑤𝑖𝑑𝑡ℎ × ℎ𝑒𝑖𝑔ℎ𝑡) ≥ 1.2 𝑚 × 2 𝑚

Distance between edge/ridge and solar panel ≥ 0

A total of 52 designers from the University of Arkansas participated in the design challenge. The

participants are indexed according to their registered sessions and the laptop numbers. Sessions are

indexed by the letters from A to G and laptops are indexed with numbers. For example, A02 indicates

that the participant joined at session A and worked on the laptop number 2.

Energy3D collects the design process data as JSON format which includes time-steps, design actions,

design artefacts, and simulation results. On average on participant has about 1500 lines of design

process data. An example of one line of the design action log is presented below:

https://doi.org/10.1017/pds.2022.173 Published online by Cambridge University Press

https://doi.org/10.1017/pds.2022.173

1712 ARTIFICIAL INTELLIGENCE AND DATA-DRIVEN DESIGN

In this study, we extract only the design actions related to design objectives, such as “Add wall”, “Edit

wall”, “Edit roof”, “Show sun path” etc. We ignore the design actions that have no effect on design

outcomes such as “Camera” and “Add tree”. This post-processing leads to 115 unique design actions.

4. Research Approach

4.1. Formulating the Reinforcement Learning Model

We define the RL components, i.e., states, actions, rewards, in the context of the design problem as below:

States: State is the current situation in which the agent interacts with the environment. In this study, since

our goal is to mimic human design behaviours, we define the states in RL as the state of the designers’

thought process during design. Various ontological models have been proposed to represent design

processes and interpret design thinking (Gero and Kannengiesser, 2014). In this study, the proposed state

representation model is inspired by the function-behaviour-structure (FBS) design process model. We

referred to the FBS model because it is a design ontology that can be used to represent a general system

design problem. However, the original FBS model is not able to fully describe the design process in CAD

environment. Therefore, the FBS model was later extended in the CAD context (Kannengiesser et al.,

2009) where a major inclusion is to add the interpretation sub-process. So, we added interpretation in our

model of representing the design thinking states. In total, we defined six design thinking states in CAD

that include Formulation, Reformulation, Synthesis, Interpretation, Evaluation, and Analysis. These states

are considered as the states for RL. From the collected design data, we observe that designers can perform

the inter-state movement. For example, suppose a designer is in a state where they add a wall. After that,

they move to another state where they have various options to perform such as editing the wall, analysing

it, assessing the cost, or removing it. Using these options, designers can move from one state to any other

state, which produces a fully connected network (Figure 1).

Actions: The actions in our RL problem are the design actions performed by designers. We observe

that designers can perform similar categories of actions in each state.

Figure 1. The FBS design process model (Kannengiesser et al., 2009) and the design thinking

states defined in the proposed reinforcement learning model

For example, designers can perform different addition tasks (i.e., add a wall, add a window, etc.),

edit tasks (i.e., edit wall, edit solar panels etc.), remove tasks (i.e., remove wall, remove solar

panel, etc.). So, we group such similar design actions into a few categories. There are three reasons

of doing this. First, categories allow capturing the context-independent essence of design actions

and provide better generalizability. Second, these categories significantly decrease the number of

{"Timestamp": "2017-12-01 12:58:27", "File": "EnergyPlusHome.ng3", "Edit Door": {"Type": "Door",

"Building": 2, "ID": 9, "Coordinates": [{"x": -7.5, "y": -32.5, "z": 1}, {"x": -7.5, "y": -32.5, "z": 15}, {"x": -

1.5, "y": -32.5, "z": 1}, {"x": -1.5, "y": -32.5, "z": 15}]}}

https://doi.org/10.1017/pds.2022.173 Published online by Cambridge University Press

https://doi.org/10.1017/pds.2022.173

ARTIFICIAL INTELLIGENCE AND DATA-DRIVEN DESIGN 1713

possible state-action pairs and reduce the computational burden during the training of RL agents.

Finally, in our previous human-computer interaction experiments (Rahman et al., 2020), where we

train a deep learning model to recommend design actions to designers, we have found that

designers feel interrupted if they were provided with a detailed suite of actions. Therefore,

grouping design actions into a small number of categories provide a more condensed set of design

recommendations in a potential extension of this study to human-computer collaboration. In this

study, we identify six unique categories of design actions in the experimental data. These

categories and the corresponding actions are listed in Table 2

Table 2. Design action categories and their corresponding actions

Design action category Action Category Example

Addition of any components Add Add wall, Add solar panel, etc.

Edit of any components Edit Edit door, Edit wall, etc.

Environmental check Show Show Helidon, Show sun path, etc.

