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EXPLICIT CLASSIFICATIONS OF SOME 
2-EXTENSIONS OF A FIELD 

OF CHARACTERISTIC DIFFERENT FROM 2 

IAN KIMING 

1. Introduction. Let p be a prime number. Let & be a field of characteristic 
different from p and containing the p-th roots of unity. Let Gi be a finite group. Let 
Lj k be a finite normal extension with Galois group GJ and let c be a 2-cocycle on 
G* with coefficients in Z jp~L, where G> acts trivially on Z / pZ. By Emb(L/ /c, c) 
we denote the question of the existence of a finite normal extension M of k, such 
that M contains L, such that [M: L] = p, and such that, denoting by GS i the Galois 
group of MI k, the extension 

1—>Z//?Z ->©i ->@ - • 1 

is given by the class of c. 
Therefore we are confronted with the problem of expressing explicitly in terms 

of the structure of L/ k the condition for c to split when perceived as a 2-cocycle in 
Z2($, Lx) (see the introductory remarks in "The reductive method" below). This 
problem has been solved in [3] in the case that GS is an elementary abelian/?-group. 

If 31 is a normal subgroup of G*, K is the fixed field of 31 and res c is the restric­
tion of c to 31, then assuming that the question Emb(L/ K, res c) has an affirmative 
answer we shall present an explicit method of reducing the question Emb(L/ k, c) 
to a question about the structure of a solution to Emb(L/ K, res c), of Kj k and of 
the extension, ©, of 31 by & / 31. Here the word "explicit" is to be interpreted in 
the following manner: If the fact that Hl(3l ,LX) = 0 were proved constructively 
then the reduction could be performed constructively. 

If & is a finite group, k is a field and Lj k is finite normal extension with Galois 
group &, then for brevity we shall refer to Lj k as a GJ -extension. 

As an application of the method, we shall give explicit information about the 
structure of $ -extensions of k when k is a field of characteristic different from 2 
and & is cyclic of order 8, dihedral of order 8 or 16, quaternion of order 8 or 16 or 
quasi-dihedral of order 16. These groups will denoted by Z / 8Z, D4, Dz,Qz, gi6 
and QD% respectively. 

In [1] the problem of the existence of certain embeddings of quadratic extensions 
into dihedral—or quaternion—extensions is solved in the case that k is an algebraic 
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826 IAN KIMING 

number field. However, the methods used in [1] do not work in the general case. Let 

us furthermore note that the general central embedding problem has been solved 

in [5] in the case where © is a p-group and k has characteristic p. 

2. The Reductive Method. In what follows k will denote a field of character­

istic different from p and containing the /?-th roots of unity. Also, if © is a finite 

group, A is a © -module and a G ZS(&,A), then we shall denote by W the class of 

a in//v(©.A). 

Let L be a finite normal extension of k with Galois group © . Let £ be a primitive 

p-th root of unity in k. We shall identify ( e) with Z jpT. Under the Galois action 

of © on Lx the group ( e ) is fixed and © acts trivially on this group. Thus we may 

identify Hs(&, Z j pL ), where © acts trivially on Z j pT, with //*(©, ( £ ) ). 

As is well know or easily seen, the extensions of order/? of L which are normal 

over k are in 1-1 correspondence with the elements of //°(©, L x / (Lx/?) (where 

the action of © on Lx is the Galois action). For a G Lx we denote by â the class 

of a in Lx/(Lxf. If a G Lx and â G H°'(©, L x / (L x f ) then â corresponds 

to the extension L(axlp)jk. An extension of order /? of L which is normal over 

k has the form L{axlp)jL for some a G Lx and for such an a we have â G 

//° (©, Lx / (Lx y ) and the extension L(a xlp)/k corresponds to â. 

We have the exact diagram 

1 

I 
1 
I 

( ix)" 

I 
1 
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CLASSIFICATIONS OF 2-EXTENSIONS OF A FIELD 827 

with natural maps. From this diagram we get the exact diagram 

lP(®9L
x/(Lxf)^H\®XLxf)-^Hl(®,(Lxj)=0 

S\ 

//2(©,LX) 

with Galois action. Using this diagram and some easy computations we can derive: 
If a G Lx and â G H°(®,LX / (Lxf ) then Ga\(L(a1/?)/k) is the extension of 
Z /' pZ by $ determined by 6 ifict. 

In this way we see that if c E Z2(&,Z/ Zp) and c ^ 0 then Emb(L/ k, c) has 
an affirmative answer if and only if tpc = 0. 

We also see that if L(a l/p)j k is a solution to Emb(L/ /:, c) then any other solu­
tion has the form L{(qa)llp)j k, where q G kx. 

If 3? is a subgroup in © then we note, letting if denote also the map H2(3l, ( e ) ) 
—> #2(9?, Lx), that <£ commutes with restriction to 9?. 

For group elements G and / / we put GH = H~lGH. The letter E always denotes 
the neutral element of a given group. 

THEOREM 1. Let ® be a finite group, let Ljkbe a & -extension, let 31 be a 
normal subgroup in GJ and let K be the fixed field on 9Î in L. Let c G Z2(Q5, Lx) 
be such that c(E, G) — c(G, E) — 1 for all G G $ and suppose that res c — 0 in 
H2($l, Lx) where res w restriction to 9?. 77zws f/iere emta a function f\ 9? —• Lx 

f(N\)(Nif(N2j) 

f(N{N2) 

Let © = Uxe®/^ G(X)SÎ be a coset decomposition and let N(, ) be the corre­
sponding factor system, that is, 

G(X)G(Y) = G(XY)N(X, Y) for all X, Y e & / 9?. 

Then the following assertions hold: 

https://doi.org/10.4153/CJM-1990-043-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1990-043-6


828 IAN KIMING 

(1) For X G © / 31 the function Qx: 31 —• Lx given by 

c(N,G(XJ) GQQf^*) 
ax(A0 = 

:(G(X),WGW) /(AO 

«xr 

is a 1-cocycle on SÎ. 
For every X G © / 31 we choose ax € Lx such that 

^x(TV) = ^ * (Afax) for all W G 9Î. 

(2) With X and 7 ranging over © /9Î the expression 

defines an element of Z2 (© / 31, # x ). 

(3) Under the inflation map H2 (© / ^ , tfx ) -+ //2(©, Lx ) the element s given 
in (2) is mapped to c. 
(4) c = 0 in #2(©, Lx ) if and only if s = 0 in //2(© / 31, £ x ), where s is the 
element given in (2). 
(5) Defining hi® -^ Lx by 

h(G(X)N) = ax • C(X)f(N) forX G ©/ 31,N G K, 
V y c(G(X),N) ' 

we have for elements G\, G2 G © with classes X resp. y in © 131 that 

/z(G1)(G1/z(G2)) 
c(GuG2) = ,(X, F) • V 7 . 

/z(GiG2) 
PROOF. Put M = Homz (Z [© ], Lx ). Then M is a © -module with © acting by 

(G. m)(H) = m(HG) for m G M, G, i / G ©. 

Putting /(G) = G/ for G G ©, / G Lx we may consider Lx as embedded in M. If 
the element m G M actually belongs to Lx then the embedding of this element in 
Lx is m{E). As M is co-induced we have // '(©, M) = 0 for / > 1. 

