Chasing Silver

Andrzej Rosłanowski and Juris Steprāns

Abstract. We show that limits of CS iterations of the n-Silver forcing notion have the n-localization property.

1 Introduction

This paper is concerned with the n-localization property of the n-Silver forcing notion and countable support (CS) iterations of such forcings. The property of n localization was introduced by Newelski and Rosłanowski [12, p. 826].

Definition 1.1 Let n be an integer greater than 1 .
(i) A tree T is an n-ary tree provided that $(\forall s \in T)\left(\left|\operatorname{succ}_{T}(s)\right| \leq n\right)$.
(ii) A forcing notion \mathbb{P} has the n-localization property if

$$
\Vdash_{\mathbb{P}} "\left(\forall f \in{ }^{\omega} \omega\right)(\exists T \in \mathbf{V})(T \text { is an } n \text {-ary tree and } f \in[T]) \text { ". }
$$

Later the n-localization property, the σ-ideal generated by n-ary trees, and the n Sacks forcing notion \mathbb{D}_{n} (see Definition 2.1) were applied to problems on convexity numbers of closed subsets of \mathbb{R}^{n}, ([3-5]).

We do not yet have any result of the form "CS iteration of proper forcing notions with the n-localization property has the n-localization". A somewhat uniform and general treatment of preserving the n-localization was recently presented in [15]. However, that treatment does not cover the n-Silver forcing notion \mathbb{S}_{n} (see Definition 2.1). As a matter of fact, at one point it was not clear if \mathbb{S}_{n} has the property at all. It was stated in [12, Theorem 2.3] that the same proof as for \mathbb{D}_{n} works also for CS iterations and products of the n-Silver forcing notions \mathbb{S}_{n} (see Definition 2.1(3)). Perhaps some old wisdom got lost, but it does not appear likely that the same arguments work for the n-Silver forcing \mathbb{S}_{n}. In the present paper we correct this gap and provide a full proof that CS iterations of \mathbb{S}_{n} (and other forcings listed in Definition 2.1) have the n-localization property, see Corollary 2.6.

Our main result, Theorem 2.5 , seems to be very \mathbb{S}_{n}-specific and it is not clear to what extent it may be generalized. In particular, the following general problem remains open.

[^0]Problem 1.2 Do CS iterations of proper forcing notions with the n-localization property have the n-localization property? What if we restrict ourselves to (s)nep forcing notions (see Shelah [17]) or even Suslin ${ }^{+}$(see $[6,9]$)?

1.1 Notation

Our notation is rather standard and compatible with that of classical textbooks [7]. In forcing, however, we keep the older convention that a stronger condition is the larger one.
(i) n is our fixed integer, $n \geq 2$.
(ii) For two sequences η, ν we write $\nu \triangleleft \eta$ whenever ν is a proper initial segment of η, and $\nu \unlhd \eta$ when either $\nu \triangleleft \eta$ or $\nu=\eta$. The length of a sequence η is denoted by $\operatorname{lh}(\eta)$.
(iii) A tree is a family of finite sequences closed under initial segments. For a tree T and $\eta \in T$ we define the successors of η in T and the maximal points of T by:

$$
\begin{aligned}
\operatorname{succ}_{T}(\eta) & =\{\nu \in T: \eta \triangleleft \nu \text { and } \neg(\exists \rho \in T)(\eta \triangleleft \rho \triangleleft \nu)\}, \\
\max (T) & =\{\nu \in T: \text { there is no } \rho \in T \text { such that } \nu \triangleleft \rho\} .
\end{aligned}
$$

For a tree T the family of all ω-branches through T is denoted by [T].
(iv) For a forcing notion \mathbb{P}^{P}, all \mathbb{P}^{P}-names for objects in the extension via $\mathbb{P}^{\text {P }}$ will be denoted with a tilde below, e.g., $\underset{\sim}{\tau}, \underset{\sim}{X}$.
Let us explain what is a possible problem with the n-Silver forcing; let us look at the "classical" Silver forcing \mathbb{S}_{2}. Given a Silver condition f such that $f \Vdash_{\mathbb{S}_{2}} \tau \in{ }^{\omega} \omega$, standard arguments allow it to be assumed that the complement of the domain of f can be enumerated in the increasing order as $\left\{k_{i}: i<\omega\right\}$ and that for each $i \in \omega$ and $\rho:\left\{k_{j}: j<i\right\} \rightarrow 2$ the condition $f \cup \rho$ decides the value of $\underset{\sim}{ } \upharpoonright i$, say $f \cup \rho \Vdash \tau \upharpoonright i=\sigma_{\rho}$. Now one could take the tree

$$
T^{\oplus}=\left\{\nu \in{ }^{\omega>} \omega:(\exists i<\omega)\left(\exists \rho \in k^{\left\{k_{j}: j<i\right\}} 2\right)\left(\nu \unlhd \sigma_{\rho}\right)\right\}
$$

Easily $p \Vdash \underset{\sim}{\tau} \in\left[T^{\oplus}\right]$, but T^{\oplus} does not have to be a binary tree! (It could well be that $\sigma_{\rho}=\sigma^{*}$ for all ρ of length 100 and then $\sigma_{\rho^{\prime}}$ for ρ^{\prime} of length 101 are pairwise distinct.) So we would like to make sure that σ_{ρ} for ρ^{\prime} 's of the same length are distinct, but this does not have to be possible. To show that \mathbb{S}_{2} has the 2-localization property we have to be a little bit more careful. Let us give a combinatorial result which easily implies that \mathbb{S}_{2} has the 2-localization property. Its proof is the heart of our proof of Theorem 2.5.

Fix $\Psi:{ }^{\omega>} 2 \rightarrow \omega$. We define $\Psi^{*}:{ }^{\omega>} 2 \rightarrow{ }^{\omega>} \omega$ by induction. Let $\Psi^{*}(\langle \rangle)=\langle \rangle$ and define $\Psi^{*}(t \smile\langle i\rangle)=\Psi^{*}(t) \smile\langle\Psi(t \leftharpoonup\langle i\rangle)\rangle$. If ξ is a partial function from ω to 2 and $\ell \leq \omega$, define $W^{\ell}(\xi)=\left\{t \in{ }^{m} 2: m<\min (\ell+1, \omega)\right.$ and $\xi\lceil m \subseteq t\}$ and then define $T^{\ell}(\xi)=\left\{\Psi^{*}(t): t \in W^{\ell}(\xi)\right\}, T(\xi)=T^{\omega}(\xi)$.

Theorem 1.3 For any $\Psi:{ }^{\omega>} 2 \rightarrow \omega$ there is a partial function $\xi: \omega \rightarrow 2$ with coinfinite domain such that $T(\xi)$ is a binary tree.

Proof To begin, two equivalence relations on ${ }^{\omega>}$ 2 will be defined. First, define $s \equiv t$ if and only if $\Psi(t \succ \theta)=\Psi(s \sim \theta)$ for all $\theta \in{ }^{\omega>} 2$. Next, define $s \sim t$ if and only if $\Psi^{*}(s)=\Psi^{*}(t)$.

