Canad. Math. Bull. Vol. 51 (4), 2008 pp. 593-603

Chasing Silver

Andrzej Rosłanowski and Juris Steprāns

Abstract. We show that limits of CS iterations of the *n*-Silver forcing notion have the *n*-localization property.

1 Introduction

This paper is concerned with the *n*-localization property of the *n*-Silver forcing notion and countable support (CS) iterations of such forcings. The property of *n*localization was introduced by Newelski and Rosłanowski [12, p. 826].

Definition 1.1 Let *n* be an integer greater than 1.

- (i) A tree *T* is an *n*-ary tree provided that $(\forall s \in T)(|\operatorname{succ}_T(s)| \leq n)$.
- (ii) A forcing notion \mathbb{P} has the *n*-localization property if

 $\Vdash_{\mathbb{P}} `` (\forall f \in {}^{\omega}\omega)(\exists T \in \mathbf{V})(T \text{ is an } n \text{-ary tree and } f \in [T]) ".$

Later the *n*-localization property, the σ -ideal generated by *n*-ary trees, and the *n*-Sacks forcing notion \mathbb{D}_n (see Definition 2.1) were applied to problems on convexity numbers of closed subsets of \mathbb{R}^n , ([3–5]).

We do not yet have any result of the form "CS iteration of proper forcing notions with the *n*-localization property has the *n*-localization". A somewhat uniform and general treatment of preserving the *n*-localization was recently presented in [15]. However, that treatment does not cover the *n*-Silver forcing notion S_n (see Definition 2.1). As a matter of fact, at one point it was not clear if S_n has the property at all. It was stated in [12, Theorem 2.3] that the same proof as for D_n works also for CS iterations and products of the *n*-Silver forcing notions S_n (see Definition 2.1(3)). Perhaps some old wisdom got lost, but it does not appear likely that *the same arguments work for the n-Silver forcing* S_n . In the present paper we correct this gap and provide a full proof that CS iterations of S_n (and other forcings listed in Definition 2.1) have the *n*-localization property, see Corollary 2.6.

Our main result, Theorem 2.5, seems to be very S_n -specific and it is not clear to what extent it may be generalized. In particular, the following general problem remains open.

Received by the editors February 8, 2006; revised June 9, 2007.

The first author acknowledges partial support from the United States-Israel Binational Science Foundation (Grant no. 2002323). The research of the second author was partially supported by NSERC of Canada.

AMS subject classification: Primary: 03E40; secondary: 03E35.

Keywords: *n*-localization property, the Silver forcing, CS iterations.

[©]Canadian Mathematical Society 2008.

Problem 1.2 Do CS iterations of proper forcing notions with the *n*-localization property have the *n*-localization property? What if we restrict ourselves to (s)nep forcing notions (see Shelah [17]) or even $Suslin^+$ (see [6,9])?

1.1 Notation

Our notation is rather standard and compatible with that of classical textbooks [7]. In forcing, however, we keep the older convention that *a stronger condition is the larger one*.

- (i) *n* is our fixed integer, $n \ge 2$.
- (ii) For two sequences η, ν we write $\nu \triangleleft \eta$ whenever ν is a proper initial segment of η , and $\nu \trianglelefteq \eta$ when either $\nu \triangleleft \eta$ or $\nu = \eta$. The length of a sequence η is denoted by $h(\eta)$.
- (iii) A *tree* is a family of finite sequences closed under initial segments. For a tree T and $\eta \in T$ we define *the successors of* η *in* T and the *maximal points of* T by:

succ_T(
$$\eta$$
) = { $\nu \in T : \eta \lhd \nu$ and $\neg (\exists \rho \in T)(\eta \lhd \rho \lhd \nu)$ },
max(T) = { $\nu \in T :$ there is no $\rho \in T$ such that $\nu \lhd \rho$ }.

For a tree *T* the family of all ω -branches through *T* is denoted by [T].

(iv) For a forcing notion \mathbb{P} , all \mathbb{P} -names for objects in the extension via \mathbb{P} will be denoted with a tilde below, *e.g.*, $\underline{\tau}$, \underline{X} .