Evaluation of cost Cost Cost

Removal of any components Remove Remove window, Remove roof, etc.

Analysis of annual net energy Analysis Energy Annual Analysis

Reward: The reward is the feedback from the environment. The RL agent aims to maximize the total

reward that is calculated by summing all the immediate rewards. However, this sum can potentially

grow indefinitely. Therefore, a discount factor (𝛾) is included in the reward function to reduce the

contribution of the future rewards. The reward can be expressed as follows:

𝑅𝑡 = 𝑟𝑡+1 + 𝛾𝑟𝑡+2 + 𝛾2𝑟𝑡+3 + ⋯ (3)

Traditional RL is a self-learning method that uses a reward from the environment. As our target is to

build an agent that mimics human designers, we use the data containing designers' actions in the solar

system design experiment (e.g., those shown in Table 2) to generate a reward table. Combining this

data-driven reward with the self-learning capability of RL is a unique aspect of this study. Figure 2

shows our overall approach to training an RL agent to mimic a human designer. We employ the first-

order Markov chain model on the designers’ sequence to construct the reward table. From the first-

order Markov chain, we obtain the transition probability matrix for each designer. Then, we average

all the transition probability matrices from all designers to obtain a final reward table. This Markov

chain-based reward mechanism reinforces most frequently appearing action pairs during training.

Table 3. An example of the reward table

Formulation Analysis Reformulation Synthesis Evaluation Interpret

Formulation 22.47 1.25 4.15 21.25 1.83 1.06

Analysis 3.28 9.37 3.91 17.67 13.88 3.89

Reformulation 16.61 2.48 17.28 12.11 2.54 0.97

Synthesis 6.02 3.20 2.70 35.24 4.15 0.69

Evaluation 3.97 14.35 3.85 21.46 3.31 2.05

Interpret 5.39 4.62 2.30 10.48 2.057 18.14

Table 3 shows an example of a reward table obtained from the data. Each entry indicates the reward

for transitioning from one state to another state. For example, if designers stay in Formulation state

between two actions, the corresponding reward value is 22.47. From the reward table, a Q-table can be

obtained from Equation (1). Recall that we do not use the highest value in the reward table to predict

next design action but rather use all the reward values to produce a Q-table. Based on the Q-table and

a given 𝜃 value, we create probability distributions to predict design actions using Equation (2).

https://doi.org/10.1017/pds.2022.173 Published online by Cambridge University Press

https://doi.org/10.1017/pds.2022.173

1714 ARTIFICIAL INTELLIGENCE AND DATA-DRIVEN DESIGN

Figure 2. The overall research approach

4.2. Model Setup and Evaluation

Baseline: We choose the first-order Markov chain model as our baseline model to compare with the

Q-learning agent. From the first-order Markov chain, we obtain a transition probability matrix

(Rahman et al., 2018) for each designer in the dataset. We aggregate transition probability matrices

from (𝑛 − 1) designers and predict on the 𝑛th designer's sequence. By iterating this process, we obtain

the prediction accuracy for all designers in the data and use the average as the final prediction

accuracy. The average prediction accuracy is about 41%.

Cross-validation: We use the k-fold cross-validation technique to evaluate the Q-learning agent. In

this method, we split the dataset into k partitions. Then, k rounds of training and testing are performed

in a way such that in each iteration, (𝑘 − 1) partitions are used to obtain the reward table and train the

Q-learning agent. The rest of the partition is used to test the Q-learning agent. In this study, 6

designers are used as test data and the rest of them as training. This process iterates through the entire

dataset. In this way, we perform a total of 11 rounds of training and testing.

Parameter settings: We determine the optimal settings for the hyperparameters of the RL model using

trial and error and train the Q-learning agent based on those settings. We choose the learning rate (𝛼)

of this study as 0.3 and the discount factor (𝛾) as 0.6 for updating the Q-value (see Equation (1)). We

update the Q-table by 10,000 iterations. To obtain the next possible action from the Q-table with the

best accuracy, we also tune the value of 𝜃. Note that the optimal settings for the model parameters will

be different in other applications and should be tuned again based on the input data.

Metric for prediction accuracy: We compare the agent’s generated sequence with the actual sequence

to evaluate the Q-learning agent. The agent generates the next sequence based on the previous action.

As the agent chooses the final design action from a probability distribution, the prediction can vary

from iteration to iteration. Therefore, to account for the stochasticity, we run a total of 50 realizations

to generate each sequence. In each sequence, we compare the predicted actions with the actual

decisions in the data, count the number of correctly predicted actions, and divide them by the total

length of the sequence.