Now construct by induction on $m<\omega$ an increasing sequence

$$
x_{0}<x_{1}<\cdots<x_{m}<N_{m}
$$

and $\xi_{m}: N_{m} \backslash\left\{x_{0}, x_{1}, \ldots, x_{m}\right\} \rightarrow 2$ such that $T^{N_{m}}\left(\xi_{m}\right)$ is a binary branching tree and, moreover, if s and t are maximal elements of $W^{N_{m}}\left(\xi_{m}\right)$ and $t \sim s$, then $t \equiv s$. The induction starts with $x_{0}=0$. If the induction has been completed for m, then let $x_{m+1}=N_{m}$. Let $\Delta=\left\{d_{0}, d_{1}, \ldots, d_{j}\right\}$ be a set of maximal elements of $W^{N_{m}}\left(\xi_{m}\right)$ such that precisely one member of each \sim equivalence class belongs to Δ. Now, by induction on $i \leq j$ define N^{i} and $\xi^{i}: N^{i} \backslash\left(N_{m}+1\right) \rightarrow 2$ as follows. Let $N^{0}=N_{m}+1$ and let $\xi^{0}=\varnothing$. Given N^{i} and ξ^{i}, if there is some $N>N^{i}$ and $\xi \supseteq \xi^{i}$ such that $d_{i} \frown\langle 0\rangle \smile \xi \equiv d_{i} \smile\langle 1\rangle \subset \xi$, then let $N^{i+1}=N$ and let $\xi^{i+1}=\xi$. Otherwise it must be the case that $d_{i} \smile\langle 0\rangle \smile \xi^{i} \not \equiv d_{i} \smile\langle 1\rangle \smile \xi^{i}$ and so it must be possible to find $N^{i+1}>N^{i}$ and $\xi^{i+1} \supseteq \xi^{i}$ such that $d_{i}\left\ulcorner\langle 0\rangle \succ \xi^{i+1} \nsim d_{i}\left\ulcorner\langle 1\rangle \subset \xi^{i+1}\right.\right.$. Finally, let $N_{m+1}=N^{j}$ and $\xi_{m+1}=\xi_{m} \cup \xi^{j}$.

To see that this works, it must be shown that $T^{N_{m+1}}\left(\xi_{m+1}\right)$ is a binary tree and that if s and t are maximal elements of $W^{N_{m+1}}\left(\xi_{m+1}\right)$ and $t \sim s$, then $t \equiv s$. To check the first condition it suffices to take t a maximal element of $T^{N_{m}}\left(\xi_{m}\right)$ and check that the tree $T^{N_{m+1}}\left(\xi_{m+1}\right)$ above t is binary. Then $t=\Psi^{*}\left(d_{i}\right)$ for some i, and the tree $T^{N_{m+1}}\left(\xi_{m+1}\right)$ above t is generated by all $\Psi^{*}\left(d^{\sim}\langle a\rangle \xi^{j}\right)$ where $d \sim d_{i}$ and $a \in 2$. Note however that by the induction hypothesis, if $d \sim d_{i}$, then $d \equiv d_{i}$ and so

$$
\Psi^{*}\left(d^{\frown}\langle a\rangle \smile \xi^{j}\right)=\Psi^{*}\left(d_{i}\left\ulcorner\langle a\rangle \frown \xi^{j}\right) .\right.
$$

Therefore $\Psi^{*}\left(d^{\sim}\langle a\rangle \xi^{j}\right)$ depends only on a and not on d and so $T^{N_{m+1}}\left(\xi_{m+1}\right)$ is binary above t.

To check the second condition, suppose that s and t are maximal elements of $W^{N_{m+1}}\left(\xi_{m+1}\right)$ and $t \sim s$. This implies that $t \backslash N_{m} \sim s\left\lceil N_{m}\right.$ and hence $t\left\lceil N_{m} \equiv s\left\lceil N_{m}\right.\right.$. Let i be such that $t \upharpoonright N_{m} \sim s \upharpoonright N_{m} \sim d_{i}$. If $t\left(N_{m}\right)=s\left(N_{m}\right)=y$, then $t=t \upharpoonright N_{m} \prec\langle y\rangle \xi^{j}$ and $s=s\left\lceil N_{m} \prec\langle y\rangle \succ \xi^{j}\right.$ and, since $t \upharpoonright N_{m} \equiv s\left\lceil N_{m}\right.$, it is immediate that $t \equiv s$. So assume that $t\left(N_{m}\right)=0$ and $s\left(N_{m}\right)=1$. By the same argument it follows that $t \equiv d_{i} \frown\langle 0\rangle \smile \xi^{j}$ and $s \equiv d_{i} \prec\langle 1\rangle \succ \xi^{j}$. Hence it suffices to show that $d_{i} \prec\langle 0\rangle \succ \xi^{j} \equiv d_{i} \prec\langle 1\rangle \bigcirc \xi^{j}$. Note that
 must have been possible to find ξ^{i} such that $d_{i} \frown\langle 0\rangle \subset \xi^{i} \equiv d_{i}\left\ulcorner\langle 1\rangle \subset \xi^{i}\right.$. It follows that $d_{i}\left\ulcorner\langle 0\rangle \subset \xi^{j} \equiv d_{i}\left\ulcorner\langle 1\rangle \subset \xi^{j}\right.\right.$.

After the construction is carried out we let $\xi=\bigcup_{m<\omega} \xi_{m}$.

2 The Result and Its Applications

Let us start by recalling the definitions of the forcing notions which have appeared in the literature in the context of the n-localization property.

Definition 2.1 (i) The n-Sacks forcing notion $\mathbb{D})_{n}$ consists of perfect trees $p \subseteq{ }^{\omega>} n$ such that $(\forall \eta \in p)(\exists \nu \in p)\left(\eta \triangleleft \nu\right.$ and $\left.\operatorname{succ}_{p}(\eta)=n\right)$. The order of $\left.\mathbb{D}\right)_{n}$ is the
reverse inclusion, i.e., $p \leq_{\mathbb{D}_{n}} q\left(q\right.$ is \mathbb{D}_{n}-stronger than $\left.p\right)$ if and only if $q \subseteq p$. (See [12].)
(ii) The uniform n-Sacks forcing notion $\left(\mathbb{O}_{n}\right.$ consists of perfect trees $p \subseteq{ }^{\omega>} n$ such that $\left(\exists X \in[\omega]^{\omega}\right)(\forall \eta \in p)\left(\operatorname{lh}(\eta) \in X \Rightarrow \operatorname{succ}_{p}(\nu)=n\right)$. The order of $\left(O_{n}\right.$ is the reverse inclusion, i.e., $p \leq_{\mathbb{O}_{n}} q\left(q\right.$ is $\left(\mathbb{O}_{n}\right.$-stronger than $\left.p\right)$ if and only if $q \subseteq p$. (See [14].)
(iii) Let us assume that $G=(V, E)$ is a hypergraph on a Polish space V such that

- $E \subseteq[V]^{n+1}$ is open in the topology inherited from V^{n+1},
- $(\forall e \in E)(\forall v \in V \backslash e)(\exists w \in e)((e \backslash\{w\}) \cup\{v\} \in E)$,
- for every non-empty open subset U of V and every countable family \mathcal{F} of subsets of U, either $\bigcup \mathcal{F} \neq U$ or $[F]^{n+1} \cap E \neq \varnothing$ for some $F \in \mathcal{F}$.
The Geschke forcing notion \mathbb{P}_{G} for G consists of all closed sets $C \subseteq V$ such that the hypergraph $\left(C, E \cap[C]^{n+1}\right)$ is uncountably chromatic on every non-empty open subset of C. The order of \mathbb{P}_{G} is the inverse inclusion, i.e., $C \leq \mathbb{P}_{G} D$ (D is $\mathbb{P}_{G^{\prime}}$-stronger than C) if and only if $D \subseteq C$. (See [3].)