Let us explain what is a possible problem with the *n*-Silver forcing; let us look at the "classical" Silver forcing S_2 . Given a Silver condition f such that $f \Vdash_{S_2} \tau \in {}^{\omega}\omega$, standard arguments allow it to be assumed that the complement of the domain of f can be enumerated in the increasing order as $\{k_i : i < \omega\}$ and that for each $i \in \omega$ and $\rho: \{k_j : j < i\} \rightarrow 2$ the condition $f \cup \rho$ decides the value of $\tau \upharpoonright i$, say $f \cup \rho \Vdash \tau \upharpoonright i = \sigma_{\rho}$. Now one could take the tree

$$T^{\oplus} = \left\{ \nu \in {}^{\omega >} \omega : (\exists i < \omega) (\exists \rho \in {}^{\{k_j : j < i\}} 2) (\nu \trianglelefteq \sigma_{\rho}) \right\}.$$

Easily $p \Vdash \tau \in [T^{\oplus}]$, but T^{\oplus} does not have to be a binary tree! (It could well be that $\sigma_{\rho} = \sigma^*$ for all ρ of length 100 and then $\sigma_{\rho'}$ for ρ' of length 101 are pairwise distinct.) So we would like to make sure that σ_{ρ} for ρ 's of the same length are distinct, but this does not have to be possible. To show that \mathbb{S}_2 has the 2-localization property we have to be a little bit more careful. Let us give a combinatorial result which easily implies that \mathbb{S}_2 has the 2-localization property. Its proof is the heart of our proof of Theorem 2.5.

Fix $\Psi: {}^{\omega>2} \to \omega$. We define $\Psi^*: {}^{\omega>2} \to {}^{\omega>\omega} \omega$ by induction. Let $\Psi^*(\langle \rangle) = \langle \rangle$ and define $\Psi^*(t^{\frown}\langle i \rangle) = \Psi^*(t)^{\frown}\langle \Psi(t^{\frown}\langle i \rangle) \rangle$. If ξ is a partial function from ω to 2 and $\ell \leq \omega$, define $W^{\ell}(\xi) = \{t \in {}^{m}2: m < \min(\ell + 1, \omega) \text{ and } \xi \upharpoonright m \subseteq t\}$ and then define $T^{\ell}(\xi) = \{\Psi^*(t): t \in W^{\ell}(\xi)\}, T(\xi) = T^{\omega}(\xi)$.

Theorem 1.3 For any $\Psi: {}^{\omega>2} \to \omega$ there is a partial function $\xi: \omega \to 2$ with coinfinite domain such that $T(\xi)$ is a binary tree.

594

Proof To begin, two equivalence relations on ${}^{\omega>2}$ will be defined. First, define $s \equiv t$ if and only if $\Psi(t^{\frown}\theta) = \Psi(s^{\frown}\theta)$ for all $\theta \in {}^{\omega>2}$. Next, define $s \sim t$ if and only if $\Psi^*(s) = \Psi^*(t)$.

Now construct by induction on $m < \omega$ an increasing sequence

$$x_0 < x_1 < \cdots < x_m < N_m$$

and $\xi_m: N_m \setminus \{x_0, x_1, \ldots, x_m\} \to 2$ such that $T^{N_m}(\xi_m)$ is a binary branching tree and, moreover, if *s* and *t* are maximal elements of $W^{N_m}(\xi_m)$ and $t \sim s$, then $t \equiv s$. The induction starts with $x_0 = 0$. If the induction has been completed for *m*, then let $x_{m+1} = N_m$. Let $\Delta = \{d_0, d_1, \ldots, d_j\}$ be a set of maximal elements of $W^{N_m}(\xi_m)$ such that precisely one member of each \sim equivalence class belongs to Δ . Now, by induction on $i \leq j$ define N^i and $\xi^i: N^i \setminus (N_m + 1) \to 2$ as follows. Let $N^0 = N_m + 1$ and let $\xi^0 = \emptyset$. Given N^i and ξ^i , if there is some $N > N^i$ and $\xi \supseteq \xi^i$ such that $d_i \cap \langle 0 \rangle \cap \xi \equiv d_i \cap \langle 1 \rangle \cap \xi$, then let $N^{i+1} = N$ and let $\xi^{i+1} = \xi$. Otherwise it must be the case that $d_i \cap \langle 0 \rangle \cap \xi^i \neq d_i \cap \langle 1 \rangle \cap \xi^{i+1}$. Finally, let $N_{m+1} = N^j$ and $\xi_{m+1} = \xi_m \cup \xi^j$.