By the inflation- and restriction-maps we get the following commutative dia­
gram with exact rows: 

0-^H{(^/3l,(M/Lxf)^H\&,M/Lx)-^H\3l,M/Lx) 

1*1 1*2 1*3 
0 — • H2(Q6/3l,Kx) -^ # 2 (©,LX ) ^ + H2(3l,Lx). 
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CLASSIFICATIONS OF 2-EXTENSIONS OF A FIELD 829 

Here the maps 8\, 82 and £3 are connecting homomorphisms derived from the 
exact sequence 

1-^LX -+M-+M/LX - ^ 1 

and it is well known or easily seen that these maps are isomorphisms. A remark 
about £1 is appropriate: 

Mn/Kx is identified with (M/Lxr in the following way: If m is an element 
of M such that the class of m modulo Lx belongs to (M/ Lx) , then there is a 
function g: 31 -> Lx such that N. m = mg(N) for all N G 31. Then g<EZl(3l,Lx) 
and thus there exists a G Lx such that g(N) = a(Na)~x for all N G 31. Then 
ameM^. 

If m G M and if the class of m modulo Kx belongs to M^ / Kx then the class of 

m modulo Lx belongs to (Mj Lx ) . 
If /i' G Z*(© ,M/LX) and if /1: © -> M is a 'lifting" of /x', that is, for every 

G G © the (modulo Lx)-class of /x(G) is //'(G), then <$2M denotes the 2-cocycle 
given by 

In this way the element èip' £ //2(© ,LX) is the 2-cocycle-class containing ^M-
Similar abuse of notation is employed in connection with the maps 8\ and £3. 

Let 9 : © —• M be given by 

0(G)(Gi) = c(Gi,G) forG,Gi G©, 

and let /? be the element of M given by 

x c(G(X),N) 

Let 77(G) = 6(G)(3(G(3)-1 for G G ©, and let 7/:© -> M/Lx be given by 
demanding that rjf(G) be the class of 77(G) modulo Lx . 

For G, G\, G2 G © we have 

(+) c(G, GuG2)(Gc(GuG2)) = c(G, Gi)ciGGuG2) 

and this shows that 77' is a 1-cocycle. 
Obviously, 82^ — c. 
Using (+) with G = G(X), Gi = AT, G2 = N{ for X G © / 31 and N,N{ <E 31 

we see that res 77' = 0. 
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Defining £: &/ 31 ^ M b y 

£(X) = r}(G(XJ) forXe&/9l 

and £ ': @ / 31 —> M/ Lx so that £ '(G) is the class modulo Lx of £ (G), we see that 

^ ' is a 1-cocycle on 06 / 31 with coefficients in (M/ Lx ) such that 

»7' = infl(£')-

If X G @ / 31 and N € 31 then Q^TV) = (JV£ (X)) (£ (X))"' is an element of L* 
and this element is 

(Nam = qx)(N) 

= v(G{X))(N) 

~ v(G(X))(E) 

= c(NGV0) m ^ ^ — 
V ; p(G(X)N<x») 0(E) c(E,G(XJ) 

c(N,G(X)) G(X)f(NGm) 

~ c(G(X),NGW) ' f(N) 

and the chosen elements ax € Lx satisfy 

Çlx(N)=(Nax)ax
]. 

Define ((X) = £(X)%> for X 6 &/31; then £,£' is represented by the 2-
cocycle j = ^,< e Z2(@/ 9Î ,K x ) . Explicitly we get for X, Y € & / 31 that 

C(X)(G(XX(iO) ,
1 /^ 

C(XF) 

7?(G(X))(£)r?(G(F))(G(X)) gxr 

ri(G(XY))(E) ' ax(G(X)aY) 

c(G(X), G(Y))(3 (G(X))[3 (G(XY)) 
aXy 

I3(G(X))(3(G(X)G(Y)) ax(G(X)aY) 

c(G(X),G(Y)) aXY 

p(G(XY)N(X,Y)) ax(G(X)aY) 

<Gm-G^ (c,w(Mxn)) -
c(G(XY),N(X,Y)) V V ' " ax(G(X)ay)' 
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Now we have proved the assertions (1), (2), (3) and (4), since (4) is obvious. 
Finally we get 

c=^=<(in f lC)(-y. 

Now, 62(infl C ) = infl(£iC ) = infl(j) and for X G © / 31 and TV G 31 we have 

/ fi(G(X)N) \ = r](G(X)N)(E) 

\(inflC)(G(X)7V)/( ) _ Ç(X)(E) 

ax-

ax 

T](G(X)N)(E) 

fl(GiX))(E) 

G(X)f(N) 

c(G(X),Ny 

which proves (5). Q. E. D. 

REMARK. The assumption that c(E, G) = c(G, E) — 1 in the formulation of 
Theorem 1 is not necessary and is made only for practical reasons. 

Theorem 1 and the remarks preceding it clearly provide us with a "reductive" 
method of the required type for Emb(L/ k, c). 

As an immediate consequence of Theorem 1 we have the following elementary 
theorem about cyclic p-extensions. 

THEOREM 2. Let p be a prime number and let n be a natural number. Let k be 
a field of characteristic different from p and containing the pn-th roots of unity. 
Let e G k be a primitive pn-th root of unity. Suppose that a G kx \ (kxY and let 
L = k(al/p"). PutK = k{axlp). Then L is a normal extension of k with Galois 
group T JpnJ- and L can be embedded in a normal extension of k with Galois 
group Z / pn+l Z if and only if s is a norm from Kj k. 

PROOF. Put ( = ^" -1 . Let C be a generator of © = Gal(L/ k). Put 9? = (Cp) 
and let G denote the class of G mod 31 for G G @. The cyclic group of order pn+l 

is the extension of Z jp~L by © given by the 2-cocycle 

c(C\C)= { 1 for i+j <pn-I 
£ for i+j >pn. 

Let f(Cpi) = el for i = 0, . . . ,pn~l - 1. Then we see that 

c{Cp\ Cpj)f(Cp{i+j)) = f(Cpi)f(Cpj). 
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Using the notation of Theorem 1 we get Q «̂ = 1, a-^ — 1, and for 
0 < w , v < / ? - l , 

\e for u + v > p. 

So, s is a 2-coboundary if and only if e is a norm from AT/ &. 
Q. E. D. 

3. 2-Extensions. In what follows, k denotes a field of characteristic different 
from 2. 

Suppose that a G kx \ (kx)2 and consider the quadratic extension k{yfa)/k. 
According to Theorem 2 this extension can be embedded in a (Z/4Z)-extension 
of k if and only if — 1 is a norm from k(^)/ k, i.e., if and only if a is a sum of two 
squares in A: (if — 1 is a square in k then every element of k is a sum of two squares 
in k). Using Theorem 1 and Theorem 2 (or by direct verification) we then see that 
the (Z/4Z)-extensions of k are the extensions 

k((q(a + uy^))l,2)/k, 

where 

a = u2 + v2 £ (fcx)2, w,v£fc, qekx. 

(If — 1 is a square there is of course a simpler parametrisation but we do not need 
that.) 

For a,b G kx the symbol (a, b) denotes as usual the element of the Brauer-
group of k represented by the 2-cocycle on the absolute Galois group of k sending 
(Gi,G2)into 

where 

^(G,)+^(G2)-^(G1G2) 

0 i f G v ^ = v ^ 
l l i f G y ^ = - v ^ . 

