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Abstract

Comparing two types for equality is an essential ingredient for an implementation of dynamic

types. Once equality has been established, it is safe to cast a value from one type to

another. In a language with run-time type analysis, implementing such a procedure is fairly

straightforward. Unfortunately, this naive implementation destructs and rebuilds the argument

while iterating over its type structure. However, by using higher-order polymorphism, a

casting function can treat its argument parametrically. We demonstrate this solution in two

frameworks for ad-hoc polymorphism: intensional type analysis and Haskell type classes.

1 Heterogeneous symbol tables and dynamic types

Dynamic types are a useful addition to a statically-typed language. For example,

they may be used to implement a heterogeneous symbol table — a finite map

from strings to values of many different, unrelated types. The interface to this

data structure includes, at minimum, an abstract type, a value for the empty table,

and two functions to insert items into and retrieve items from the table. However,

because this table must store many different types of data, it is tricky to specify and

implement in a statically-typed language.

For example, we might want this data structure to have the following interface in

the functional programming language Haskell (Peyton Jones, 2003):

type Table

empty :: Table

insert :: String → α → Table → Table

find :: Table → String → Maybe α

In this interface, both insert and find are polymorphic over the types of values

that may be added to and retrieved from the table. However, this interface is not

quite right. Because the return type of find is polymorphic, find must return the

correct type for every context. But as nothing is assumed about the context, there is

no way to verify that find returns the correct type.

� A previous version of this paper appeared in the Fifth ACM International Conference on Functional
Programming (ICFP 00).
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682 S. Weirich

To make matters concrete, suppose we use an association list, a list of pairs of

symbols and their values, to store the symbol table.

type Table = [(String,Entry)]

The type Entry must be a dynamic type. We must define it in such a way that it

may contain many types of data. Furthermore, we must also modify the interface

so that find may verify that the type of a retrieved value is the same as the type

expected by the context.

One way to define Entry is to use a variant to allow a number of different types:

data Entry = Int Int | Bool Bool | Char Char | FunIntInt (Int → Int)

| TupleIntInt (Int,Int) | TupleCharInt (Char,Int)

If find returns an Entry, the context can use pattern matching to ensure that the

right type is returned. However, this variant constrains the entries in the table to

a specific finite set of types. Although a single run of the program will use only a

finite number of types, it may be difficult to say in advance what those types might

be.

Another definition of Entry is to use an existential type (Mitchell & Plotkin,

1988; Odersky & Läufer, 1996). A value of type ∃α.α may be of any type. Though

not a part of the Haskell 98 definition, several implementations of Haskell support

existential types. We may declare that the data type constructor Entry carries a

value of type ∃α.α as follows:

data Entry = forall α. Entry α

Because this constructor may be applied to values of any type, the keyword forall

indicates the existential type.

The insert function coerces the value into an existential and adds it to the rest of

the table.

insert :: String → α → Table → Table

insert symbol val table = (symbol, Entry val) : table

For example, we can create a symbol table with the expression:

table1 :: Table

table1 = insert "x" 1 (insert "y" True empty)

The existential type provides a solution for the first problem. We can create the

table and add values of any type to it. However, the second problem remains. We

cannot retrieve values from the symbol table. Once a type has been hidden by an

existential, all information about that type has been lost. When a value is unpacked

from the existential type, the Haskell type checker must assume that it is different

from every other type. As a result, if we naively try to implement find by iterating
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over the list, the Haskell type checker reports the type error of returning a type

containing an existentially quantified variable.

find :: String → Table → Maybe α

find symbol1 [] = Nothing

find symbol1 ((symbol2, Entry val) : table) =

if symbol1 == symbol2

then Just val -- DOES NOT TYPE CHECK

else find symbol1 table

In find, we must verify at run time that the type of val is the same as the

expected result type of the function. We need to define a function cast that will

safely convert val to the correct type. This operation must depend on run-time

type information, so we need some sort of non-parametric polymorphism, such as

Haskell’s type class mechanism (Wadler & Blott, 1989). By supplying additional

class constraints to the types of insert and find as well as the definition of Entry,

we can implement this heterogeneous symbol table in Haskell.