To see that this works, it must be shown that $T^{N_{m+1}}(\xi_{m+1})$ is a binary tree and that if s and t are maximal elements of $W^{N_{m+1}}(\xi_{m+1})$ and $t \sim s$, then $t \equiv s$. To check the first condition it suffices to take t a maximal element of $T^{N_m}(\xi_m)$ and check that the tree $T^{N_{m+1}}(\xi_{m+1})$ above t is binary. Then $t = \Psi^*(d_i)$ for some i, and the tree $T^{N_{m+1}}(\xi_{m+1})$ above t is generated by all $\Psi^*(d^{\frown}\langle a \rangle^{\frown}\xi^j)$ where $d \sim d_i$ and $a \in 2$. Note however that by the induction hypothesis, if $d \sim d_i$, then $d \equiv d_i$ and so

$$\Psi^*(d^{\frown}\langle a \rangle^{\frown} \xi^j) = \Psi^*(d_i^{\frown}\langle a \rangle^{\frown} \xi^j).$$

Therefore $\Psi^*(d^{\langle a \rangle}\xi^j)$ depends only on *a* and not on *d* and so $T^{N_{m+1}}(\xi_{m+1})$ is binary above *t*.

To check the second condition, suppose that *s* and *t* are maximal elements of $W^{N_{m+1}}(\xi_{m+1})$ and $t \sim s$. This implies that $t \upharpoonright N_m \sim s \upharpoonright N_m$ and hence $t \upharpoonright N_m \equiv s \upharpoonright N_m$. Let *i* be such that $t \upharpoonright N_m \sim s \upharpoonright N_m \sim d_i$. If $t(N_m) = s(N_m) = y$, then $t = t \upharpoonright N_m \frown \langle y \rangle \frown \xi^j$ and $s = s \upharpoonright N_m \frown \langle y \rangle \frown \xi^j$ and, since $t \upharpoonright N_m \equiv s \upharpoonright N_m$, it is immediate that $t \equiv s$. So assume that $t(N_m) = 0$ and $s(N_m) = 1$. By the same argument it follows that $t \equiv d_i \frown \langle 0 \rangle \frown \xi^j$ and $s \equiv d_i \frown \langle 1 \rangle \frown \xi^j$. Hence it suffices to show that $d_i \frown \langle 0 \rangle \frown \xi^j \equiv d_i \frown \langle 1 \rangle \frown \xi^j$. Note that $d_i \frown \langle 0 \rangle \frown \xi^j = d_i \frown \langle 1 \rangle \frown \xi^j$. This means that it must have been possible to find ξ^i such that $d_i \frown \langle 0 \rangle \frown \xi^i \equiv d_i \frown \langle 1 \rangle \frown \xi^j$. It follows that $d_i \frown \langle 0 \rangle \frown \xi^j \equiv d_i \frown \langle 1 \rangle \frown \xi^j$.

After the construction is carried out we let $\xi = \bigcup_{m < \omega} \xi_m$.

2 The Result and Its Applications

Let us start by recalling the definitions of the forcing notions which have appeared in the literature in the context of the *n*-localization property.

Definition 2.1 (i) The *n*-Sacks forcing notion \mathbb{D}_n consists of perfect trees $p \subseteq {}^{\omega >} n$ such that $(\forall \eta \in p)(\exists \nu \in p)(\eta \lhd \nu \text{ and } \operatorname{succ}_p(\eta) = n)$. The order of \mathbb{D}_n is the

reverse inclusion, *i.e.*, $p \leq_{\mathbb{D}_n} q$ (*q* is \mathbb{D}_n -stronger than *p*) if and only if $q \subseteq p$. (See [12].)