By abuse of notation we shall, whenever it is convenient, also let (a, b) denote this 
2-cocycle. 

As is well known we have {a, b) = (b, a) and thus (a, b) = 1 if and only if a is 
a a norm from k(y/b)/ k, and if and only if b is a norm from k{yfa)j k. 

The next theorem classifies the (Z/8Z)-extensions of k. 
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THEOREM 3. Let a = u2 + v2 G kx \ (kx)2, where u,v ek. PutO = a + u^/a. 
We distinguish the following two cases: 

1° — a is a square in k. In this case we shall assume that a = — 1. 

2° — a is not a square in k. 

For x G k(yfa) we denote by x! the conjugate ofx in k(y/a). 
(l)Forq E kx the(Z/41)-extensionk(q0)l/2/k can be embedded in a ( Z / 8 Z )-
extension ofk if and only if 

(fl,^)te,-u = i. 

(2) k{yfa)J k can be embedded in a(Z/SZ )-extension ofk if and only if the equa­
tion 

(+) X2 - aY2 - -Z 2 - a- V2 = 0 
u u 

has a solution (X, 7, Z, V) ^ (0,0,0,0) with X, Y,Z,V G JL 

In case 1 ° this condition is satisfied. 
(3) If the condition under (2) is satisfied then all (Z/8Z)-extensions of k containing 
k(^) are obtained as follows: 
In case 1° we choose x, y G k such that x2 + y2 ^ 0 and put q — x2 + y2. We put 

_ l + y ^  

^ ~~ (x + JV/ZT)((V + 1) + U\f-\) ' 

Then the element 

i = ^==v2ek(^) 

vy— 1 

has norm 1 (over /:) and we choose r/ G k(y/a)x such that 
7/' = 7/£. 

Then ^(^/â, (rj(qO )1/2) / A: is a (Z/8Z)-extension containing fc(Vô). In case 2°: 
we choose a solution (X, 7, Z, V) ^ (0,0,0,0) with X, 7, Z, V G k to (+) and y G A: 
such that 1 + y2 ^ 0. We put 

q = (l+y2)(Z2 + aV2) 

= (-Zy + Vv^)2 + (Z + V^V«)2 G £x • 
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Put 

+ (Z(l - y) + V((n + v) + y(u - v) ) )y^) 

W2 - \ {{Z{-(U + V) - J(W - V)) + £lV(l - v)) 
2 

f -Z( l + y) + V((u - v) - y(« + v)) j v ^ l 

W, 

Then the element 

t = wm u~^r~ ' w^wm w'x ~~WlW'2+qv^~a)^2 e k{^~a) 

has norm 1. We choose r\ G k(^yâ) such that 

ThenfcU^)1/2 , (77(46/ + W2(<?0))1/2) J is a (Z/8Z)-extension of & containing 

k(y/a). 

PROOF. We divide the proof into two parts. In (a) we choose q Ekx and assume 
that the (Z /4Z)-extension k((q6)xl2^/ k can be embedded in a (Z/8Z)-extension 
of k. Then we perform some preliminary computations concerning the structure of 
such a (Z/8Z)-extension. In this process the theorem will be proved completely 
for the case 1°. In (b) we finish the proof of the theorem for the case 2°. 

(a) Let q e kx and consider the (Z /4Z)-extensionfc(((?0)1/2)/£. Let & = (C) 
be the Galois group where C is chosen such that C{q9)xl2 — qv^(qQ)~xl2. Put 
3? = ( C2) and let c be the "natural" 2-cocycle giving the extension 

0 - ^ Z / 2 Z - + Z / 8 Z - > ® - + 0 . 

The restriction of c to 9? is a 2-coboundary in B2(3l, k{{q0)xl2^ ) if and only 
if qO is a sum of two squares in k(^/a). In case 1° this condition is satisfied. 

Let us assume that if we are in case 2° then 

q9 = W\ + W\ for certain Wx, W2 <G k(y/â). 
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With the notation from Theorem 1 we put 

-2x V—Î incase Ie 

f(C) f \ j _ { W ^ _ (q9)\/2) i n c a s e 2o 

mdf(E) = 1. Denoting by G the class of G G & modulo 9? we compute 

~ f — 1 incase 1° 
" c ( C 2 ) = ( s i n c a s e 2 o 

and put 

A_ \(q0)l/2 incasel° 
~~ | 1 + -L incase 2°. 

If in case 2° we had Cf = -f then 0 CW{ = Wxvy/a and for W{ = x + yja this 
would give x — y(u — v) and x(u + v) = y a and so j(w2 — v2) = y a = y(w2 + v2) and 
so y — 0. Then ^ G /: and since C ^ = — ̂  we would also deduce Wiyfâ G & 
which is impossible. Consequently, A ^ 0 in all cases and we may put a-^ = A. 
We find 

ACA 

and £((#0 )1'2)/ k can be embedded in a (Z/8Z)-extension of £ if and only if s(C, C) 
is a norm from k(y/a)/ k. Still using the notation from Theorem 1 we have 

h(Q = A, 

and if s(C, C) is a norm from k(y/a)/ k, say s(C, C) — Lp^p' for some <£> G fc(\/â), 
then all (Z/8Z)-extensions of A: containing k((q6)]/2) have the form 
k((qO)l/2\ xl/2)/k where x G k((qO){/2) is such that 

CX = X(A(/?)2. 

In case 1° we get s(C, C) — \ and s(C, C) is a norm from k(y/a)/ k if and only 
if (#v, — 1 ) = 1. Now, v = |((v + 1 )2+w2), so (v, — 1 ) = 1, and hence the conditon 
says that (q, — 1) = 1. By similar reasoning we have (^, — 1) = 1. Consequently 
the quadratic extension /c(-\/—ï)/ k can be embedded in a (Z/8Z)-extension of /:. 
The equation 

x2 + y2 - - ( z 2 - v2) = o 
u 
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has a solution (X, Y,Z,V)^ (0,0,0,0) with X, Y9 Z, V G k. If (q, - 1 ) = 1 we put 
^ = r\{q6)1'2 where 77 G &(\/—T) and the condition on 77 is then 

where </? is as stated in the theorem. 
Hereby we have proved the theorem for the case 1° and for the rest of the proof 

we shall assume that case 2° prevails. 
We compute 

ACA _(i + C + C2 + C3)(/-) 

We may put x — »7(?0 + W2(q9)l'2) where rj 6 k{y/a) and with u> = qO + 
W2(q0)1'2 the condition on 77 becomes 

^ = f AW, 
77 Co; 

where (/? is such that s(C, C) — ip<pf
9 and since u — W\(qO){'2C2f — 

. 2 

Wi(<70)1/2(-})weget 

LU 

Cu W[ vj-a f{ Cf) 

K) 
(b) Let qekx. 
Let us first assume that q £ k(^fa) . Let C\ be the non-trivial automorphism in 

k(y/q). We consider C and Ci as automorphisms in k{^fq, \/#~)/ & with C i ( ^ ) 1 / 2 

= (<?0)1/2 and C ^ = y/q. The Galois group of k(y/q, VÏÏ)/k is (C) x (C{) 
and the fixed field of ( C2C{ ) is k(y/ÏÏ). We have c ( - 1 , q)(C2C{, C2Ci ) = 1 and 

https://doi.org/10.4153/CJM-1990-043-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1990-043-6


CLASSIFICATIONS OF 2-EXTENSIONS OF A FIELD 837 

we see that c = c(—l,q) gives us the "natural" 2-cocycle on ( C, C\) j ( C2C\) 
Gal(fc(\/^)/ k) mentioned under (a). Now, 

Put 

Then 

» = (T*^ ) ' (T^ ) ' 

u + v 1,- u — v I r-
a = —— + -y/a, (5 — ——— + -y/a. 2 2 

Va œ J u 

and so c has class 0 in Br(/:) if and only if (a, I ) = 1. We conclude that c has class 0 
in Br(fe) if and only if (a, v-\q, -1 ) = 1. If q G K^fâf then k((q0)xl2) = k(6 xl2\ 
and we see that the conclusion is still true (since (a, — 1) = 1). 