However, type classes do not permit the most natural definition of the casting

operation which must compare two run-time types for equality. Therefore, before

describing how to implement cast with Haskell type classes, we first define it with

run-time type analysis using the typecase operator in the language λML
i (Harper &

Morrisett, 1995). Furthermore, that straightforward definition allows us to discover

an optimization of cast.

The next section presents an introduction to the λML
i language. An initial

implementation of the cast function in λML
i appears in section 3. Though correct,

its operation requires an undesirable overhead for what is essentially an identity

function. In section 4, we improve cast through the aid of an additional type

constructor argument. In section 5, we develop the analogous two implementations

of cast in Haskell using type classes. Finally, in section 6, we conclude by comparing

both versions with several other implementations of dynamic types.

2 Intensional type analysis

Harper and Morrisett’s language λML
i augments a small, polymorphic functional

language with a typecase operator that can be used to examine type information

that is known only at run time. The λML
i language is defined by a type-passing

semantics. In other words, polymorphic functions receive run-time representations

of their type arguments. Dually, type information is stored with the value of an

existential type.

The typecase operator pattern matches run-time type information. To

demonstrate a simple use of typecase and foreshadow the definition of cast, we

implement a function, called sametype, that compares two types for equality. In this

paper, we use a syntax for λML
i that is similar to Haskell to ease the comparisons

between the different versions of cast. The major difference between λML
i and

Haskell (besides typecase) is that in λML
i all type abstraction and instantiations are

explicitly notated. For example, sametype below, has two type arguments (α and β)

that are enclosed in square brackets.
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sametype :: ∀α.∀β. bool
sametype[α][β] =

typecase (α) of

(Int) ⇒ typecase (β) of

(Int) ⇒ true

( ) ⇒ false

(α1, α2) ⇒ typecase (β) of

(β1, β2) ⇒ sametype[α1][β1] && sametype[α2][β2]

( ) ⇒ false

(α1 → α2) ⇒ typecase (β) of

(β1 → β2) ⇒ sametype[α1][β1] && sametype[α2][β2]

( ) ⇒ false

The first typecase discovers the outermost form of the first type, whether it is Int,

a product type (α1, α2) or a function type (α1 → α2). Then in each branch, an inner

typecase compares this form to the form of the second type. For product and

function types, sametype calls itself recursively on the subcomponents of the type.

Each of these branches binds type variables (such as α1 and α2) to the subcomponents

of the types so that they may be used in the recursive call.

Because nested typecases are tedious to write, we use pattern matching syntax

to abbreviate this function as:

sametype :: ∀α.∀β. bool
sametype[α][β] =

typecase (α, β) of

(Int,Int) ⇒ true

((α1, α2),(β1, β2)) ⇒ sametype[α1][β1] && sametype[α2][β2]

(α1 → α2,β1 → β2) ⇒ sametype[α1][β1] && sametype[α2][β2]

( , ) ⇒ false
This function is the core of the cast function, because cast also compares two

types for equality. However, if the types match, cast must also change the type of

a term from the first type to the second. To do so requires an important property

about type checking typecase. In a standard case expression each branch must be

of the same type. In a typecase expression, the type of each branch may depend

on the matched type (or types).

For example, consider the following expression.

typecase τ of

(Int) ⇒ λ(x :: Int) → x + 3

(α→ β) ⇒ λ(x :: α→ β) → x

(α, β) ⇒ λ(x :: (α, β)) → x
Even though the first branch is of type Int → Int, the second branch is of type

(α→ β)→ (α→ β), and the third branch is of type (α, β)→ (α, β), all three branches

are instances of the type schema γ → γ, where γ is replaced with the match for τ for

that branch. Therefore, this entire typecase expression can be safely assigned the

type τ→ τ.
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cast :: ∀α. ∀β. Maybe (α → β)

cast[α][β] =

typecase [δ1, δ2. δ1 → δ2] (α, β) of

(Int, Int) ⇒
Just (λ(x :: Int) → x)

((α1, α2), (β1, β2)) ⇒
do f ← cast [α1][β1]

g ← cast [α2][β2]

return (λ(x :: (α1, α2)) → (f (fst x), g (snd x)))

(α1 → α2, β1 → β2) ⇒
do f ← cast [β1][α1]

g ← cast [α2][β2]

return (λ(x :: α1 → α2) → g . x . f)

( , ) ⇒ Nothing

Fig. 1. First solution.