Definition 2.2 (i) The n-Silver forcing notion \mathbb{S}_{n} consists of partial functions f such that $\operatorname{Dom}(f) \subseteq \omega, \operatorname{Rng}(f) \subseteq n$ and $\omega \backslash \operatorname{Dom}(f)$ is infinite. The order of \mathbb{S}_{n} is the inclusion, i.e., $f \leq_{\mathbb{S}_{n}} g\left(g\right.$ is \mathbb{S}_{n}-stronger than $\left.f\right)$ if and only if $f \subseteq g$.
(ii) For an integer $i \in \omega$ and a condition $f \in \mathbb{S}_{n}$ we let $\mathrm{FP}_{i}(f)$ to be the unique element of $\omega \backslash \operatorname{Dom}(f)$ such that $\left|\mathrm{FP}_{i}(f) \backslash \operatorname{Dom}(f)\right|=i$. (The FP stands for Free Point.)
(iii) A binary relation \leq_{i}^{*} on \mathbb{S}_{n} is defined by $f \leq_{i}^{*} g$ if and only if $\left(f, g \in \mathbb{S}_{n}\right.$ and) $f \leq s_{n} g$ and $(\forall j \in \omega)\left(j<\lfloor i / 4\rfloor \Rightarrow \mathrm{FP}_{j}(f)=\mathrm{FP}_{j}(g)\right)$.
(iv) For $f \in \mathbb{S}_{n}$ and $\sigma: N \rightarrow n, N<\omega$ we define $f * \sigma$ as the unique condition in \mathbb{S}_{n} such that $\operatorname{Dom}(f * \sigma)=\operatorname{Dom}(f) \cup\left\{\mathrm{FP}_{i}(f): i<N\right\}, f \subseteq f * \sigma$ and $f * \sigma\left(\mathrm{FP}_{i}(f)\right)=\sigma(i)$ for $i<N$.

The following properties of forcing notions were introduced in [15] to deal with the n-localization of CS iterations.

Definition 2.3 Let \mathbb{P} b be forcing notion.
(i) For a condition $p \in \mathbb{P}$ we define a game $\partial_{n}^{\ominus}(p, \mathbb{P})$ of two players, Generic and Antigeneric. A play of $\partial_{n}^{\ominus}(p, \mathbb{P})$ lasts ω moves, and during it the players construct a sequence $\left\langle\left(s_{i}, \bar{\eta}^{i}, \bar{p}^{i}, \bar{q}^{i}\right): i<\omega\right\rangle$ as follows. At a stage $i<\omega$ of the play:
(α) First Generic chooses a finite n-ary tree s_{i} such that $\left|\max \left(s_{0}\right)\right| \leq n$, and if $i=j+1$, then s_{j} is a subtree of s_{i} such that

$$
\left(\forall \eta \in \max \left(s_{i}\right)\right)(\exists \ell<\operatorname{lh}(\eta))\left(\eta \upharpoonright \ell \in \max \left(s_{j}\right)\right),
$$

and

$$
\left(\forall \nu \in \max \left(s_{j}\right)\right)\left(0<\left|\left\{\eta \in \max \left(s_{i}\right): \nu \triangleleft \eta\right\}\right| \leq n\right)
$$

(β) Next Generic picks an enumeration $\bar{\eta}^{i}=\left\langle\eta_{\ell}^{i}: \ell<k_{i}\right\rangle$ of $\max \left(s_{i}\right)$ (so $\left.k_{i}<\omega\right)$, and then the two players play a subgame of length k_{i}, choosing
successive terms of a sequence $\left\langle p_{\eta_{\ell}^{i}}^{i}, q_{\eta_{\ell}^{i}}^{i}: \ell<k_{i}\right\rangle$. At a stage $\ell<k_{i}$ of the subgame:
$(\gamma)_{\ell}^{i}$ First Generic picks a condition $p_{\eta_{\ell}^{i}}^{i} \in \mathbb{P}$ such that If $j<i, \nu \in \max \left(s_{j}\right)$
and $\nu \triangleleft \eta_{\ell}^{i}$, then $q_{\nu}^{j} \leq p_{\eta_{\ell}^{i}}^{i}$ and $p \leq p_{\eta_{\ell}^{i}}^{i}$.
$(\delta)_{\ell}^{i}$ Then Antigeneric answers with a condition $q_{\eta_{\ell}^{i}}^{i}$ stronger than $p_{\eta_{\ell}^{i}}^{i}$.
After the subgame of this stage is over, the players put $\bar{p}^{i}=\left\langle p_{\eta_{\ell}^{i}}^{i}: \ell<k_{i}\right\rangle$ and $\bar{q}^{i}=\left\langle q_{\eta_{\ell}^{i}}^{i}: \ell<k_{i}\right\rangle$.
Finally, Generic wins the play $\left\langle\left(s_{i}, \bar{\eta}^{i}, \bar{p}^{i}, \bar{q}^{i}\right): i<\omega\right\rangle$ if and only if
(\circledast) there is a condition $q \geq p$ such that for every $i<\omega$ the family $\left\{q_{\eta}^{i}: \eta \in\right.$ $\left.\max \left(s_{i}\right)\right\}$ is predense above q.
(ii) We say that \mathbb{P} has the \ominus_{n}-property whenever Generic has a winning strategy in the game $\partial_{n}^{\ominus}(p, \mathbb{P})$ for any $p \in \mathbb{P}$.
(iii) Let $K \in[\omega]^{\omega}, p \in \mathbb{P}$. A strategy st for Generic in $\partial_{n}^{\ominus}(p, \mathbb{P})$ is K-nice whenever $\left(\boxtimes_{\text {nice }}^{K}\right)$ if so far Generic used st, and s_{i} and $\bar{\eta}^{i}=\left\langle\eta_{\ell}^{i}: \ell<k\right\rangle$ are given to that player as innings at a stage $i<\omega$, then
$-s_{i} \subseteq \bigcup_{j \leq i+1}{ }^{j}(n+1), \max \left(s_{i}\right) \subseteq{ }^{(i+1)}(n+1)$;

- if $\eta \in \max \left(s_{i}\right)$ and $i \notin K$, then $\eta(i)=n$;
- if $\eta \in \max \left(s_{i}\right)$ and $i \in K$, then $\operatorname{succ}_{s_{i}}(\eta \upharpoonright i)=n$;
- if $i \in K$ and $\left\langle p_{\eta_{\ell}^{i}}^{i}, q_{\eta_{s}^{i}}^{i}: \ell<k\right\rangle$ is the result of the subgame of level i in which Generic uses st, then the conditions $p_{\eta_{\ell}^{i}}^{i}($ for $\ell<k)$ are pairwise incompatible.
(iv) We say that \mathbb{P}^{P} has the nice \ominus_{n}-property if for every $K \in[\omega]^{\omega}$ and $p \in \mathbb{P}$, Generic has a K-nice winning strategy in $\partial_{n}^{\ominus}(p, \mathbb{P})$.

Theorem 2.4 (See [15, 3.1, 1.6, 1.4]) The limits of CS iterations of the forcing notions defined in Definitions 2.1 and 2.2 have the nice \ominus_{n}-property.

Now we may formulate our main result.
Theorem 2.5 Assume that \mathbb{P}, has the nice \ominus_{n}-property and the n-localization property. Let \mathbb{S}_{n} be the \mathbb{P}-name for the n-Silver forcing notion. Then the composition $\mathbb{P} * \mathbb{N}_{n}$ has the n-localization property.