Hereby (1) is proved. 
If q € kx and (a, ^)(q, — 1) = 1 then q must be a sum of two squares in k(yfa). 

An elementary computation shows that this is the case if and only if q has the form 

(++) q = ( l + y
2)(Z2 + aV2) with y, Z, V e k. 

If (++) is satisfied we get q = (—Zy + V\fa) + (Z + Vyy/a) and 

q0 = w\ + W\ 

where W\ and W2 are as in the theorem. Furthermore, (q, — 1) = (Z2 + aV2, — 1) = 
(Z2 + aV2, a) and so (a, *)(#, -1 ) = (a, V-(Z2 + aV2)) = 1 and thus the equation 
(+) has a solution (X, Y,Z,V)^ (0,0,0,0) with X, y, Z, V € £. 

If the equation (+) has a solution (X, y, Z, V) ^ (0,0,0,0) with X, y, Z, V G & 
we must have Z2 + «V2 7̂  0. Putting q = Z2 + aV2 we then see that (a, ^q) = 1 
and since (g, — 1) = (q,a) we deduce (a, ^)(q, — 1) = 1. 

With this, (2) is proved. 
To complete the proof, we have only to show that if q has the form (++) where 

(X, Z,Y,V)^ (0,0,0,0) is a solution to (+) with X, Z, y, V G k then s(C, C) = if <p' 
where s(C, C) is the element computed under (a) and ip G k(yfa) is the element 
given in the formulation of the theorem. This can be verified by a completely 
elementary computation which is left to the reader. 

Q. E. D. 

The next theorem gives a classification of Q%-extensions of k, Q% being the 
quaternion group of order 8. These extensions of k have been classified in [5] but 

https://doi.org/10.4153/CJM-1990-043-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1990-043-6


838 IAN KIMING 

our theorem gives a somewhat different classification. The article [2] also gives a 
classification of the Qs-extensions of k, but the method of proof and the form of 
the classification given [2] are both different from what will be presented here. We 
use the following presentation of Qs : 

Qs = {Nj\ N* = E, N4 = S2, S-lNS = N~l). 

THEOREM 4. Let a,b £ kx be such that none of a, b, ab is a square in k. Let 
& = (N,S) be the Galois group ofk(y/a, \fb)jk where Ny/a = —y/a,Ny/b = 
y/b, Syfa = yfa and Syb = —yb. The extension k(y/a, yb)/ k can be embedded 
in a Qs-extension ofk if and only if 

(a,b)(ab,-l)= 1, 

if and only if there exist a , /3,7, A, /x, i/ E & such that 

a = a
2 + / 3 2 + 7 2 

b — A2 + /i2 + v2 and 

a\ +0n +lv = 0. 

If this is the case we put 

a v av — 7A 
6 = 1 + —= + —= + -==— 

y'a y/b \Jab 
and then we have 

\y/b sfâb J 

em-i-L + P"-^2 

and the extensions k(y/a, yb, (q6) ' )/k where q G kx are the Qg-extensions of 
k containing k(y/a, yb). 

PROOF. Let c be the "natural" 2-cocycle giving the extension of Z /2Z to Qs 
with & as quotient, i.e., c is obtained from the isomorphism Qs/ {N2} = ©, 
where Qs has the presentation given above, given by N\^>N and Si—>S. We have 
c(N,S) = l,c(5,A0 = - 1 and c(N,N) = c(S,S) = - 1 . Let 31 = (S). Putting 
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c — c(—1, b) we get c(S, S) = 1. With the notation of Theorem 1 we put, denoting 
by G the class of G G © modulo 91,/ = /(S) = 1, %(S) = - 1 , and A = ^ = 
\fb. Then, s(N, AO = — \. Thus c has class 0 in Br(&) if and only if (a, —b) = 1 
and consequently c has class 0 in Br(fc) if and only if (a, — fr)(Z?, — 1) = 1, and if 
and only if {a, b)(ab, — 1) = 1. 

If (a, b)(ab, — 1) = 1 then b is a sum of two squares in k(^/a). As we previously 
have seen this means that b has the form b = (1 + x2)(y2 + az2) where jc,y, z G &. 
Then (6,-1) = (y2 + az2,-l) = (j2 + az2,a) and so 1 - (a,ft)(afc,-l) = 
(a, - l ) (a , b{y2 + az2)) = (a, - ( 1 + JC2)). SO, A has the form a = X2 + (1 + JC2)F2 

where X, F G ifc. Then 

b = (y2 + (Xzf + (1 + JC2)(FZ)2)(1 + JC2) 

= ((1 + JC2)FZ)2 + (y - Xxzf + (yx + Xzf. 

Putting a = X, /3 = FJC, 7 = - F , A = (1 + x2)Yz, /x = y - XJCZ and i/ = yx + Xz 
we then get a = a2 + (32 +7 2 , b = X2 + fi2 + i/2 and aA+/3 /x+7* /=0 . 

Conversely, if there exist or,/3,7, A , / I , Ï / G /: such that a = a 2 + (32 + 72 , 
6 = A2 + x̂2 + i/2 and a\ + (3[i +lv = 0 then we may assume that 7 ^ 0. Since 
/3 2 + 7 2 T̂  0 we see that it is possible to determine X, Y,x,y,z G k such that « = 
X2+(l+;t2)F2andfc - ( l+x 2 ) (y 2 W)andso(a , fc ) (^ , - l ) = (a,-(l+jc2)) = 1. 
Furthermore it can be seen by elementary computations that if we put 

V > ( £ ) = 1, 
we, 1 f M , a /x - /3A^ 

vW = *b+"^Ha n d 

then c(Gi,G2)^(GiG2) = ^(Gi)Gi^(G2) for Gi,G2 G @. Note that ab = 
(a/x — /? A )2 + (/31/ — 7nf + (7 A - ai/)2. As a consequence, the extension 
k(yfâ, \[b, VÏÏ)/ A; is a gg-extension of k. 