To make type checking syntax directed, we annotate typecase with a type variable

and a type schema where that variable may occur free. For example, we annotate

the previous typecase with the following schema:

typecase [γ.γ → γ] τ of

(Int) ⇒ λ(x :: Int) → x + 3

In cast, which pattern matches two types, the schema has two free type variables.

We now have everything that we need to write cast in λML
i .

3 First solution

An initial λML
i implementation of cast appears in Figure 1. This operation compares

the types α and β. If they match, cast returns a conversion function from type α to

type β. Otherwise, cast returns the data constructor Nothing, signaling the error.

In the first branch of typecase, α and β both match Int. Casting an Int to an

Int is easy; this branch just returns an identity function.

In the second branch of typecase, both α and β match product types, (α1, α2)

and (β1, β2), respectively. Through recursion, we create functions to cast the sub-

components, α1 to β1 and α2 to β2. The coercion of a product breaks it apart, casts

each component separately, and then creates a new pair.

This branch uses Haskell’s do notation for error propagation. Each of the two

recursive calls to cast could produce either a conversion function or Nothing. If

they produce functions, everything continues smoothly, but if either returns Nothing,

then the entire do expression returns Nothing.

The code is a little different for the next branch, when α and β are both function

types. Here, given a function from α1 to α2, we want to return a function from β1

to β2. We can apply cast to α2 and β2 to get a function, g, that casts the result type,
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and compose g with the argument x to get a function from α1 to β2. Then we can

compose that resulting function with a reverse cast from β1 to α1 to get a function

from β1 to β2.

However, there is a problem with this solution. The specification of the cast

function is to recursively compare two types and produce an identity function when

the types are the same. This solution follows that specification, which we can prove by

induction. The product and arrow cases map the recursive calls across the argument

x, and mapping the identity function is the same as the identity function. However,

the result of cast is a particularly inefficient identity function. Unless the types τ1

and τ2 are both Int, cast[τ1][τ2] does much more work than λx → x. Every pair

in the argument is broken apart and remade and every function is wrapped between

two instantiations of cast.

The reason we had to break apart the pair in forming the coercion function for

product types is that we may only coerce the components of the pair individually. It

would be better if we could coerce each component while part of the pair. In other

words, we want two functions, first one that casts the first component of the pair,

of type (α1, α2) → (β1, α2), and then one that casts the second component, of type

(β1, α2)→ (β1, β2).

4 Second solution

Motivated by this reasoning, we want to write a function that can coerce the type of

part of its argument. This will allow us to produce a coercion that is a composition

of several identity functions, each changing only part of the type of its argument x.

Because we want to cast many parts of the type of x, we need to abstract the

relationship between the part of the type to analyze and the complete type of x.

The solution in Figure 2 defines a helper function cast’ that abstracts not only

the types α and β for analysis, but also a type constructor γ (or function from types

to types). In the definition of cast’ we annotate α, β, and γ with their kinds — α

and β with kind ∗, and γ, a function from types to types, with kind ∗ → ∗.
When γ is applied to the type α we get the argument type of cast’; when it is

applied to β we get the return type of cast’. For example, to produce a function

that casts the first component of a tuple but leaves the second component alone,

we instantiate γ with λδ :: ∗.(δ, α2). The result is then a function from type (α, α2)

to (β, α2). The cast’ operation is more generally useful than cast because it may

convert types within data structures. We can specialize cast’ to produce cast by

calling it with the identity function on types.

cast[α][β] = cast’[α][β][λδ :: ∗.δ]

The implementation of cast’ again uses pattern matching to determine the top

level form of the arguments α and β.

In the branch for product types we create a function to coerce the first component

of the tuple (converting α1 to β1) by supplying the type constructor λδ :: ∗.γ(δ, α2)

for γ. In the recursive call for the second component, the first component is already
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cast’ :: ∀α :: ∗. ∀β :: ∗. ∀γ :: ∗ → ∗. Maybe (γ α)→(γ β)

cast’[α][β][γ] =

typecase [δ1, δ2. (γ δ1)→(γ δ2)](α, β) of

(Int, Int) ⇒
Just ( λ(x :: γ Int) → x )