- (ii) The uniform n-Sacks forcing notion \mathbb{Q}_n consists of perfect trees $p \subseteq {}^{\omega>n}$ such that $(\exists X \in [\omega]^{\omega})(\forall \eta \in p)(\operatorname{lh}(\eta) \in X \Rightarrow \operatorname{succ}_p(\nu) = n)$. The order of \mathbb{Q}_n is the reverse inclusion, *i.e.*, $p \leq_{\mathbb{Q}_n} q$ (q is \mathbb{Q}_n -stronger than p) if and only if $q \subseteq p$. (See [14].)
- (iii) Let us assume that G = (V, E) is a hypergraph on a Polish space V such that
 - $E \subseteq [V]^{n+1}$ is open in the topology inherited from V^{n+1} ,
 - $(\forall e \in E)(\forall v \in V \setminus e)(\exists w \in e)((e \setminus \{w\}) \cup \{v\} \in E),$
 - for every non-empty open subset U of V and every countable family \mathfrak{F} of subsets of U, either $\bigcup \mathfrak{F} \neq U$ or $[F]^{n+1} \cap E \neq \emptyset$ for some $F \in \mathfrak{F}$.

The Geschke forcing notion \mathbb{P}_G for G consists of all closed sets $C \subseteq V$ such that the hypergraph $(C, E \cap [C]^{n+1})$ is uncountably chromatic on every non-empty open subset of C. The order of \mathbb{P}_G is the inverse inclusion, *i.e.*, $C \leq_{\mathbb{P}_G} D$ (D is \mathbb{P}_G -stronger than C) if and only if $D \subseteq C$. (See [3].)

- **Definition 2.2** (i) The *n*-Silver forcing notion S_n consists of partial functions f such that $Dom(f) \subseteq \omega$, $Rng(f) \subseteq n$ and $\omega \setminus Dom(f)$ is infinite. The order of S_n is the inclusion, *i.e.*, $f \leq_{S_n} g$ (g is S_n -stronger than f) if and only if $f \subseteq g$.
- (ii) For an integer $i \in \omega$ and a condition $f \in S_n$ we let $\operatorname{FP}_i(f)$ to be the unique element of $\omega \setminus \operatorname{Dom}(f)$ such that $|\operatorname{FP}_i(f) \setminus \operatorname{Dom}(f)| = i$. (The FP stands for *Free Point*.)
- (iii) A binary relation \leq_i^* on \mathbb{S}_n is defined by $f \leq_i^* g$ if and only if $(f, g \in \mathbb{S}_n \text{ and})$ $f \leq_{\mathbb{S}_n} g$ and $(\forall j \in \omega)(j < \lfloor i/4 \rfloor \Rightarrow \operatorname{FP}_i(f) = \operatorname{FP}_i(g)).$
- (iv) For $f \in S_n$ and $\sigma: N \to n$, $N < \omega$ we define $f * \sigma$ as the unique condition in S_n such that $\text{Dom}(f * \sigma) = \text{Dom}(f) \cup \{\text{FP}_i(f) : i < N\}, f \subseteq f * \sigma$ and $f * \sigma(\text{FP}_i(f)) = \sigma(i)$ for i < N.

The following properties of forcing notions were introduced in [15] to deal with the *n*-localization of CS iterations.

Definition 2.3 Let \mathbb{P} be a forcing notion.

- (i) For a condition p ∈ P we define a game ∂[⊖]_n(p, P) of two players, *Generic* and *Antigeneric*. A play of ∂[⊖]_n(p, P) lasts ω moves, and during it the players construct a sequence ⟨(s_i, ηⁱ, pⁱ, qⁱ) : i < ω⟩ as follows. At a stage i < ω of the play:
 - (α) First Generic chooses a finite *n*-ary tree s_i such that $|\max(s_0)| \le n$, and if i = j + 1, then s_j is a subtree of s_i such that

 $(\forall \eta \in \max(s_i)) (\exists \ell < \operatorname{lh}(\eta)) (\eta \restriction \ell \in \max(s_j)),$

and

(

$$\forall \nu \in \max(s_j) \left(0 < \left| \left\{ \eta \in \max(s_i) : \nu \lhd \eta \right\} \right| \le n \right).$$

(β) Next Generic picks an enumeration $\bar{\eta}^i = \langle \eta^i_{\ell} : \ell < k_i \rangle$ of max(s_i) (so $k_i < \omega$), and then the two players play a subgame of length k_i , choosing

successive terms of a sequence $\langle p_{\eta_{\ell}^{i}}^{i}, q_{\eta_{\ell}^{i}}^{i} : \ell < k_{i} \rangle$. At a stage $\ell < k_{i}$ of the subgame:

- $(\gamma)^i_{\ell}$ First Generic picks a condition $p^i_{\eta^i_{\ell}} \in \mathbb{P}$ such that If $j < i, \nu \in \max(s_j)$ and $\nu \lhd \eta^i_{\ell}$, then $q^j_{\nu} \le p^i_{\eta^i_{\ell}}$ and $p \le p^i_{\eta^i_{\ell}}$.
- $(\delta)^i_{\ell}$ Then Antigeneric answers with a condition $q^i_{n^i_{\ell}}$ stronger than $p^i_{n^i_{\ell}}$.

After the subgame of this stage is over, the players put $\bar{p}^i = \langle p^i_{\eta^i_\ell} : \ell < k_i \rangle$ and $\bar{q}^i = \langle q^i_{\eta^i_\ell} : \ell < k_i \rangle$.

Finally, Generic wins the play $\langle (s_i, \bar{\eta}^i, \bar{p}^i, \bar{q}^i) : i < \omega \rangle$ if and only if

- (*) there is a condition $q \ge p$ such that for every $i < \omega$ the family $\{q_{\eta}^{i} : \eta \in \max(s_{i})\}$ is predense above q.
- (ii) We say that P has the ⊖_n-property whenever Generic has a winning strategy in the game ∂_n[⊖](p, P) for any p ∈ P.
- (iii) Let $K \in [\omega]^{\omega}$, $p \in \mathbb{P}$. A strategy st for Generic in $\partial_n^{\ominus}(p, \mathbb{P})$ is *K*-nice whenever $(\boxtimes_{\text{nice}}^K)$ if so far Generic used st, and s_i and $\bar{\eta}^i = \langle \eta_{\ell}^i : \ell < k \rangle$ are given to that player as innings at a stage $i < \omega$, then
 - $-s_i \subseteq \bigcup_{j < i+1} {}^j(n+1), \max(s_i) \subseteq {}^{(i+1)}(n+1);$
 - if $\eta \in \max(s_i)$ and $i \notin K$, then $\eta(i) = n$;
 - if $\eta \in \max(s_i)$ and $i \in K$, then $\operatorname{succ}_{s_i}(\eta \restriction i) = n$;
 - if $i \in K$ and $\langle p_{\eta_{\ell}^{i}}^{i}, q_{\eta_{\ell}^{i}}^{i} : \ell < k \rangle$ is the result of the subgame of level i in which Generic uses **st**, then the conditions $p_{\eta_{\ell}^{i}}^{i}$ (for $\ell < k$) are pairwise incompatible.
- (iv) We say that \mathbb{P} has the *nice* \ominus_n -*property* if for every $K \in [\omega]^{\omega}$ and $p \in \mathbb{P}$, Generic has a *K*-nice winning strategy in $\partial_n^{\ominus}(p, \mathbb{P})$.

Theorem 2.4 (See [15, 3.1, 1.6, 1.4]) The limits of CS iterations of the forcing notions defined in Definitions 2.1 and 2.2 have the nice \ominus_n -property.

Now we may formulate our main result.

Theorem 2.5 Assume that \mathbb{P} has the nice \ominus_n -property and the n-localization property. Let S_n be the \mathbb{P} -name for the n-Silver forcing notion. Then the composition $\mathbb{P} * S_n$ has the n-localization property.

The proof of Theorem 2.5 is presented in the following section. Let us note here that this theorem implies *n*-localization for CS iterations of the forcing notions mentioned earlier.

Corollary 2.6 Let $\overline{\mathbb{Q}} = \langle \mathbb{P}_{\xi}, \mathbb{Q}_{\xi} : \xi < \gamma \rangle$ be a CS iteration such that, for every $\xi < \gamma$, \mathbb{Q}_{ξ} is a \mathbb{P}_{ξ} -name for one of the forcing notions defined in Definitions 2.1 and 2.2. Then $\widetilde{\mathbb{P}}_{\gamma} = \lim(\overline{\mathbb{Q}})$ has the n-localization property.

Proof By induction on γ .