The proof of Theorem 2.5 is presented in the following section. Let us note here that this theorem implies n-localization for CS iterations of the forcing notions mentioned earlier.

Corollary 2.6 Let $(\overline{0})=\left\langle\mathbb{P}_{\xi},{\underset{\sim}{0}}^{(0)}: \xi<\gamma\right\rangle$ be a CS iteration such that, for every $\xi<\gamma$, (\mathbb{O}) is a \mathbb{P}_{ξ}-name for one of the forcing notions defined in Definitions 2.1 and 2.2. Then $\tilde{\mathbb{P}}_{\gamma}=\lim (\overline{\mathbb{O}})$ has the n-localization property .
Proof By induction on γ.
If $\gamma=\gamma_{0}+1$ and $\mathbb{O}_{2} \gamma_{0}$ is a $\mathbb{P}_{\gamma_{0}}$-name for the n-Silver forcing notion, then Theorem 2.5 applies. (Note that $\mathbb{P}^{{ }^{\prime}}{ }_{0}$ has the nice \ominus_{n}-property by Theorem 2.4 and it has the n-localization property by the inductive hypothesis.)

If $\gamma=\gamma_{0}+1$ and $\left(\mathbb{O}_{\gamma_{0}}\right.$ is a $\mathbb{P}_{\gamma_{0}}$-name for $\mathbb{D D}_{n}$ or $\left(\mathbb{O}_{n}\right.$ or \mathbb{P}_{G}, then [15, Theorem 3.5(2)] applies. (Note that $\tilde{\mathbb{P}}_{\gamma_{0}}$ has the nice \ominus_{n}-property by Theorem 2.4 and it has the n localization property by the inductive hypothesis.)

If γ is limit, then [15, Theorem 3.5(1)] applies.
The first immediate consequence of Corollary 2.6 is that if $n<m$, then the forcing notions \mathbb{D}_{n} and $\left.\mathbb{D}\right)_{m}$ differ in a strong sense: CS iterations of the former forcing do not add generic objects for the latter forcing. A similar observation can be formulated for the Silver forcing notions, as in the following.

Corollary 2.7 No CS iteration of \mathbb{S}_{2} adds an \mathbb{S}_{4}-generic real.
Another application of Corollary 2.6 and the CS iteration of the Silver forcing notion is related to covering numbers of some ideals.

Definition 2.8 Let $2 \leq m<\omega$.
(i) For a function $\varphi:{ }^{<\omega} m \rightarrow m$, put

$$
A_{\varphi}=\left\{c \in{ }^{\omega} m:(\exists k<\omega)(\forall \ell \geq k)(c(\ell) \neq \varphi(c \upharpoonright \ell))\right\}
$$

We let $\mathfrak{D}_{m}=\left\{A \subseteq{ }^{\omega} m: A \subseteq A_{\varphi}\right.$ for some function $\left.\varphi:{ }^{<\omega} m \rightarrow m\right\}$.
(ii) We define

$$
\begin{aligned}
& \mathfrak{B}_{m}=\left\{A \subseteq{ }^{\omega} m:\left(\forall K \in[\omega]^{\omega}\right)\left(\exists f \in{ }^{K_{m}}\right)(\forall c \in A)(f \nsubseteq c)\right\}, \\
& \mathfrak{R}_{m}=\left\{A \subseteq{ }^{\omega} m:\left(\forall f \in \mathbb{S}_{m}\right)\left(\exists g \geq \mathbb{S}_{m} f\right)(\forall c \in A)(g \nsubseteq c)\right\}
\end{aligned}
$$

(iii) The covering number $\operatorname{cov}(\mathfrak{I})$ of an ideal \mathfrak{I} of subsets of a space \mathcal{X} is defined as

$$
\operatorname{cov}(\mathfrak{I})=\min (|\mathcal{B}|: \mathcal{B} \subseteq \mathfrak{I} \text { and } \bigcup \mathcal{B}=\mathcal{X})
$$

Note that \mathfrak{D}_{n+1} is a σ-ideal of subsets of ${ }^{\omega}(n+1)$, moreover it is the σ-ideal generated by sets of the form [T] for n-ary trees $T \subseteq{ }^{<\omega}(n+1)$. The ideals \mathfrak{D}_{m} appeared implicitly in Mycielski's proof of the determinacy of unsymmetrtic games on analytic sets in [10] and later were studied, for instance, in [4, 12, 13].

Also \mathfrak{P}_{n} and \mathfrak{R}_{n} are σ-ideals of subsets of ${ }^{\omega} n$. The ideal \mathfrak{P}_{n} is one of the ideals motivated by the Mycielski ideals of [11]. It was introduced in [13] and later it was studied, for example, in $[1,2,8,14,16,18]$. Shelah and Steprāns [18] showed that $\operatorname{cov}\left(\mathfrak{P}_{n}\right)=\operatorname{cov}\left(\mathfrak{P}_{n+1}\right), \operatorname{cov}\left(\mathfrak{R}_{n}\right) \geq \operatorname{cov}\left(\mathfrak{R}_{n+1}\right)$, and consistently the latter inequality is strict. The consistency result in [18] was actually much stronger and it was obtained by means of finite support iteration of ccc forcing notions. However, if we are interested in the consistency of $" \operatorname{cov}\left(\Re_{n}\right)>\operatorname{cov}\left(\Re_{n+1}\right)$ " only, then a CS iteration of \mathbb{S}_{n} will do the following.

Corollary 2.9 Assume $C H$. Let $\left\langle\mathbb{P}_{\alpha},{\underset{\sim}{\mathcal{O}}}_{\alpha}\right.$: $\left.\alpha<\omega_{2}\right\rangle$ be a countable support iteration

$$
\begin{aligned}
\Vdash_{\mathbb{P}_{\omega_{2}}} " 2^{\aleph_{0}}=\operatorname{cov}\left(\Re_{n}\right) & =\operatorname{cov}\left(\mathfrak{P}_{n}\right)=\operatorname{cov}\left(\mathfrak{P}_{n+1}\right)=\aleph_{2}, \\
\text { and } \operatorname{cov}\left(\mathfrak{R}_{n+1}\right) & =\operatorname{cov}\left(\mathfrak{D}_{n+1}\right)=\aleph_{1} " .
\end{aligned}
$$

3 Proof of Theorem 2.5

Let τ be a $\mathbb{P} * * \mathbb{S}_{n}$-name for a member of ${ }^{\omega} \omega$. We may assume that for every \mathbb{P}^{1}-name ${\underset{\sim}{l}}_{\rho}$ we have $\Vdash_{\mathbb{P} * \mathbb{S}_{n}} \tau \neq \underset{\sim}{\rho}$. If $G \subseteq \mathbb{P}$ is generic over \mathbf{V}, then we will use the same notation τ for \mathbb{S}_{n}-name in $\mathbf{V}[G]$ for a member of ${ }^{\omega} \omega$ that is given by the original τ in the extension via $\mathbb{P} \geqslant * \mathbb{S}_{n}$.

Let $(p, f) \in \mathbb{P}^{P} * \mathbb{S}_{n}$ and let st be a winning strategy of Generic in $\partial_{n}^{\ominus}(p, \mathbb{P})$ which is nice for the set $K=\{4 j+2: j \in \omega\}$ (see Definition 2.3(iii)).