Figure 3. Prediction accuracy over different theta for a fold

https://doi.org/10.1017/pds.2022.173 Published online by Cambridge University Press

https://doi.org/10.1017/pds.2022.173

ARTIFICIAL INTELLIGENCE AND DATA-DRIVEN DESIGN 1715

Finally, we take the average of the 50 prediction accuracies. In this way, we obtain the final prediction

accuracy using the following equation

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
1

50
 ∑ (

𝑛𝑖
𝑐𝑝

𝐿
)50

𝑖=1 (4)

where 𝑛𝑐𝑝 is the correctly predicted actions and 𝐿 is the length of the designer's sequence.

5. Result and Discussion:
Results obtained from different folds indicate that the prediction accuracy improves with the increase

in 𝜃, as shown in Figure 3. Initially, when 𝜃 is close to zero, the RL agent provides uniform

distribution to select the next action at a given state, resulting in a random search. However, with the

increase in 𝜃, the probability of the reinforced action pairs identified in the data increases. Therefore,

the accuracy of predicting the next design action also increases compared to a random search. Figure 3

shows a sample for the prediction accuracy from one of the folds out of 11 for the individuals F15,

G05, G07, C03, C05, and C07. The prediction accuracy increases from 𝜃 = 0 to 0.25. After that, the

prediction accuracy does not increase significantly and saturates to its final value for all the design

sequences tested. Among all the designers, G05 achieves the highest prediction accuracy of 73%,

higher than the baseline prediction accuracy of 41% achieved by the Markov chain model. We also

observe that in several folds, the prediction accuracy obtained from the maximum theta for a few

designers is lower than the baseline accuracy. These results indicate that the agent reinforces specific

design patterns (i.e., Edit-Edit, Edit-Analysis, etc.) and provides better accuracy for those designers

who behaved such patterns but yield lower accuracy for those who did not.

The k-fold cross-validation results inspire us to investigate further the prediction accuracy based on

the designers’ performance. We define design performance in the following equation:

𝐷𝑒𝑠𝑖𝑔𝑛 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 =
𝐴𝑁𝐸 ×𝐵𝑢𝑑𝑔𝑒𝑡

𝐶𝑜𝑠𝑡
 (5)

We pick ten highest and lowest-performing designers and compare their prediction accuracy. We

identify all the designer’s prediction accuracy in each group by training the rest of the designers. This

means when considering the highest performing 10 designers, we train the reinforcement agent on the

rest of the 42 designers and test on these 10 designers. We follow the same procedure for the lowest-

performing 10 designers.

Figure 4. Prediction accuracy of the high-performing design group (left) and the low-performing

design group (right)

The left bar plot in Figure 4 shows the prediction accuracy for the high-performance group. In this

group, nine designers out of ten achieve high prediction accuracy (>41%) compared to the Markov

chain model. While in the low-performance group, only four designers’ prediction accuracy is higher

than the Markov chain prediction accuracy. It is worth mentioning that the highest performer among

https://doi.org/10.1017/pds.2022.173 Published online by Cambridge University Press

https://doi.org/10.1017/pds.2022.173

1716 ARTIFICIAL INTELLIGENCE AND DATA-DRIVEN DESIGN

all the designers, G05, also achieves the highest prediction accuracy. To understand the design

strategy, we compare the transition probability matrix of the highest (G05) and lowest performer (F12)

in the high-performance group. Figure 5 shows the heatmap of the transition probability matrix.

Bigger circles indicate a higher transition probability while smaller circles indicate a lower transition

probability. The highest performer G05 follows only specific design patterns and is very focused on a

few particular actions while the lowest performer F12 in this group uses a variety of design patterns.

For example, the highest three transition probabilities for G05 are "Edit-Edit" (0.82), "Edit-Add"

(0.71), "Edit-Analysis" (0.58). The transition probabilities of these patterns for F12 are 0.57, 0.46, and

0.25 respectively. Additionally, G05 did not use ‘Analysis-Analysis’, ‘Cost-Remove’, or ‘Remove-

Show’ action pairs at all during the process. However, F12 had these patterns during the design

process. Although both designers achieve good design performance as they were both in the good-

performing group, G05 finished the design task by exploiting a few specific design patterns while F12

explored different patterns to reach the objective. The RL agent learns a particular set of consistent

action pairs during training due to the reinforcement of frequently occurring behaviours, thus the

prediction accuracy increases if the designers follow such a consistent design behaviour pattern.