((α1, α2),(β1, β2)) ⇒
do f ← cast’[α1][β1][λδ :: ∗. γ(δ, α2)]

g ← cast’[α2][β2][λδ :: ∗. γ(β1, δ)]

return (λ(x :: γ(α1, α2)) → g (f x))

(α1 → α2, β1 → β2) ⇒
do f ← cast’[α1][β1][λδ :: ∗. γ(δ → α2)]

g ← cast’[α2][β2][λδ :: ∗. γ(β1 → δ)]

return (λ(x :: γ(α1 → α2)) → g (f x))

( , ) ⇒ Nothing

cast :: ∀α :: ∗. ∀β :: ∗. Maybe (α → β)

cast[α][β] = cast’[α][β][λδ :: ∗.δ]

Fig. 2. Second solution.

of type β2 so the type constructor argument reflects that fact. The returned function

does not need to destruct its argument; it only applies the two conversions.

Surprisingly, the branch for comparing function types is similar to the branch for

product types. We coerce the argument type of the function in the same manner as

we coerced the first component of the tuple: calling cast’ recursively to produce a

function to cast from type γ(α1 → α2) to type γ(β1 → α2). A second recursive call

handles the result type of the function.

This version of cast is more efficient because it does not destruct and rebuild its

argument. However, we have added an additional type constructor argument and

because λML
i has a type-passing semantics, it must pass this additional argument

at run time. Creating this argument could slow down the execution of cast’.

Fortunately, typecase never examines that argument, so an optimizer is free to

eliminate it in an implementation of λML
i .

5 Haskell

The Haskell language provides a form of ad-hoc polymorphism, called type classes,

that differs from typecase. In this section, we quickly review Haskell type classes

before describing how to implement cast with them.

Instead of defining an ad-hoc polymorphic operation through case analysis of

some type argument, with type classes one defines such operations by listing the

instances for each type separately. For example, the Haskell Prelude (Peyton Jones,

2003) defines the class of types that support a conversion to a string representation.
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class Show α where

show :: α → String

This declaration states that a type α is in the class Show if there is some function

named show defined with type α → String. We can define show for integers with

a built-in primitive

instance Show Int where

show x = primIntToString x

We can also define show for compound types like product types. To convert a

product to a string we need a version of show for each component of the product.

instance (Show α, Show β) ⇒ Show (α,β) where

show (a,b) = "(" ++ show a ++ "," ++ show b ++ ")".

This code declares that as long as α and β are members of the class Show, then their

product is a member of class Show. Consequently, show for products is defined in

terms of the show functions for its subcomponents.

5.1 First solution in Haskell

The Haskell version of cast is complicated by the two nested typecase terms

hidden by the pattern-matching syntax. For this reason, we define two type classes —

one called CF (for cast from) that corresponds to the outer typecase, and the other

called CT (for cast to) that corresponds to all of the inner typecases. (We may also

combine these two classes into a single class, if desired.)

The CF class contains cast. To cast from type α to type β, α must be in the CF

type class and β must be in the CT type class.

class CF α where

cast :: CT β ⇒ Maybe (α → β)

The CT class includes three functions, each completing the cast assuming that the

first type was an integer, product, or function. This class also defines default values

for the three functions, for the case when the types do not match. Each instance of

CT overrides one of these functions.

class CT β where

doInt :: Maybe (Int → β)

doProd :: (CF α1, CF α2) ⇒ Maybe ((α1, α2) → β)

doFn :: (CT α1, CF α2) ⇒ Maybe ((α1 → α2) → β)

doInt = Nothing

doProd = Nothing

doFn = Nothing

The type of doProd requires that α1 and α2 be in the type class CF because doProd

calls cast to convert from these types. Likewise, doFn calls cast to convert from

the type α2. However, it converts to the type α1, so α1 must be in the CT type class.
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As in λML
i , where the outer typecase led to an inner typecase in each branch,

each instance of CF dispatches to one of the functions of CT to record the form

of the first type. Haskell syntax does not allow type declarations for methods in

class instances (their types are inferred from the class declaration), but for clarity

we include those types in comments before each method.

instance CF Int where

-- cast :: CT β ⇒ Maybe (Int → β)

cast = doInt

instance (CF α1, CF α2) ⇒ CF (α1, α2) where

-- cast :: CT β ⇒ Maybe ((α1, α2) → β)

cast = doProd

instance (CT α1, CF α2) ⇒ CF (α1 → α2) where

-- cast :: CT β ⇒ Maybe ((α1 → α2) → β)

cast = doFn

In the Int instance of CT, the doInt function is an identity function.