Q. E. D. 

REMARK. We have (a, fr)(aib, — 1) = (—a, — b)(— 1, — 1), and from the theory of 
quadratic forms it follows that (a, b)(ab, — 1 ) = 1 if and only if the quadratic forms 
(ab)~~xX2 + aY2 + bZ2 and X2 + F2 + Z2 are equivalent over k. If this is the case 
it is a possible to obtain in a natural way the expressions giving xfj (5), t/> (AO and 
%j) (NS) by means of a transformation matrix defining the equivalence of the two 
quadratic forms. 
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In the following theorems we shall discuss construction and classification of 
extensions with Galois group isomorphic to the dihedral or quasi-dihedral group of 
order 16. Let us recall that the dihedral group of order 16, Dg, has the presentation 

D8 = (N,S | TV8 = S2 = E, S~lNS = AT1), 

and that the quasi-dihedral group of order 16, gD8, has the presentation 

g£>8 = (N,S\ Ns = S2 = E, S~lNS = N3). 

First we prove a simple theorem on /^-extensions, D4 being the dihedral group 
of order 8. 

THEOREM 5. (1) Let a,b G kx be such that none of a, b, ab is a square in k. The 
extension k(y/a, y/b)/ k can be embedded in a D^-extension ofk cyclic over k(y/b) 
if and only if (a, —b) = 1, i.e. iff there exist x, y G k such that b — ay1 — x2. If this 
the case then the D4-extensions ofk containing k(y/a, y/b) and cyclic over k(Vb) 
are exactly the extensions of the form k(y/a, y/b, (q(ay + Xy/a)) ' ) / k where q G 
kx. 
(2) The D^-extensions ofk are the following: 

k(y/â, Va — 1, (q(a + y/a)) ) / k 

where a,q G kx are such that none of a, a — 1, a(a — I) is a square in k, and 

k(y/^î,,/qal/4)/k 

where a,q G kx are such that none of— I, a, —a is a square in k. 

PROOF. Let & = (N,S) be the Galois group of k(y/â, y/b)/ k where Ny/a = 
—y/a, Ny/b = y/b, S y/a — y/a, Sy/b = —y/b. Considering the presentation 

D4 = {N,S\ N4 = S2 = E, S~lNS = N~l), 

the isomorphism D4/ (N2) = & given by N 1—> N, S i—> S provides us with a 
2-cocycle, c, on $ with coefficients in { ±1} giving the extension of Z /2Z to D4 
with $ as quotient. An embedding of k(y/a, y/b)/kin a.^-extension cyclic over 
k(y/b) is possible if and only if c is a 2-coboundary in B2(&, k(y/a, y/b) ) . 

We have c(S, S) = 1. Put 91 = ( S). Using the notation from Theorem 1 we 
get, denoting by G the class modulo 9? of G G @,/ = f(S) = 1, fl^(S) = - 1 , 
a-fj — y/b and s(N, N) = — | . The embedding problem under consideration is thus 
solvable if and only if (a, —b) — 1. 
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If this is the case there exist x,y G k such that — b = x2 — ay2. Still using the 
notation from Theorem 1 we find h(E) = h(S) = 1, h(N) = h(NS) = \[b and the 
given embedding problem is solved by the extensions k(y/â, \fb, y/ÏÏ)/ k where 
8 € k(yfa, \[b) satisfies 

S9 = 9 and 

<•> " - « • - ( £ ^ ) J -

The solutions to (+) are 6 = q(ay + x^fa) where q € kx. 
The rest of the statements in the theorem are now obvious. 

Q. E. D. 

THEOREM 6. We consider the presentation 

D8 = (N,S | N* = S2 = E, S~lNS = N~l). 

(1) The D/^-extension 

k(y/a~,Vb,(2q6){'2)/k 

where a,b,q € kx are such that none of a, b, ab is a square in k and either 

1° b = a-l, 6=a + y/â 

or 

2° ft=-l, 6 = v ^ 

ca/i Z?e embedded in a D&-extension cyclic over k(y/b) if and only if 

(a,2)(q,-b)=l. 

(2) If a and b are as in (1) there exists q G kx such that (a, 2)(q, —b) = 1 if and 
only if the equation 

X2 - aY2 - 2Z2 - labV2 = 0 

has a solution with X,Y,Z,V ek and (X, Y) ^ (0,0). 
(3) The following two familites ofD$-extensions ofk give all D%-extensions ofk: 

(/) k(V^,(q,/d)U2,((X+Yyfà(qy/d)i,2)l,2)/k 
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where a,q G kx, none of —I,a, —a is a square in k, (a, 2) = 1 and (X, Y) is a 
solution to the equation 

2 = X2- aY2 

with X, Y G k; 

f 1 ! / 2 \ 
(II) k^Va~^l,(2q9)l/2,(r1 • — (iqO + Wx(2qQ)xl2)) J /* 

where a £ kx,b = a — I £ kx are such that none of a,b,ab is a square in 
k, 6 = a + y/a, (X, Y,Z,V) G (k)4 is a solution to the equation 

X2 - aY2 - 2Z2 - 2abV2 = 0 

with (X, Y) ^ (0,0), x,y£k are such thatx2 + by2 ^ 0, q = (x2 + by2)(Z2 +abV2), 

Wx = (Z(x - by) - abyV) + (Zx - 6(x + y)V)y/a, 

W2 = (Z(x + y) + axV) + (Zy + (x - by)V)y/a, 

W2 b 
V 2 (X + 7 ^ ) 0 + <y/a)(Q>y -x)+ xyfà)) ' 

fl/iJ // G k(y/â) is chosen in the following way. It is shown that the element 
£ G k(<s/â) defined by 

bW2W2 

where x i—tx* denotes the conjugation in k(\fa), has norm I over k, and r\ is chosen 
such that 

7]' = 7 ^ . 

PROOF. We divide the proof into three parts. In (a) we perform some preliminary 
computations and prove (1). In (b) we prove (2), and in (c) we finish the proof of 
the theorem. 

(a) Let a,b,q G kx be such that none of a, b, ab is a square in k and that b — a— 1 
or b — — 1. With 0 = a + <fa forb = a—l and 6 = yfa forb= — 1 the extension 
k(y/a, \fb, (2q0)1'2)/ k is a /^-extension of k. The Galois group is generated by 
TV and S where Ny/â = -yfi, N\/b = </b, N(2q9)l/2 = 2q^^(2q6yl/2, 
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Sy/â = y/à,S(2q6)l/2 = (2q6)l/2,Sy/b = -y/b. The isomorphismD8/ (N
2) 9* 

(N, S) given by N\—+N, S\—>S gives rise to a 2-cocycle, c, on $ with coefficients 
in { ± 1 } . To prove (1) we have to show that c G B2(®9k(y/â,y/b,(2qO)l/2)X) 
if and only if (a, 2)(q, —b) — 1. 

Put K = k(y/a). Let us first assume that the restriction of c to 31 — (N2,S) 
splits. This is equivalent to the assumption that the extension K((2qQ ) x ' 2 , y/b)/K 
can be embedded in a D4-extension of AT cyclic over K(y/b). According to Theorem 
5 this possible if and only if (2q6, —b) — 1 over AT, i. e., if and only if there exist 
X, Y € K such that 

2q0 =X2+bY2. 