If $\gamma = \gamma_0 + 1$ and \mathbb{Q}_{γ_0} is a \mathbb{P}_{γ_0} -name for the *n*-Silver forcing notion, then Theorem 2.5 applies. (Note that \mathbb{P}_{γ_0} has the nice \ominus_n -property by Theorem 2.4 and it has the *n*-localization property by the inductive hypothesis.)

A. Rosłanowski and J. Steprāns

If $\gamma = \gamma_0 + 1$ and \mathbb{Q}_{γ_0} is a \mathbb{P}_{γ_0} -name for \mathbb{D}_n or \mathbb{Q}_n or \mathbb{P}_G , then [15, Theorem 3.5(2)] applies. (Note that $\tilde{\mathbb{P}}_{\gamma_0}$ has the nice \ominus_n -property by Theorem 2.4 and it has the *n*-localization property by the inductive hypothesis.)

If γ is limit, then [15, Theorem 3.5(1)] applies.

The first immediate consequence of Corollary 2.6 is that if n < m, then the forcing notions \mathbb{D}_n and \mathbb{D}_m differ in a strong sense: CS iterations of the former forcing do not add generic objects for the latter forcing. A similar observation can be formulated for the Silver forcing notions, as in the following.

Corollary 2.7 No CS iteration of S_2 adds an S_4 -generic real.

Another application of Corollary 2.6 and the CS iteration of the Silver forcing notion is related to covering numbers of some ideals.

Definition 2.8 Let $2 \le m < \omega$.

(i) For a function $\varphi : {}^{<\omega}m \to m$, put

$$A_{\varphi} = \{ c \in {}^{\omega}m : (\exists k < \omega) (\forall \ell \ge k) (c(\ell) \neq \varphi(c \restriction \ell)) \}$$

We let $\mathfrak{D}_m = \{A \subseteq {}^{\omega}m : A \subseteq A_{\varphi} \text{ for some function } \varphi : {}^{<\omega}m \to m\}.$ (ii) We define

$$\mathfrak{P}_m = \{ A \subseteq {}^{\omega}m : (\forall K \in [\omega]^{\omega}) (\exists f \in {}^Km) (\forall c \in A) (f \notin c) \}, \\ \mathfrak{R}_m = \{ A \subseteq {}^{\omega}m : (\forall f \in \mathbb{S}_m) (\exists g \ge_{\mathbb{S}_m} f) (\forall c \in A) (g \notin c) \}.$$

(iii) The covering number $cov(\Im)$ of an ideal \Im of subsets of a space \mathfrak{X} is defined as

$$\operatorname{cov}(\mathfrak{I}) = \min(|\mathcal{B}| : \mathcal{B} \subseteq \mathfrak{I} \text{ and } \bigcup \mathcal{B} = \mathfrak{X}).$$

Note that \mathfrak{D}_{n+1} is a σ -ideal of subsets of $\omega(n + 1)$, moreover it is the σ -ideal generated by sets of the form [T] for *n*-ary trees $T \subseteq {}^{<\omega}(n + 1)$. The ideals \mathfrak{D}_m appeared implicitly in Mycielski's proof of the determinacy of unsymmetric games on analytic sets in [10] and later were studied, for instance, in [4, 12, 13].

Also \mathfrak{P}_n and \mathfrak{R}_n are σ -ideals of subsets of "*n*. The ideal \mathfrak{P}_n is one of the ideals motivated by the Mycielski ideals of [11]. It was introduced in [13] and later it was studied, for example, in [1, 2, 8, 14, 16, 18]. Shelah and Steprāns [18] showed that $\operatorname{cov}(\mathfrak{P}_n) = \operatorname{cov}(\mathfrak{P}_{n+1}), \operatorname{cov}(\mathfrak{R}_n) \ge \operatorname{cov}(\mathfrak{R}_{n+1})$, and consistently the latter inequality is strict. The consistency result in [18] was actually much stronger and it was obtained by means of finite support iteration of ccc forcing notions. However, if we are interested in the consistency of " $\operatorname{cov}(\mathfrak{R}_n) > \operatorname{cov}(\mathfrak{R}_{n+1})$ " only, then a CS iteration of \mathbb{S}_n will do the following.