Figure 5. The transition probability of G05 (left) and F12 (right)

In the low-performance group, most of the designers also use a variety of design patterns to explore

the design space. The individual A14 achieves the highest prediction accuracy in this group. Similar to

the highest prediction accuracy (G05) achieved in the high-performance group, A14 also achieve the

highest performance in the low-performance group. Figure 6 shows the transition probability matrix of

A14. Similar to G05, A14 also uses specific design patterns during the design process, but the design

performance achieved by A14 is lower than G05. This may be attributed to the fact that A14 uses

several redundant design action pairs. For example, the transition probability of using “Analysis-

Analysis” for this designer is high but not necessary. This is because once “Analysis” (the analysis of

ANE) is conducted, there is no need to perform the analysis again in the next action.

Figure 6. The transition probability of A14

https://doi.org/10.1017/pds.2022.173 Published online by Cambridge University Press

https://doi.org/10.1017/pds.2022.173

ARTIFICIAL INTELLIGENCE AND DATA-DRIVEN DESIGN 1717

Additionally, this designer did not use “Show” at all which indicates that the designer is not

interacting with the CAD environment and is not active in learning the solar science concepts

underpinning the design problem.

This result indicates that though high-performing and low-performing designers may have similar

prediction accuracy, their design strategies could be different albeit consistent throughout the process.

Here consistency refers to the behavioural pattern those designers use the same strategies (e.g., a pair

of actions) over and over. For example, designers frequently use "Formulation→Edit" and

"Edit→Edit", and they follow these strategies consistently even if they may not be improved design

objectives. This is also congruent with the findings in the literature. Burnap et al., 2015 showed that

both experts and consistently wrong non-experts can present such behaviours. But it is worth noting

that our models do not rely only on consistency but also the previous design action data to predict

future actions.

Furthermore, to identify the model performance on predicting the entire sequence instead of merely

predicting the next immediate action, we tested on G05 by training the model on the rest of the dataset.

In this case, we predict the next design actions based on the previously predicted actions instead of true

actions. Figure 7 shows the prediction accuracy of designer G05 on the entire sequence. The prediction

accuracy saturates at about 0.7 after 𝜃 = 0.25, which is similar to the prediction accuracy identified

from the previous setting. In other words, our model accurately predicts 70 actions on average in a

sequence of 100 actions. The result indicates that the model is capable of predicting not only the next

design actions but also the entire sequence for designers with prominent design patterns.

Figure 7. Prediction accuracy of G05 for the entire sequence

6. Conclusion
In this study, a design agent is developed based on Q-learning, which is a commonly used method in

the reinforcement learning literature, to mimic human design strategies. The overall contribution of

this study is twofold. First, the model trained using a reinforcement learning algorithm is novel in

human behaviour exploration. We train this model by leveraging a data-driven reward mechanism

based on the first-order Markov chain model. Once the model is trained, it chooses design actions

from a probability function controlled by a specific model parameter, 𝜃. To the best of our knowledge,

this is the first study using reinforcement learning to understand human design strategies. Second, this

model provides several important design behaviours. For example, increasing the model parameter 𝜃

also increases the prediction accuracy. Additionally, in most of the cases, compared to the Markov

chain baseline model, the agent provides better prediction accuracy for high-performing designers. We

also observe that certain strategies/patterns differentiate some of the high-performing designers from

low-performing designers. The design agent learns those design patterns and provides higher

prediction accuracy for most high-performing designers. There are some limitations of this study.

First, this approach does not evaluate design strategies but rather predicts future design actions and

can identify beneficial design patterns for improving design objective. To implement this model in a

human-AI collaboration architecture, we will add a second layer to assess whether the predicted

design action leads to good or bad decision in each step and intervene accordingly. Second, although

https://doi.org/10.1017/pds.2022.173 Published online by Cambridge University Press

https://doi.org/10.1017/pds.2022.173

1718 ARTIFICIAL INTELLIGENCE AND DATA-DRIVEN DESIGN

we train the agent with average design behaviour data, the prediction accuracy is higher only for high-

performance design groups when these designers follow a consistent design pattern. In a future study,

we aim to increase the type of design behaviour that is learned by the agent by dividing the design

sequence into different stages based on the nature of a design process and training the model in each

stage. We will also conduct a comprehensive sensitivity analysis to understand the effect of

hyperparameters in the model.

Acknowledgment

The authors gratefully acknowledge the financial support from NSF-CMMI-1842588.

References

Bayrak, A.E. and Sha, Z. (2020), “Integrating Sequence Learning and Game Theory to Predict Design Decisions

Under Competition”, Journal of Mechanical Design, Vol. 143 No. 5, available at:

https://doi.org/10.1115/1.4048222.