By induction on i we are going to choose for each $i<\omega s_{i}, \bar{\eta}^{i}, \bar{p}^{i}, \bar{q}^{i}, f_{i}$, and also for $m_{i}, \bar{\sigma}^{i}$ for odd $i<\omega$ such that the following conditions $(\boxtimes)_{1}-(\boxtimes)_{7}$ are satisfied.
$(\boxtimes)_{1}\left\langle s_{i}, \bar{\eta}^{i}, \bar{p}^{i}, \bar{q}^{i}: i<\omega\right\rangle$ is a play of $\partial_{n}^{\ominus}(p, \mathbb{P})$ in which Generic uses st.
$(\boxtimes)_{2}{\underset{\sim}{r}}_{i}$ is a \mathbb{P}-name for a condition in \mathbb{S}_{n}, and we stipulate that ${\underset{\sim}{-1}}^{f_{-1}} \underset{\sim}{f}$.
$(\boxtimes)_{3} q_{\eta}^{i} \Vdash_{\mathbb{P}}{\underset{\sim}{i-1}}_{f_{i-1}}^{\leq_{i}^{*}} \underset{\sim}{f}$ for each $\eta \in \max \left(s_{i}\right)$.
For odd $i<\omega$:
$(\boxtimes)_{4} m_{i}<m_{i+2}<\omega, \bar{\sigma}^{i}=\left\langle\sigma_{\rho, \eta}^{i}: \eta \in \max \left(s_{i}\right)\right.$ and $\left.\rho \in{ }^{\lfloor i / 4\rfloor} n\right\rangle, \sigma_{\rho, \eta}^{i}: m_{i} \rightarrow \omega$.
$(\boxtimes)_{5}\left(q_{\eta}^{i}, f_{i} * \rho\right) \Vdash_{\mathbb{P} * S_{n}} " \tau \mid m_{i}=\sigma_{\rho, \eta}^{i}$ " for $\rho \in{ }^{\lfloor i / 4\rfloor} n$ and $\eta \in \max \left(s_{i}\right)$.
$(\boxtimes)_{6}$ If $\eta \tilde{\max }\left(s_{i}\right)$ and $\rho, \rho^{\prime}:\lfloor i / 4\rfloor \rightarrow n$ are distinct but $\sigma_{\rho, \eta}^{i}=\sigma_{\rho^{\prime}, \eta}^{i}$, then for every $q \geq q_{\eta}^{i}$ and a \mathbb{P}-name $\underset{\sim}{g}$ for an n-Silver condition and $m, \sigma, \sigma^{\prime}$ such that
we have $\sigma=\sigma^{\prime}$.
$(\boxtimes)_{7}$ If $\eta, \eta^{\prime} \in \max \left(s_{i}\right)$ are distinct, $\rho, \rho^{\prime}:\lfloor i / 4\rfloor \rightarrow n$, then $\sigma_{\rho, \eta}^{i} \neq \sigma_{\rho^{\prime}, \eta^{\prime}}^{i}$.
So suppose that $i<\omega$ is even and we have already defined $s_{i-1}, \bar{q}^{i-1}, m_{i-1}$ and $\underset{\sim}{f}{\underset{\sim}{i-1}}$ (we stipulate $s_{-1}=\{\langle \rangle\}, q_{\langle \rangle}^{-1}=p, \underset{\sim}{f} f_{-1}=\underset{\sim}{f}$ and $m_{-1}=0$). Let $j=\lfloor i / 4\rfloor$ (so either $i=4 j$ or $i=4 j+2$).

The strategy st and demand $(\boxtimes)_{1}$ determine s_{i} and $\bar{\eta}^{i}=\left\langle\eta_{k}^{i}: k<k_{i}\right\rangle$. To define \bar{p}^{i}, \bar{q}^{i} and f_{i} we consider the following run of the subgame of level i of $\partial_{n}^{\ominus}(p, \mathbb{P})$. Assume we are at stage $k<k_{i}$ of the subgame. Now, $p_{\eta_{k}^{i}}^{i}$ is given by the strategy st (and $(\boxtimes)_{1}$, of course). Suppose for a moment that $G \subseteq \mathbb{P}$ is generic over \mathbf{V}, $p_{\eta_{k}^{i}}^{i} \in G$. Working in $\mathbf{V}[G]$ we may choose $\bar{\ell}, \bar{L}, g^{*}, \bar{\sigma}^{*}, M$ such that
$(\boxtimes)_{8}^{\alpha} M=n^{j}, \bar{\ell}=\left\langle\ell_{m}: m \leq M\right\rangle$ and $j=\ell_{0}<\cdots<\ell_{M}, \bar{L}=\left\langle L_{m}: m \leq M\right\rangle$ and $m_{i-1}<L_{0}<\cdots<L_{M}$,
$(\boxtimes)_{8}^{\beta} g^{*} \in \mathbb{S}_{n}, f_{i-1}[G] \leq_{i}^{*} g^{*}$ and $\bar{\sigma}^{*}=\left\langle\sigma_{\rho}^{*}: \rho \in{ }^{\ell_{M}} n\right\rangle, \sigma_{\rho}^{*} \in{ }^{L_{M}} \omega\left(\right.$ for $\left.\rho \in{ }^{\ell_{M}} n\right)$,
$(\boxtimes)_{8}^{\gamma} g^{*} *\left(\rho \upharpoonright \ell_{m}\right) \Vdash_{S_{n}} " \tau\left\lceil L_{m}=\sigma_{\rho}^{*} \upharpoonright L_{m}\right.$ " for each $m \leq M$ and $\rho \in{ }^{\ell_{M}} n$,
$(\boxtimes)_{8}^{\delta}$ if $\rho_{0}, \rho_{1} \in{ }^{\ell_{M}} n, \rho_{0} \upharpoonright j \neq \rho_{1} \upharpoonright j$ but $\sigma_{\rho_{0}}^{*}\left|L_{0}=\sigma_{\rho_{1}}^{*}\right| L_{0}$, then there is no condition $g \in \mathbb{S}_{n}$ such that $g^{*} \leq_{i}^{*} g$ and for some $L<\omega$ and distinct $\sigma_{0}, \sigma_{1} \in{ }^{L} \omega$ we have that $g * \rho_{0} \Vdash \underset{\sim}{\tau} \backslash L=\sigma_{0}, g * \rho_{1} \Vdash \underset{\sim}{\tau} \upharpoonright L=\sigma_{1}$,
$(\boxtimes)_{8}^{\varepsilon}$ for each $m<M$ and $\rho_{0} \in{ }^{\ell_{m}} n$ the set $\left\{\sigma_{\rho}^{*} \upharpoonright\left[L_{m}, L_{m+1}\right): \rho_{0} \triangleleft \rho \in{ }^{\ell_{M}} n\right\}$ has at least $n^{j} \cdot k_{i}+777$ elements.