instance CT Int where

-- doInt :: Maybe (Int → Int)

doInt = Just id

The product instance of CT overrides doProd. This function calls cast for the

subcomponents of the product. For these calls, α1 and α2 must be in the CF type

class and β1 and β2 must be in the CT type class.

instance (CT β1, CT β2) ⇒ CT (β1, β2) where

-- doProd :: (CF α1, CF α2) ⇒ Maybe ((α1, α2) → (β1, β2))

doProd = do f ← cast -- from α1 to β1

g ← cast -- from α2 to β2

return ( λx → (f (fst x), g (snd x)) )

Finally, in the instance for the function type constructor, doFn needs to wrap the

argument x (of the returned conversion function) in calls to cast, as in the first λML
i

solution. The type of x is a function of type α1 → α2. To cast the result of this

function, we require that α2 be in the type class CF and β2 be in the class CT. We

also need to cast the argument of the function in the opposite direction, from β1

to α1. Therefore we need β1 to be in the class CF, and α1 to be in the class CT.

instance (CF β1, CT β2) ⇒ CT (β1 → β2) where

-- doFn :: (CT α1, CF α2) ⇒ Maybe ((α1 → α2) → (β1 → β2))

doFn = do f ← cast -- from α1 to β1

g ← cast -- from β2 to α2

return (λx → g . x . f)

With these definitions we can define the symbol table using an existential type to

hide the type of the elements in the table. However, this time the existential requires

that the hidden type is in the CF type class. Because of that restriction, the insert

function also constrains the type of values added to the table.
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data Entry = forall α. CF α ⇒ Entry α

type table = [ (String, Entry) ]

insert :: CF α ⇒ (String, α) → Table → Table

insert symbol val table = (symbol, Entry val) : table

The find function is very similar to before. However, the type of the value to be

found must be in the CT type class so that we may cast it to type α.

find :: CT α ⇒ Table → String → Maybe α

find symbol1 [] = Nothing

find symbol1 ((symbol2, Entry val) : table) =

if symbol1 == symbol2

then do f ← cast

return (f val)

else find symbol1 table

5.2 Second solution in Haskell

To implement the more efficient version in Haskell, we need to replace cast with

cast’ in the CF type class. Again cast’ abstracts the type constructor γ as well as α

and β. This change leads to the following new definitions of CT and CF. This time the

type of doFn requires that α1 be in the class CF instead of the class CT, reflecting that

we avoid the contravariant cast of the function argument of the previous solution.

class CF α where

cast’ :: CT β ⇒ Maybe (γ α → γ β)

class CT β where

doInt :: Maybe (γ Int → γ β)

doProd :: (CF α1, CF α2) ⇒ Maybe (γ (α1, α2) → γ β)

doFn :: (CF α1, CF α2) ⇒ Maybe (γ (α1→ α2) → γ β)

doInt = Nothing

doProd = Nothing

doFn = Nothing

The instances for CF are the same as in the first version, dispatching to the

appropriate methods of CT. The instance CT Int is also unchanged.

instance CF Int where

-- cast’ :: CT β ⇒ Maybe (γ Int → γ β)

cast’ = doInt

instance (CF α1, CF α2) ⇒ CF (α1, α2) where

-- cast’ :: CT β ⇒ Maybe (γ (α1, α2) → γ β)

cast’ = doProd

instance (CT α1, CF α2) ⇒ CF (α1 → α2) where

-- cast’ :: CT β ⇒ Maybe (γ (α1 → α2) → γ β)

cast’ = doFn

instance CT Int where

-- doInt :: Maybe (γ Int → γ Int)

doInt = Just id
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However, the instances of CT are more complicated. Recall the branch for products

in the λML
i version:

((α1, α2),(β1, β2)) ⇒
do f ← cast’[α1][β1][λδ :: ∗. γ(δ, α2)]

g ← cast’[α2][β2][λδ :: ∗. γ(β1, δ)]

return (λ(x :: γ(α1, α2)) → g (f x))