Burnap, A., Ren, Y., Gerth, R., Papazoglou, G., Gonzalez, R. and Papalambros, P.Y. (2015), “When

Crowdsourcing Fails: A Study of Expertise on Crowdsourced Design Evaluation”, Journal of Mechanical

Design, Vol. 137 No. 3, available at: https://doi.org/10.1115/1.4029065.

Egan, P. and Cagan, J. (2016), “Human and computational approaches for design problem-solving”,

Experimental Design Research, Springer, pp. 187–205.

Fuge, M., Peters, B. and Agogino, A. (2014), “Machine Learning Algorithms for Recommending Design

Methods”, Journal of Mechanical Design, Vol. 136 No. 10, available at: https://doi.org/10.1115/1.4028102.

Gensch, D.H. and Recker, W.W. (1979), “The Multinomial, Multiattribute Logit Choice Model”, Journal of Marketing

Research, SAGE Publications Inc, Vol. 16 No. 1, pp. 124–132, available at: https://doi.org/10.2307/3150883

Gero, J.S. and Kannengiesser, U. (2014), “The Function-Behaviour-Structure Ontology of Design BT - An

Anthology of Theories and Models of Design: Philosophy, Approaches and Empirical Explorations”, in

Chakrabarti, A. and Blessing, L.T.M. (Eds.), , Springer London, London, pp. 263–283.

Jang, B., Kim, M., Harerimana, G. and Kim, J.W. (2019), “Q-Learning Algorithms: A Comprehensive

Classification and Applications”, IEEE Access, Vol. 7, pp. 133653–133667.

Kannengiesser, U., Gero, J.S., De Smet, C.M. and Peeters, J.A. (2009), “An ontology of computer-aided

design”, Computer-Aided Design Research and Development, In Computer-Aided Design Research and

Development. Hauppauge, NY, USA: Nova Science Publishers.

McComb, C., Cagan, J. and Kotovsky, K. (2016), “Drawing Inspiration From Human Design Teams for Better

Search and Optimization: The Heterogeneous Simulated Annealing Teams Algorithm”, Journal of

Mechanical Design, Vol. 138 No. 4, available at: https://doi.org/10.1115/1.4032810.

Rahman, M.H., Gashler, M., Xie, C. and Sha, Z. (2018), “Automatic clustering of sequential design behaviors”,

Proceedings of the ASME Design Engineering Technical Conference, Vol. 1B-2018, available at:

https://doi.org/10.1115/DETC201886300.

Rahman, M.H., Schimpf, C., Xie, C. and Sha, Z. (2019), “A Computer-Aided Design Based Research Platform

for Design Thinking Studies”, Journal of Mechanical Design, Vol. 141 No. 12.

Rahman, M.H., Xie, C. and Sha, Z. (2021), “Predicting Sequential Design Decisions Using the Function-

Behavior-Structure Design Process Model and Recurrent Neural Networks”, Journal of Mechanical Design,

pp. 1–46, available at: https://doi.org/10.1115/1.4049971.

Rahman, M.H., Yuan, S., Xie, C. and Sha, Z. (2020), “Predicting human design decisions with deep recurrent

neural network combining static and dynamic data”, Design Science, Cambridge University Press, Vol. 6, p.

e15, available at: https://doi.org/10.1017/dsj.2020.12

Raina, A., McComb, C. and Cagan, J. (2019), “Learning to design from humans: Imitating human designers through

deep learning”, Journal of Mechanical Design, Vol. 141 No. 11, available at: https://doi.org/10.1115/1.4044256

Sexton, T. and Ren, M.Y. (2017), “Learning an Optimization Algorithm Through Human Design Iterations”,

Journal of Mechanical Design, Vol. 139 No. 10, p. 101404, available at: https://doi.org/10.1115/1.4037344

Sutton, R.S. and Barto, A.G. (2018), Reinforcement Learning: An Introduction, A Bradford Book, Cambridge,

MA, USA.

Wu, H., Ghadami, A., Bayrak, A.E., Smereka, J.M. and Epureanu, B.I. (2021), “Impact of Heterogeneity and

Risk Aversion on Task Allocation in Multi-Agent Teams”, IEEE Robotics and Automation Letters, Vol. 6

No. 4, pp. 7065–7072, available at: 10.1109/LRA.2021.3097259

Xie, C., Schimpf, C., Chao, J., Nourian, S. and Massicotte, J. (2018), “Learning and teaching engineering design

through modeling and simulation on a CAD platform”, Computer Applications in Engineering Education,

Vol. 26 No. 4, pp. 824–840, available at https://doi.org/10.1002/cae.21920.

https://doi.org/10.1017/pds.2022.173 Published online by Cambridge University Press

https://doi.org/10.1017/pds.2022.173