It should be clear how the construction is done. (First we take care of clause $(\boxtimes)_{8}^{\delta}$ by going successively through all pairs of elements of ${ }^{j} n$ and trying to force distinct values for initial segments of τ, if this is possible. Then we ensure $(\boxtimes)_{8}^{\varepsilon}$ basically by deciding longer and longer initial segments of τ on fronts/levels of a fusion sequence of conditions in \mathbb{S}_{n} and using the assumption that τ is forced to be "new".) Now, going back to \mathbf{V}, we may choose a condition $q_{\eta_{k}^{i}}^{i} \in \mathbb{P}$) stronger than $p_{\eta_{k}^{i}}^{i}$ and a \mathbb{P}-name ${\underset{\sim}{g}}^{*, k}$ for a condition in \mathbb{S}_{n} and objects $\bar{\ell}^{k}, \bar{L}^{k}, \bar{\sigma}^{*, k}$ such that

$$
q_{\eta_{k}^{i}}^{i} \Vdash_{\mathbb{P}} \text { " } \bar{\ell}^{k}, \bar{L}^{k},{\underset{\sim}{g}}^{*, k}, \bar{\sigma}^{*, k}, n^{j} \text { satisfy clauses }(\boxtimes)_{8}^{\alpha}-(\boxtimes)_{8}^{\varepsilon} \text { as } \bar{\ell}, \bar{L}, g^{*}, \bar{\sigma}^{*}, M \text { there ". }
$$

The condition $q_{\eta_{k}^{i}}^{i}$ is treated as an inning of Antigeneric at stage k of the subgame of $\partial_{n}^{\ominus}(p, \mathbb{P})$ and the process continues.

After the subgame of level i is completed, we have defined \bar{p}^{i} and \bar{q}^{i}. We also choose ${\underset{\sim}{i}}_{i}$ to be a \mathbb{P}-name for an element of $\underset{\sim}{\mathbb{S}_{n}}$ such that $\Vdash_{\mathbb{P}} "{\underset{\sim}{x}}_{f_{i-1}} \leq_{i}^{*}{\underset{\sim}{i}}^{f_{i}}$ " and $q_{\eta_{k}^{i}}^{i} \Vdash_{\mathbb{P}} \tilde{"}_{\sim}^{f} f_{i}={\underset{\sim}{g}}^{*, k}$ " for all $k<k_{i}$ (remember that st is nice, so the conditions $q_{\eta_{k}^{i}}^{i}$ are pairwise incompatible). This completes the description of what happens at the stage i of the construction (one easily verifies that $(\boxtimes)_{1}-(\boxtimes)_{3}$ are satisfied) and we proceed to the next, $i+1$, stage. Note that $\lfloor(i+1) / 4\rfloor=j$.

We let $m_{i+1}=\max \left(L_{M}^{k}: k<k_{i}\right)+5$ and let $\ell=\max \left(\ell_{M}^{k}: k<k_{i}\right)+5$. Similarly as at stage i, s_{i+1} and $\bar{\eta}^{i+1}=\left\langle\eta_{k}^{i+1}: k<k_{i+1}\right\rangle$ are determined by the strategy st and $(\boxtimes)_{1}$; note that $\left.\max \left(s_{i+1}\right)=\{\nu \breve{n}\rangle: \nu \in \max \left(s_{i}\right)\right\}$ so $k_{i+1}=k_{i}$. To define $\bar{p}^{i+1}, \bar{q}^{i+1}$ and ${\underset{\sim}{i+1}}$ we consider the following round of the subgame of level $i+1$ of $\rho_{n}^{\ominus}(p, \mathbb{P})$. At a stage $k<k_{i+1}$ of the subgame, letting $\eta=\eta_{k}^{i+1}$, the condition p_{η}^{i+1} is given by the strategy st. Suppose for a moment that $G \subseteq \mathbb{P}$ is generic over \mathbf{V}, $p_{\eta}^{i+1} \in G$. In $\mathbf{V}[G]$ we may choose a condition $h^{*} \in \mathbb{S}_{n}$ such that
$(\boxtimes)_{9} f_{i}[G] \leq_{4 \ell}^{*} h^{*}$ and for every $\rho \in{ }^{\ell} n$ the condition $h^{*} * \rho$ decides the value of $\underset{\sim}{\tilde{\tau}} \upharpoonright m_{i+1}$, say $h^{*} * \rho \vdash_{\mathbb{S}_{n}}{ }^{\prime} \tau \mid m_{i+1}=\sigma_{\rho} "$.
Then, going back to \mathbf{V} we choose a \mathbb{P}-name $h^{*, \eta}$ for a condition in \mathbb{S}_{n}, a sequence $\bar{\sigma}^{\eta}=\left\langle\sigma_{\rho}^{\eta}: \rho \in{ }^{\ell} n\right\rangle$ and a condition $q_{\eta}^{i+1} \geq p_{\eta}^{i+1}$ such that

$$
q_{\eta}^{i+1} \Vdash_{\mathbb{P}} "{\underset{\sim}{h}}^{*, \eta}, \bar{\sigma}^{\eta} \text { are as in }(\boxtimes)_{9} " .
$$

The condition q_{η}^{i+1} is treated as an inning of Antigeneric at stage k of the subgame of $\partial_{n}^{\ominus}(p, \mathbb{P})$ and the process continues.

After the subgame of level $i+1$ is completed, we have defined \bar{p}^{i+1} and \bar{q}^{i+1}. Since for every $\eta \in \max \left(s_{i+1}\right)$ we have that $p_{\eta}^{i+1} \geq q_{\eta \backslash(i+1)}^{i}$, we may use $(\boxtimes)_{8}^{\varepsilon}$ and choose $\rho(\eta):[j, \ell) \rightarrow n\left(\right.$ for $\left.\eta \in \max \left(s_{i+1}\right)\right)$ such that
$(\boxtimes)_{10}$ if $\eta, \eta^{\prime} \in \max \left(s_{i+1}\right)$ are distinct and $\theta, \theta^{\prime} \in{ }^{j} n$, and $\rho=\theta^{\wedge} \rho(\eta), \rho^{\prime}=$ $\theta^{\prime}-\rho\left(\eta^{\prime}\right)$, then $\sigma_{\rho}^{\eta} \neq \sigma_{\rho^{\prime}}^{\eta^{\prime}}$.
Let $\underset{\sim}{f_{i+1}}$ be a \mathbb{P}-name for a condition in \mathbb{S}_{n} such that $\Vdash_{\mathbb{P}} f_{\sim} \leq_{i+1}^{*}{\underset{\sim}{i+1}}^{f}$ and

$$
q_{\eta}^{i+1} \vdash_{\mathbb{P}} " \underset{\sim}{h^{*, \eta}} \leq_{i+1}^{*} \underset{\sim}{f}{\underset{i}{ }+1} \text { and }\left(\forall \theta \in{ }^{j} n\right)\left(\underset{\sim}{f}{\underset{i}{ }+1} * \theta={\underset{\sim}{h}}^{*, \eta} *\left(\theta^{`} \rho(\eta)\right)\right) " .
$$

Also, for $\eta \in \max \left(s_{i+1}\right)$ and $\rho \in{ }^{j} n$, we let $\sigma_{\rho, \eta}^{i+1}=\sigma_{\rho \backslash \rho(\eta)}^{\eta}$. This completes the description of what happens at the stage $i+1$ of the construction (one easily checks that $(\boxtimes)_{1}-(\boxtimes)_{7}$ are satisfied). Thus we have finished the description of the inductive step of the construction of $s_{i}, \bar{\eta}^{i}, \bar{p}^{i}, \bar{q}^{i}, \underset{\sim}{f}($ for $i<\omega)$.

After the construction is carried out we may pick a condition $q \in \mathbb{P}$ stronger than p and such that for each $i<\omega$ the family $\left\{q_{\eta}^{i}: \eta \in \max \left(s_{i}\right)\right\}$ is predense above q (possible by $\left.(\boxtimes)_{1}\right)$.