The core idea is to cast the left side of the product first and then to cast the right

side, using the type-constructor argument to relate the type of the term argument

to the types being examined. In Haskell, we cannot explicitly instantiate the type

constructor argument as in λML
i —it must be inferred. However, to match γ(α1, α2)

with the type constructor λδ :: ∗.γ(δ, α2) applied to the type α1 requires higher-order

unification, which is undecidable. As a tractable alternative, the Haskell language

requires that instantiated type constructors be constants applied to some number

of arguments (Jones, 1995). Using the newtypes LP and RP defined below, we create

new constants that can be used in a call to cast’.

newtype LP γ β α = LP (γ (α, β))

newtype RP γ α β = RP (γ (α, β))

The last argument of each newtype is the type that should be changed by cast’ in

the definition of doProd.

instance (CT β1, CT β2) ⇒ CT (β1, β2) where

-- doProd :: (CF α1, CF α2) ⇒ Maybe (γ (α1,α2) → γ (β1,β2))

doProd = do f ← cast’ -- from (LP γ α2) α1 to (LP γ α2) β1

g ← cast’ -- from (RP γ β1) α2 to (RP γ β1) β2

return (λx → let LP y = f (LP x)

RP w = g (RP y)

in w)

How does this code type check? The type of x is γ (α1, α2) so LP x is of

type LP γ α2 α1. The call f (LP z), uses the α2 instance of cast’ of type

(CT β) ⇒ Maybe (γ′ α1→ γ′ β). Determining γ′ is a simple match — it is

the partial application (LP γ α2). Thus, the result of the first cast is of type

(LP γ α2) β, for some β in CT, and y is of type γ (β, α2).

Therefore, RP y is of type RP γ β α2, so we need the α2 instance of cast’ for

the second call. This instance is of type CT β′ ⇒ Maybe (γ′′ α2 → γ′′ β′). This γ′′

unifies with the partial application (RP γ β) so the return type of this cast is RP

γ β β′, the type of RP w. That makes w of type γ (β, β′). Comparing this type

to the return type of doProd, we unify β with β1 and β′ with β2. This unification

satisfies our constraints for the two calls to cast’ as we assumed that both β1 and

β2 are in the class CT.

Like the second λML
i solution, function types work in exactly the same way as

product types, using similar declarations of LA and RA.

newtype LA γ β α = LA (γ (α → β))

newtype RA γ α β = RA (γ (α → β))
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instance (CT β1, CT β2) ⇒ CT (β1 → β2) where

-- doFn :: (CF α1, CF α2) ⇒ Maybe (γ (α1 → α2) → γ (β1 → β2))

doFn = do f ← cast’ -- from LA γ α2 α1 to LA γ α2 β1

g ← cast’ -- from RA γ β1 α2 to RA γ β1 β2

return (λx → let LA y = f (LA x)

RA w = g (RA y)

in w)

Finally, cast can be defined in terms of cast’:

newtype I α = I α

cast :: (CF α, CT β) ⇒ Maybe (α → β)

cast = do f ← cast’

return (λ x → let (I y) = f (I x) in y)

6 Implementing a dynamic type

Just as ∃α.α implements a dynamic type in λML
i , forall α. CF α ⇒ α is a dynamic

type in Haskell. A limitation of this dynamic type is that it does not support pattern

matching of the hidden type. The only projection from the dynamic type is cast.

If we do not know the complete type of the value, there is no way to discover

it other than a brute force search. More recent implementations of dynamics in

Haskell (Baars & Swierstra, 2002; Cheney & Hinze, 2002) provide the ability to

determine the form of the hidden type using a similar encoding of type equality

as found in this paper. More interestingly, they point out that the type of the

second version of cast, ∀γ.γα→ γβ, corresponds to Leibnitz equality. The only total

member of this type is the identity function, providing a correctness argument for

this version.