Let us assume that this the case. The Y / 0 and c splits in Br(K) as c = 8f 
(where 8 is the coboundary operator) where 

f(E) =f(S) = 1, f(N2) =f(N2S) =f=-L^L- p(2*0),/2) , 

as follows from the proof of Theorem 5 (or by direct verification). Using the no­
tation of Theorem 1 we now compute, denoting by TV the class of TV in 
(N,S) /(N2,S), that 

% ( £ ) = 1, %(W2) = ^ , %(S) = -Nf and ^{N2S) = -

Consider A = 1 + ^ - ^ +/ . We have GA = AQ.^(G) for G G 9Î . If A = 0 we 
would have Nf +f — \ +JNf = 0 and since 

and 

(denoting by x\-^xf the conjugation in K — k{y/a)), we would deduce 

X'y/bY + Xy/bYf - bYYf +XX1 + 2qy/aV~b = 0 
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which is impossible. Thus A ^ 0 and we put a-^ — A and find s(N, N) = ^ . We 

ANA 

= (l+N + N2+N3)(\ -fNf) 

*/< H^/) 

Supposing furthermore that s(N,N) = (ftp' for some <̂  G AT, we see that c 

splits in Br(£), say c = 6V, a nd the D8-extensions containing K((2qQ)xl2, y/b) 

and cyclic over k(\/b) are the extensions K[(2qQ)x'2,\fb,y/x)l k where \ £ 

K((2q0)l/2,y/b)X is such that 

GX = X^(G)2 for G e(N,S). 

According to Theorem 5, x n a s m e form X =
 TJUJ for some 77 G k(\/â) and 

a; = y(2q0 + X{2q6)^2^. Since t/>(N) — ^ w e ge t f° r t n e determination of 77, 
that 

^ = — AV. 

Since a; = -)v^(2<?0)1 /2 we find 

NUJ ^y/b f 

» m,L • + w _ î w _ 2 
v W * W Nf JNf J J f W 

6 (\+N
2)(2f + 2Nf+fNf+^r) 

= 4-
V^ 6FF' 

In the case b — — 1,9 — \fa the above reasoning can be brought into a simpler 
form. Obviously, (2q6, —b) = 1 and c splits in Br(X) as c — 6f where / (£) = 
f(S) = 1 and/(N2) =f(N2S) = yf-î. Putting A = 1 + \f-i we compute that 

<Tr An / ( A ^ J 
s(N,N) = = - . 

ANA 2 
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Assuming furthermore that (a, 2) — 1 we may write 2 — X2 — aY2 where X,Y G k. 

Then s(N,N) = yxp' where (f — (X+ Yy/a)~ . Again we put \ — ^UJ but here 

u — (2q0)x'2. For the determination of 77 we get 

1 = £-AV = 2 .̂ 
77 No; 

Since 1 + (2(f2) = X(X + Y y/a) we may choose 77 — X + y^/5 (since this choice 

is obviously possible if X = 0). 

Now let us return to the original situation without the additional assumptions. 

Let us however first assume that q £ k(y/a, y/b) . Let C be the conjugation in 

k(y/q). We extend N, S and C to automorphisms in k(^Ja, y/b, y/q, (2q0)x'2)/ k 

by Ny/q = Sy/q = y/q and Cy/a = y/a,Cy/b = y/b,C(2q6)x/2 = (2q6)x/2. 

The Galois group of this extension is (N, S) x ( C), k(y/a, y/b, (2q0 )1//2) is the 

fixed field of ( C) and k(y/a, y/b, (20 )1 / 2) is the fixed field of (N2C). We have 

(N,S) x(C)/(N2C) ^(N,S) 

where the isomorphism is given by N \—> N, S \—>• S, C \—> N2. Now consider 

the "natural" 2-cocycle, c\, on (N,S) x (C) / (N2C) which is attached to the 

problem of embedding the extension k{y/a, y/b, (29 )x'2)/ k into a Dg-extension 

of k cyclic over k(y/b). Via the inflation maps we may view c\ and c as 2-cocycles 

on ( N, S) x ( C). Thus we have 

cxiN^S^C'^^S^C2) = c(Ar ,+27 ,5^,AT2+2725^2). 

Consider ^:(N,S) x (C) —• k(y/b)X given by ^(E) = 1, V ( Q = A A and 

\j) (GCa ) = \l) (Ca ) for G G ( N, S), and consider the 2-cocycle a = £ ( - £, 4)6 V 

on (N,S) x ( C) . We state that cr is a 2-coboundary. One way of realizing this is 

to use Theorem 1. First we note that 

a(C, C) = ( - 1 ) • (-\)(y/bCy/b) = 1, 
b 

and secondly we compute, identifying ( N, S) with (N,S) x ( C) / ( C), for G G 

(N,S) 

a(C,G) 

a(G,C) 

c(C,G)cx(G,C) VKO 

c ( G , O d ( C , G ) GtyKO 

__ c(G,N2) y/b 

~ c(N2,G)''c7b 
= 1, 
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which shows the statement to be true. 
That c is cohomologous to («, 2)(q, —b) in case 2° we have already seen. 
In case 1° we note that 

26 = {\+^Jà)2 +b, 

and that 

l - i ( l + V ^ ) d - v ^ ) = 2 
b 

whence it follows from the above that c\ is cohomologous to (#, 2). Thus c is 
cohomologous to (a, 2)(q, —b). 

Finally, if q E k(y/a, \fb) the conclusion is clearly still true since in that case 
either (q,-b) = (l,-b),(q,-b) = (a,-b),(q,-b) = (b,-b) or (q, -b) = 
(ab, -b). 

Hereby (1) is proved. 
(b) Let again a,b G kx be such that none of a, b, ab is a square in k and either 

b = a — 1 or b = — 1. If b = — 1 the statement in (2) is trivial so we assume that 
b = a-l. 

lfq£kx is such that (a, 2)(g, —b) — 1 then (q, —b) — 1 over k(^fa). Therefore 
there exist x\, x2, y\, y2 £ k such that 

q = (x{ + x2yfa) +b{y\ + y2y/a) . 

From this we see that q has the form 

(+) q = (x2 + by2)(Z2 + ab V2), 

where x,y,Z,V G k. Then (4, -b) = (Z2 + aft V2, a) and so 1 = (a, 2)(<?, -6 ) = 
{a, 2(Z2 + a&V2)) and thus the equation X2 - aY2 = 2(Z2 + <2&V2) has a solution 
with X,Yek and (X, 7) ^ (0,0). 

If the equation X2 - aY2 - 2Z2 - labV2 = 0 has a solution with X, K, Z, V G A: 
and (X, K) ^ (0,0), then we must have Z2 +abV2 ^ 0. Choosing x,y £ k such that 
x2 + 6y2 ^ 0 and putting g = (x

2 +by2)(Z2 + abV2), we then find (a, 2)(q, -b) = 1. 
Hereby (2) is proved and we have found the construction of the 'possible' values 

of q from solutions to the equation in (2). 
(c) The results in (3) follow from the results obtained in (a) and (b) once, in 

connection with the family in (II), we observe the following fact: 
With 

q = (x2 + by2)(Z2 + abV2), 

= (Zx- byVy/af + b(yZ + Vxy/âf 
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we get, since 28 — (1 + y/a) + b, that 

2q8 =W\ + bWl 

where W\ and W2 are as specified in (II). Furthermore, it can be computed that 

W2W2 -j-Wi W[ = 2(x2 - by2 + 2xy)(Z2 + abV2) 

and we have 

x2 - by2 + 2xy = (1 - a)((y - *-) - a(X-)2). 