Suppose that $G \subseteq \mathbb{P}$ is generic over $\mathbf{V}, q \in G$. Then there is $\eta \in{ }^{\omega}(n+1)$ such that $\eta \upharpoonright(i+1) \in \max \left(s_{i}\right)$ and $q_{\eta \upharpoonright(i+1)}^{i} \in G$ for each $i<\omega$. Therefore we may use $(\boxtimes)_{3}$ to conclude that there is a condition $g \in \mathbb{S}_{n}$ stronger than all $f_{i}[G]$. Going back to \mathbf{V}, we may choose a \mathbb{P}-name $\underset{\sim}{g}$ for a condition in \mathbb{S}_{n} such that $q \Vdash_{\mathbb{P}} \vdash_{\mathbb{P}}(\forall i<\omega)(\underset{\sim}{f} i \leq \underset{\sim}{g})$.

Note that for each $i<\tilde{\omega}$ the family $\left\{\left(q_{\eta}^{i}, f_{i} * \rho\right): \eta \in \max \left(s_{i}\right)\right.$ and $\left.\rho \in \tilde{[}^{\lfloor i / 4\rfloor} n\right\}$ is predense in $\mathbb{P} * * \mathbb{S}_{n}$ above $(q, \underset{\sim}{g})$, and hence $\left(\underset{\text { by }}{ }(\boxtimes)_{5}\right)$

$$
(q, \underset{\sim}{g}) \Vdash_{\mathbb{P}_{*} \mathbb{S}_{n}} \text { " } \underset{\sim}{ } \upharpoonright m_{i} \in\left\{\sigma_{\rho, \eta}^{i}: \eta \in \max \left(s_{i}\right) \text { and } \rho \in{ }^{\lfloor i / 4\rfloor} n\right\} \text { for every odd } i<\omega "
$$

Also,
$(\boxtimes)_{11}$ if $i \geq 3$ is odd, $\eta \in \max \left(s_{i}\right), \rho \in{ }^{\lfloor i / 4\rfloor} n$ and $\eta^{\prime}=\eta \upharpoonright(i-1)$ and $\rho^{\prime}=$ $\rho\left\lceil\lfloor(i-2) / 4\rfloor\right.$, then $\eta^{\prime} \in \max \left(s_{i-2}\right)$ and $\sigma_{\rho^{\prime}, \eta^{\prime}}^{i-2}=\sigma_{\rho, \eta}^{i}\left\lceil m_{i-2}\right.$.
[Why? Since st is a nice strategy, $\eta \upharpoonright i \in \max \left(s_{i-1}\right)$ and $\eta^{\prime} \in \max \left(s_{i-2}\right)$. It follows from $(\boxtimes)_{1}$ that $q_{\eta^{\prime}}^{i-2} \leq q_{\eta \upharpoonright i}^{i-1} \leq q_{\eta}^{i}$ and by $(\boxtimes)_{3}$ we have $q_{\eta}^{i} \Vdash_{\mathbb{P}}{\underset{\sim}{i-2}}_{f_{i-2}}^{\leq_{i-1}^{*}} \underset{\sim}{f_{i}}$. Therefore $q_{\eta}^{i} \vdash_{\mathbb{P}}{\underset{\sim}{i-2}}^{f_{i}} * \rho^{\prime} \leq \underset{\sim}{f} f_{i} * \rho$ and $\left(q_{\eta^{\prime}}^{i-2},{\underset{\sim}{i-2}}^{f_{i-2}} * \rho^{\prime}\right) \leq\left(q_{\eta}^{i},{\underset{\sim}{i}}_{i} * \rho\right)$, so using $(\boxtimes)_{5}$ we may conclude that $\sigma_{\rho^{\prime}, \eta^{\prime}}^{i-2}=\sigma_{\rho, \eta}^{i}\left\lceil m_{i-2}\right.$.]

Let $T=\left\{\nu \in{ }^{\omega>} \omega:(\exists i<\omega \operatorname{odd})\left(\exists \eta \in \max \left(s_{i}\right)\right)\left(\exists \rho \in{ }^{\lfloor i / 4\rfloor} n\right)\left(\nu \unlhd \sigma_{\rho, \eta}^{i}\right)\right\}$. Then T is a perfect tree and $(q, g) \Vdash_{\mathbb{P} * S_{n} \tau} \tau \in[T]$. So the theorem will readily follow once we show that T is n-ary. Tõ this end we are going to argue that
$(\boxtimes)_{12}$ if $i \geq 3$ is odd, $\eta \in \max \left(s_{i}\right), \rho \in{ }^{\lfloor i / 4\rfloor} n$, then

$$
\mid\left\{\sigma_{\pi, \nu}^{i}: \nu \in \max \left(s_{i}\right) \text { and } \pi \in{ }^{\lfloor i / 4\rfloor} n \& \sigma_{\rho, \eta}^{i}\left|m_{i-2}=\sigma_{\pi, \nu}^{i}\left\lceil m_{i-2}\right\}\right| \leq n\right.
$$

Case A: $\quad i=4 j+1$ for some $j<\omega$. Suppose that $\eta, \nu \in \max \left(s_{i}\right), \rho, \pi \in{ }^{\lfloor i / 4\rfloor} n$ are such that $\sigma_{\rho, \eta}^{i} \neq \sigma_{\pi, \nu}^{i}$ but $\sigma_{\rho, \eta}^{i} \upharpoonright m_{i-2}=\sigma_{\pi, \nu}^{i} \backslash m_{i-2}$. The latter and $(\boxtimes)_{7}\left(\right.$ and $\left.(\boxtimes)_{11}\right)$ imply that $\eta \upharpoonright^{\rho, \eta}(i-1) \stackrel{\mu}{=} \nu\lceil(i-1)$, and since $i-1, i \notin K$ we get that $\eta(i-1)=\nu(i-1)=$ $n=\eta(i)=\nu(i)($ remember that st is nice for $K)$, so $\eta=\nu$. If $\rho \upharpoonright(j-1) \neq \pi \upharpoonright(j-1)$, then let $\rho^{\prime}=\rho \upharpoonright(j-1) \succ\langle\pi(j-1)\rangle$, otherwise $\rho^{\prime}=\pi$.

Suppose $\rho^{\prime} \neq \pi$. Let $\underset{\sim}{g}$ be (a $\mathbb{P P}$-name for) $\underset{\sim}{f} \cup\left\{\left(\operatorname{FP}_{j-1}(\underset{\sim}{f}), \pi(j-1)\right)\right\}$ and $q=q_{\eta}^{i}$. Then $q \geq q_{\eta \upharpoonright(i-1)}^{i-2}, q \Vdash \underset{\sim}{f_{i-2}} \leq_{i-2}^{*} \underset{\sim}{g}$, and

$$
q \Vdash " \underset{\sim}{g} *\left(\rho^{\prime} \upharpoonright(j-1)\right)=\underset{\sim}{f} f_{i} * \rho^{\prime} \text { and } \underset{\sim}{g} *(\pi \upharpoonright(j-1))=\underset{\sim}{f} i * \pi " .
$$

Hence
$\left(q, \underset{\sim}{g} *\left(\rho^{\prime} \upharpoonright(j-1)\right) \Vdash " \underset{\sim}{\tau} \upharpoonright m_{i}=\sigma_{\rho^{\prime}, \eta}^{i} " \quad\right.$ and $\quad\left(q, \underset{\sim}{g} *(\pi \upharpoonright(j-1)) \Vdash " \underset{\sim}{\tau} \upharpoonright m_{i}=\sigma_{\pi, \eta}^{i} "\right.$.