Adding a dynamic type to a statically typed language is not new, so it is interesting

to compare this implementation with other versions of dynamic types. One previous

implementation is to use a universal datatype.

data Dynamic = Base Int

| Pair (Dynamic, Dynamic)

| Fn (Dynamic → Dynamic)

Here, in creating a value of type Dynamic, a term is tagged with the head constructor

of its type. However, before a term may be injected into this type, if it is a pair,

its subcomponents must be coerced, and if it is a function, it must be converted to

a function from Dynamic → Dynamic. We could implement this injection and its

associated projection with Haskell type classes as follows:

class UD α where

toD :: α → Dynamic

fromD :: Dynamic → α
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instance UD Int where

toD x = Base x

fromD (Base x) = x

instance (UD α, UD β) ⇒ UD (α,β) where

toD (x1,x2) = Pair (toD x1, toD x2)

fromD (Pair (d1, d2)) = (fromD d1, fromD d2)

instance (UD α, UD β) ⇒ UD (α → β) where

toD f = Fn (toD . f . fromD)

fromD (Fn f) = fromD . f . toD

This implementation resembles the first version of cast, in that it must modify

the argument to recover its type. To make this strategy efficient, Henglein (1992)

designed an algorithm to produce well-typed code with as few coercions to and from

the dynamic type as possible.

Another way to implement a dynamic type is to pair an expression with the

full description of its type (Abadi et al., 1991; Leroy & Mauny, 1991). The

implementations GHC and Hugs use this strategy to provide a library supporting

type Dynamic in Haskell. This library uses type classes to define term representations

for each type. Injecting a value into type Dynamic involves tagging it with

its representation, and projecting it compares the representation with a given

representation to check that the types match. Though type classes can create

appropriate term representations for each type, there is no support for the type

comparison, so the last step of the projection requires an unsafe type coercion.

Although the second cast solution is more efficient than the universal datatype

and more type safe than the GHC/Hugs library implementation, it suffers in terms

of extensibility. The example implementations of cast only consider three type

constructors, integers, products and functions. Others may be added, both primitive

(such as Char, IO, or []) and user defined (such as from datatype and newtype

declarations), but only through modification of the CT type class. In contrast, the

library implementation can be extended to support new type constructors without

modifying previous code, as long as the invariant is maintained that each new type

has a unique term representation.

A third implementation of a dynamic type that is type safe, efficient and easily

extensible uses references (Weeks, 1998). Though references are not traditionally

a component of a purely functional language, the Haskell implementations GHC

and Hugs allow their use by encapsulation in the IO monad. While the previous

implementations of the dynamic type defined the description of a type at compile

time, this version creates the run-time description for a type at run time, and so

is easily extendable to new types. Because each reference created by newIORef is

unique, a unit reference can be used to implement a unique tag for a given type. A

member of type Dynamic is then a pair of a tag and a computation that hides the

stored value in its closure — a process that is similar to hiding the value within an

existential type (Minamide et al., 1996).

data Dyn = Dyn { tag :: IORef (), get :: IO () }
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To recover the value hidden in the closure, the get computation writes that value

to a reference stored in the closure of the projection from the dynamic type. The

computation make below creates injection and projection functions for any type.

make :: IO (α → Dyn, Dyn → IO (Maybe α))

make = do newtag ← newIORef ()

r ← newIORef undefined

return ( λa → Dyn { tag = newtag,

get = writeIORef r a },
λd → if newtag == tag d

then do get d

x ← readIORef r

return (Just x)

else Nothing)

Unlike the previous versions that could not handle types with binding structure (such

as forall a. a → a), this implementation can hide any type. Also, the complexity

of projection from a dynamic type does not depend on the size of the type itself.

However, this implementation suffers from a number of drawbacks. It is more

difficult to use, as it must be threaded through the IO monad. Furthermore, it would

need additional synchronization to work in a concurrent program. In addition,

because the tag is created dynamically, it cannot be used in an implementation for

marshalling and unmarshalling. Finally, the user must be careful to call make only

once for each type. (Conversely, the user is free to create more distinctions between

types, in the same manner as the newtype mechanism).

Many languages support a natural implementation of tagging. For example, an

extensible sum type (such as the exception type in SML) can be viewed as a dynamic

type (Weeks, 1998). The declaration of a new exception constructor, E, carrying some

type τ provides an injection from τ into the exception type. Coercing a value from

the dynamic type to τ is matching the exception constructor with E.

In addition, if the language supports subtyping and downcasting, then a maximal

supertype serves as a dynamic type. Ignoring the primitive types (such as int),

Java (Gosling et al., 1996) is an example of such a language. Any reference type

may be coerced to type Object, without any run time overhead. Coercing from

type Object requires checking whether the value’s class (tagged with the value) is a

subclass of the given class.
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