Q. E. D. 
The investigation of QD%-extensions is completely analogous to Theorem 6. 

THEOREM 7. We consider the presentation 

QDS = (N9S \ N* = S2 = Ej~lNS = TV3). 

( 1) The D^-extension 

k(^y/b,(2q8)l/2)/k 

where a,b,q £ kx are such that none of a, b, ab is a square in k and either 

1° b = a-l, 9 = a + y/a 

or 

2° ft=-l, 8 = sTa 

can be embedded in a QD^-extension cyclic over k(y/b) and dihedral over k{yfa) 
if and only if 

(a,-2)(q,-b)= 1. 

(2) If a and b are as in (1) there exists q £ kx such that 

(a,-2)te,-*)=l 

if and only if the equation 

X2 - aY2 + 2Z2 + 2abV2 = 0 
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has a solution with X, Y, Z,V e k and (X, Y) ^ (0,0). 
( 3) The following two families ofQD%-extensions ofk give all the QD^-extensions 
ofk: 

i / ? 

(I) k(V=ÏA<ly/à)l/2,((X+Yy/ï)(qy/ï)t/2) )/k 

where a,q G kx are such that none of a, — 1, —a is a square in k, {a, —2) = 1 and 
(X, Y) is a solution to the equation 

-2 = X2 - aY2 

with X, F ek. 

(II) *(v^V^T,(2<70) 1 / 2 , (77 • — (2q0 + W{(2q9)1'2)) )/k 

where a G kx and b = a — 1 G kx are such that none of a, b, ab is a square in 
k,8 — a + y/a, (X, Y, Z, V) G (k) is a solution to the equation 

X2 - aY2 + 2Z2 + 2abV2 = 0 

with (X, Y) ^ (0,0), x, y G k are such that x2 + by2 ^ 0, q = (x2 + by2)(Z2 + abV2), 

Wl = (Z(JC - by) - abyV) + (ZJC - b(x + ;y)V)>/â, 

W2 = (Z(JC + ;y) + oxV) + (Zy + (JC - by)V)</â, 

_ W2 b 
if~ 2 (X+Y^)(\+Jà)((by-x)+x^)y 

and 7] G k(y/a) is chosen in the following way. It is shown that the element 
£ G k(yfa) defined by 

bW2W2 

where x\—>y denotes the conjugation in k(y/a), has norm I over k, and 77 is chosen 
such that 

7/ = r?£. 

PROOF. The proof is completely analogous to the proof of Theorem 6. We have 
only to remark that the following changes in the proof of (a) have to be made: 
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We compute % ( £ ) = 1, %(N2) - f, %(S) = Nf, ^(N2S) = - ) and we 

put A — 1 + -J- + 7̂ —/ and deduce A ^ 0. 

In the special case b = — 1, 0 = ^/â, we put A — 1 — \/—Ï. 
Q. E. D. 

Finally we shall investigate the structure of g ^-extensions of &, Q\^ being the 
quaternion group of order 16. We use the presentation 

(+) Gi6 = (N,S I ̂ 8 = ^ , 5 2 = yv4,lS"1yv5 = yv-1). 

THEOREM 8. We consider the presentation (+)ofQ\6. 
(1) The D ̂ -extension 

k(y/a~,yfb,(2q9)]/2)/k 

where a,b,q G kx are such that none of a, b, ab is a square in k and either 

1° b = a-l, 9 =a + y/â 

or 

2° b=-l9 0=y/â 

can be embedded in a Q\^-extension cyclic over k(\fb) if and only if 

(fl,2)(ft,-l)(<7,-fc)= 1. 

(2) Suppose that Kj k — k(y/a, \fb, (2q0)1' ) / k is an extension of the type in (I) 
which can be embedded in a Qx^-extensions ofk cyclic over k(y/b). Let (N, S) be 
the Galois group of Kj k using the same notation as in the proof of Theorem 6. 
Denote by x/ the conjugate ofxforx G k(^/â). 

Then there exist a, /3,7, A, /i, i/ G k(y/a) such that 

2q6 = a2+(32+l2, 

b = A2 + /x2 + z/2 and 

aX + f$\i +lv = 0. 

a v av — 7A 

(2q0)1/2 Vb xfb{2q6)xir 

\i a \x — (3 A 

y/b Vb(2q6)1/2' 

P , Pv-1» a n d 

(2q6)l/2 xfb(2qQ)XlV ^ 

A 7 
Vb (2q6)1'2' 

X = 

ipx = 

-02 = 

^ 3 = 

https://doi.org/10.4153/CJM-1990-043-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1990-043-6


850 IAN KIMING 

Let Tr (resp. Trj ) be the trace for K/ k (resp. Kj k(yfa)) and suppose that 

Then £ is a norm from k(y/a)j k and all (^-extensions containing K and cyclic 
over k(\fb) are obtained in the following way: 

Choose (f G k(yfa) such that 

Then 

has norm 1. We choose rj G k(y/a) such that 

r/ = ry£. 

Then K^(rjx)^2)/ k is a g 16-extension of the required type. 

PROOF. ( 1 ) Consider a D4-extension Kj k = k(y/a, \fb, (2q6 )112)/ k where a, b 
and g are as in the formulation of the theorem except possibly for the validity of 
the condition (a, 2)(b,—l)(q, -b) = 1. We let & = (N,S) be the Galois group of 
Kj k using the same notation as in the proof of Theorem 6. 

The problem of embedding Kj k in a Dg- or <2 ̂ -extensions of k cyclic over 
k(yfb) is equivalent to the problem of the splitting in H2(&, Kx ) of the 2-cocycle, c 
(resp. c\ ), on $ with coefficients in { ± 1} obtained from the natural isomorphisms 

Dz/iN4) = (Nj\ N8 = S2 = E, 5"17V5 = ^ 1 ) / ( y V 4 ) ^ $ 

(resp. Qie/iti4) = (N,S\ N* = E,S2 = N4,S~lNS = N~l)/N4 =*©). 

We state that c\ — c(—\,b) in Z2(&,KX). This can be demonstrated by using 

Theorem 1 on a = ci(c(-l,fc))_1 for 31 = (N). Note that a(S,S) = 1. 
According to Theorem 6 and the proof of it, c is cohomologous to (a, 2)(q, —b) 

in Z2(G5, Kx). It follows that cj is cohomologous to (a, 2)(b,—\)(q, —b) in 
Z2(®,KX), which proves (1). 

(2) The extension Jf/ k(y/a) is a biquadratic extension and can, according to 
assumption, be embedded in a Q%-extension of k(y/a). According to Theorem 4 
there exist a, /?, 7, A, /i, i/ E k(y/â) with the properties stated and according to the 
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proof of Theorem 4 the restriction to 9? = (N2,S) ofthe2-cocycle, reconsidered 

in (1) splits as ci = <50 where 

0 ( £ ) = 1, xl>(S) = - V i , 0(W2) = ~V>2, and ^(N2S) = - 0 3 -
X X X 

We now apply Theorem 1 and retaining the notation of that theorem we find 

% ( £ ) = i, 

*V"2) = f • ^ and 
A^x V>2 

° ^ ^ = w- • *r> 
N\ ^3 

where N denotes the class of N modulo 9? . 