Now we use our assumption that $\sigma_{\rho, \eta}^{i} \upharpoonright m_{i-2}=\sigma_{\pi, \eta}^{i} \upharpoonright m_{i-2}$ (and $(\boxtimes)_{11}$) to conclude that $\sigma_{\rho^{\prime}, \eta}^{i} \upharpoonright m_{i-2}=\sigma_{\pi, \eta}^{i} \upharpoonright m_{i-2}$. Consequently, $\sigma_{\rho^{\prime}, \eta}^{i}=\sigma_{\pi, \eta}^{i}$ (remember $(\boxtimes)_{6}$ for $i-2$, $\eta \upharpoonright(i-1), \rho^{\prime} \upharpoonright(j-1)$ and $\left.\pi \upharpoonright(j-1)\right)$. Trivially the same conclusion holds if $\rho^{\prime}=\pi$, so we have justified that

$$
\begin{aligned}
& \left\{\sigma_{\pi, \nu}^{i}: \nu \in \max \left(s_{i}\right) \text { and } \pi \in{ }^{\lfloor i / 4\rfloor} n \text { and } \sigma_{\rho, \eta}^{i} \upharpoonright m_{i-2}=\sigma_{\pi, \nu}^{i}\left\lceil m_{i-2}\right\}\right. \\
& \qquad \subseteq\left\{\sigma_{\pi, \eta}^{i}: \pi \in{ }^{j} n \text { and } \rho \upharpoonright(j-1)=\pi \upharpoonright(j-1)\right\}
\end{aligned}
$$

and the latter set is of size at most n.
Case B: $\quad i=4 j+3$ for some $j<\omega$. Again, let us assume that $\eta, \nu \in \max \left(s_{i}\right)$, $\rho, \pi \in{ }^{\lfloor i / 4\rfloor} n$ are such that $\sigma_{\rho, \eta}^{i} \neq \sigma_{\pi, \nu}^{i}$ but $\sigma_{\rho, \eta}^{i}\left\lceil m_{i-2}=\sigma_{\pi, \nu}^{i}\left\lceil m_{i-2}\right.\right.$. Then, as in the previous case, $(\boxtimes)_{7}$ implies $\eta \upharpoonright(i-1)=\nu\lceil(i-1)$. Also $\lfloor i / 4\rfloor=j=\lfloor(i-2) / 4\rfloor$, so $\rho \upharpoonright\lfloor(i-2) / 4\rfloor=\rho, \pi\left\lceil\lfloor(i-2) / 4\rfloor=\pi\right.$. Now, if $\rho=\pi$, then trivially $\sigma_{\pi, \nu}^{i}=\sigma_{\rho, \nu}^{i}$. If $\rho \neq \pi$, then we use $(\boxtimes)_{6}$ (with $i-2, \rho, \pi, q_{\eta}^{i},{\underset{\sim}{x}}_{i}$ here in place of $i, \rho, \rho^{\prime}, q, \underset{\sim}{g}$ there, respectively) to argue that $\sigma_{\pi, \nu}^{i}=\sigma_{\rho, \nu}^{i}$. Consequently

$$
\begin{aligned}
&\left\{\sigma_{\pi, \nu}^{i}: \nu \in \max \left(s_{i}\right) \text { and } \pi \in{ }^{\lfloor i / 4\rfloor} n \text { and } \sigma_{\rho, \eta}^{i} \upharpoonright m_{i-2}=\sigma_{\pi, \nu}^{i}\left\lceil m_{i-2}\right\}\right. \\
& \subseteq\left\{\sigma_{\rho, \nu}^{i}: \nu \in \max \left(s_{i}\right) \text { and } \eta \upharpoonright(i-2)=\nu \upharpoonright(i-2)\right\}
\end{aligned}
$$

and the latter set is of size at most n.
Now in both cases we easily get the assertion of $(\boxtimes)_{12}$, completing the proof of the theorem.

References

[1] J. Cichoń, A. Rosłanowski, J. Steprāns, and B. Węglorz, Combinatorial properties of the ideal \mathfrak{P}_{2}. J. Symbolic Logic 58(1993), no. 1, 42-54.
[2] W. Dȩbski, J. Kleszcz, and S. Plewik, Perfect sets of independent functions. Acta Univ. Carolin. Math. Phys. 33(1992), no. 2, 31-33.
[3] S. Geschke, More on convexity numbers of closed sets in \mathbb{R}^{n}. Proc. Amer. Math. Soc. 133(2005), no. 5, 1307-1315 (electronic).
[4] S. Geschke and M. Kojman, Convexity numbers of closed sets in \mathbb{R}^{n}. Proc. Amer. Math. Soc. 130(2002), no. 10, 2871-2881 (electronic).
[5] S. Geschke, M. Kojman, W. Kubiś, and R. Schipperus, Convex decompositions in the plane and continuous pair colorings of the irrationals. Israel J. Math. 131(2002), 285-317.
[6] M. Goldstern, Tools for your forcing construction. In: Set Theory of the Reals. Israel Math. Conf. Proc. 6, Bar-Ilan Univ., Ramat Gan, 1993, pp. 305-360.
[7] T. Jech, Set theory. The third millennium edition, revised and expanded. Springer-Verlag, Berlin, 2003.
[8] S. Kamo, Some remarks about Mycielski ideals. Colloq. Math. 65(1993), no. 2, 291-299.
[9] J. Kellner, Preserving non-null with Suslin ${ }^{+}$forcing. Arch. Math. Logic 45(2006), no. 6, 649-664.
[10] J. Mycielski, On the axiom of determinateness. II Fund. Math. 59(1966), 203-212.
[11] \longrightarrow Some new ideals of sets on the real line. Coll. Math. 20(1969), 71-76.
[12] L. Newelski and A. Rosłanowski, The ideal determined by the unsymmetric game. Proc. Amer. Math. Soc. 117(1993), no. 3, 823-831.
[13] A. Rosłanowski, On game ideals. Colloq. Math. 59(1990), no. 2, 159-168.
$[14]$ ——Mycielski ideals generated by uncountable systems. Colloq. Math. 66(1994), no. 2, 187-200.
[15] , n-localization property. J. Symbolic Logic 71(2006), no. 3, 881-902.
[16] J. D. Sharp and S. Thomas, Uniformization problems and the cofinality of the infinite symmetric group. Notre Dame J. Formal Logic 35(1994), no. 3, 328-345.
[17] S. Shelah, Properness without elementaricity. J. Appl. Anal. 10(2004), no. 2, 169-289.
[18] S. Shelah and J. Steprāns, The covering numbers of Mycielski ideals are all equal. J. Symbolic Logic 66(2001), no. 2, 707-718.

Department of Mathematics, University of Nebraska at Omaha, Omaha, NE 68182-0243, U.S.A. e-mail: roslanow@member.ams.org

Department of Mathematics, York University, Toronto, ON, M3J 1P3
e-mail: steprans@yorku.ca

[^0]: Received by the editors February 8, 2006; revised June 9, 2007.
 The first author acknowledges partial support from the United States-Israel Binational Science Foundation (Grant no. 2002323). The research of the second author was partially supported by NSERC of Canada.

 AMS subject classification: Primary: 03E40; secondary: 03 E 35.
 Keywords: n-localization property, the Silver forcing, CS iterations.
 (c)Canadian Mathematical Society 2008.