Put 

A = 1 + ^ ( - ^ - + - ^ - - - ^ - 1 
X V ^ 2 M/>1 ^ 0 3 7 ' 

Then GA = %(G)A for G £ ^ , and if A ^ 0 we find 

s(Af, AO r — 
ANA x(ANA) 

We compute (using c\ = <5 0 on 9Î) that 

(ANA) . _X_ 
1̂ 2 

- ( * 

^2Nx 
Nljj2 

03^X V>i#X 
A^0i A 0̂3 ) 

U2 
N02 

x^x 03#X 01^X7 

_ x_ 
02 

^ x 
Ni/j2 

V>2 

X 

M/>2 01 

A x̂ V>3 

Aty>l ^3 

A^3 V> 1 

W03 

^3#X | V^Mfe | ^ 1 ^ 2 X ^ l 

^ 2 ^ 1 0 3 ^ 2 X ^ 3 V>1#X 

^1#X ^ 2 ^ 1 _ V^3^2 XM/>3 

^ 2 ^ 3 ' 0 1 ^ 2 X ^ l ^3^X 

V02 7 V<Mty>l 0 2 ^ 3 7 
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and since 

s » ^Nx \ =N( ip3NX 

^iNtyx J V-02^-01 

and 

S 

we get 

\ l/>2Nlp3 J V i>2Nlp3 

= < 

which according to assumption is non-zero. Thus A ^ 0. According to assumption 
there is (p G k(y/a) such that 

1 

The (^-extensions of k of the required type have the form 
^((ix) )/k for some 77 G k(y/â). For the determination of 77 we get, retaining 
the notation of Theorem 1, 

N(rix) = (riX)¥2h(N)2 = foxMV, 

that is, 

7/ N x 

N o w we compu te (using c\ = Sip on 31) that 

X A2 X . NX ( ^2 . ^3 . $\ . A 2 = A + !^L^ + . 
Nx" Nx ' X \Nil)$ Nip2 Nip2 

Nlp2 X N ( 0 1 0 3 ) 

+ 2 _ 0 3 _ _ 2 _ A ^ X -01-02 
M/>1 X N(lp21p3) 

_2_V^1_+2_^X 0203 
Aty>3 X N{lp\1p2) 

' X 02 _03_ 
,Nx N02 M/>i 1 "- "--• - ' 0 , M / > 3 J 
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EXAMPLE: Consider k — Q. According to Theorem 8 the /^-extension Kj Q = 
1 / 7 

can be embedded in a (^-extension of Q cvclic 

over Q(\/6) because (7,2) = 1 and (6, -1)(2, -6 ) = (6, -2 ) = 1. We have 

6 = 22 + l2 + ( - l ) 2 and 

With the notation of Theorem 8, (2) we put 

and we choose ry G Q (\/7) such that 

7/ _ 11789-3U6>/7 
"ïj" ~ 3.532 

where JO— ĴC7 denotes conjugation in Q(v7). For example we may choose 

77 = 6\/7(41 + 38\/7). 

Thus Q (>/6, \ /7, VÔ)/ Q where 

0 = v/6v/7(41 + 3877)((v /6 - 1) + ( -4 + V~6 - y/ï)(l + V^)"1^) 

is a Qi6-extension of Q containing K. 
A direct verification of this fact can be obtained by using Theorem 1, (5) and 

Theorem 8, (2). It is sufficient to prove normality of Q y/6, \/l, (r]x)^2/ Q. De­
noting by N the automorphism in Kj k given by Ny/Ï = —\[î, Nyf~6 = y/6, 

N(l + V^7)1/2 = VW7(7 + Vïfl/2, it is sufficient to prove the existence of an 
element y G K such that 

W(*7X) = 07X)/-

We compute 

X 1 -(14854 + 1495\/6 - 1846\/7 - 769vW7) 
NX 2 • 532 

+ (-3508 - 1507\/6 + 1470A/7 + 95vW7)(7 + \/7)1 /2). 
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Put 

U = and 
12 

V = - \ ((696 + 4 0 3 ^ - 2 3 4 ^ - 305\/6VÏ) 

+ ( -164-621v / 6+152\ /7 + 233v/6v/7)(7 + \ /7)1 / 2) . 

Then we find 

I / 2 = ^ ( 1 8 4 + 35>/7), 

V2 = — ((6681066 + 1150071\/6 -2380326^7 - 442527vW7) 

+ (-2424714 - 602241 y/l + 9 2 1 9 9 6 ^ 

J/2N + 209379vW7)(7 + \^7) 7 ) 

and 

1 ((215378758 - 68047558^ + 34397983\/6 
2 • 3 • 534 

- 13724161VW7) 

+ (-73419452 + 28260758^ - 19838163^ 

1/2 
+ 5815767 v/6v/7)(7 + v/7) ) 

= U2V\ 

REMARK. Let © be a finite group. For the study of & -extensions of Q the ques­
tion of existence of "regular" & -extensions of Q (f), where ris a transcendental 
over Q , is of interest. (A "regular" Q> -extension of Q (t) is a G> -extension Kj Q (t) 
such that any element of A' which is algebraic over Q belongs to Q.) The reason 
for this is that the existence of a regular $ -extension of Q (t) is, by elementary 
Galois theory and by the Hilbert irreducibility theorem for Q, seen to imply the 
existence of infinitely many ©-extensions of Q. 

Using the theorems above we can deduce the existence of a regular 0* -extension 
of Q(r) when & is any of the 2-groups considered: 

According to Theorem 3 the extension Q ((1 + t4) ' ) / Q(0 can be embedded 
in a (Z/8Z)-extension of Q(f) (and any (Z/8Z)-extension of Q(t) containing 

i / ? 
(1 + t4) must be regular). 
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According to Theorem 4 the extension Q {{t1 + 2) , {It2 + 6) ' ) / Q (0 can be 
embedded in a Qg-extension of Q(r) since 

f2 + 2 = f2 + l 2 + ( - l ) 2 , 

2t2 + 6 = 22 + (l - 0 2 + ( l+0 2 -

Such a Qg-extension of Q(f) is obviously regular. 
According to Theorem 6 the extension 

Q ((r2 - 2)' / 2 , (r2 - 3 ) l / 2 , (2((r2 - 2) + (r2 - 2 ) l / 2 ) ) ' / 2 ) / Q(r) 

can be embedded in a Z)g-extension of Q(f) and such a Dg-extension of Q(0 is 
obviously regular. 

According to Theorem 7 the extension 

Q ^ 2
 + 2 ) 1 / 2 , ( f

2
 + l ) l / 2 , ( 2 ( a 2

+ 2 ) + ( / 2
+ 2 ) l / 2 ) ) ' / 2 j / Q ( 0 

can be embedded in a QD%-extension of Q(t) and such an extension is regular. 
According to Theorem 8 the extension Q(y/a, \Jb, y/20)/ Q(t) where 

a = 4t4 + 8r2 + 2 = (2r2 + 2)2 - 2, 

è = a - 1 = 4t4 + 8^ + 1 = (It1 + l)2 + (202 and 

0 = a + y/a 

can be embedded in a 2i6-extension of Q(t) and such an extension is regular. 
Using different methods, Lamprecht has given some constructions of cyclic, 

regular extensions of Q(t) in [4]. 
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