Corollary 2.9 Assume CH. Let $\langle \mathbb{P}_{\alpha}, \mathbb{Q}_{\alpha} : \alpha < \omega_2 \rangle$ be a countable support iteration such that $\Vdash_{\mathbb{P}_{\alpha}} \mathbb{Q}_{\alpha} = \mathbb{S}_n$ " (for all $\alpha < \omega_2$). Then

$$\Vdash_{\mathbb{P}_{\omega_2}} "2^{\aleph_0} = \operatorname{cov}(\mathfrak{R}_n) = \operatorname{cov}(\mathfrak{P}_n) = \operatorname{cov}(\mathfrak{P}_{n+1}) = \aleph_2, \\ and \operatorname{cov}(\mathfrak{R}_{n+1}) = \operatorname{cov}(\mathfrak{D}_{n+1}) = \aleph_1".$$

Proof of Theorem 2.5 3

Let $\underline{\tau}$ be a $\mathbb{P} * S_n$ -name for a member of $\omega \omega$. We may assume that for every \mathbb{P} -name ρ we have $\Vdash_{\mathbb{P}*\mathbb{S}_n} \mathfrak{T} \neq \rho$. If $G \subseteq \mathbb{P}$ is generic over V, then we will use the same notation $\underline{\tau}$ for \mathbb{S}_n -name in $\mathbf{V}[G]$ for a member of $\omega \omega$ that is given by the original $\underline{\tau}$ in the extension via $\mathbb{P} * \mathbb{S}_n$.

Let $(p, f) \in \mathbb{P} * S_n$ and let **st** be a winning strategy of Generic in $\partial_n^{\ominus}(p, \mathbb{P})$ which is nice for the set $K = \{4j + 2 : j \in \omega\}$ (see Definition 2.3(iii)).

By induction on *i* we are going to choose for each $i < \omega s_i$, $\bar{\eta}^i$, \bar{p}^i , \bar{q}^i , f_i , and also for $m_i, \bar{\sigma}^i$ for odd $i < \omega$ such that the following conditions $(\boxtimes)_1 - (\boxtimes)_7$ are satisfied.

- $(\boxtimes)_1 \langle s_i, \bar{\eta}^i, \bar{p}^i, \bar{q}^i : i < \omega \rangle$ is a play of $\partial_n^{\ominus}(p, \mathbb{P})$ in which Generic uses st.
- $(\boxtimes)_2 f_i$ is a \mathbb{P} -name for a condition in \mathbb{S}_n , and we stipulate that $f_{-1} = f$.
- $(\boxtimes)_3 q_{\eta}^i \Vdash_{\mathbb{P}} f_{i-1} \leq_i^* f_i \text{ for each } \eta \in \max(s_i).$

For odd $i < \omega$:

- $$\begin{split} (\boxtimes)_4 \ m_i < m_{i+2} < \omega, \bar{\sigma}^i = \langle \sigma^i_{\rho,\eta} : \eta \in \max(s_i) \text{ and } \rho \in {}^{\lfloor i/4 \rfloor} n \rangle, \sigma^i_{\rho,\eta} : m_i \to \omega. \\ (\boxtimes)_5 \ (q^i_\eta, \underline{f}_i * \rho) \Vdash_{\mathbb{P}*\underline{S}_n} `` \underline{\tau} \upharpoonright m_i = \sigma^i_{\rho,\eta} `` \text{ for } \rho \in {}^{\lfloor i/4 \rfloor} n \text{ and } \eta \in \max(s_i). \end{split}$$
- $(\boxtimes)_6$ If $\eta \in \max(s_i)$ and $\rho, \rho': \lfloor i/4 \rfloor \to n$ are distinct but $\sigma_{\rho,\eta}^i = \sigma_{\rho',\eta}^i$, then for every $q \ge q_{\eta}^{i}$ and a \mathbb{P} -name *g* for an *n*-Silver condition and *m*, σ , σ' such that

$$q \Vdash_{\mathbb{P}} \underbrace{f}_{i} \leq_{i}^{*} \underbrace{g}, \quad (q, \underbrace{g} * \rho) \Vdash_{\mathbb{P} * \underbrace{\mathbb{S}}_{n}} \underbrace{\tau} \upharpoonright m = \sigma, \quad (q, \underbrace{g} * \rho') \Vdash_{\mathbb{P} * \underbrace{\mathbb{S}}_{n}} \underbrace{\tau} \upharpoonright m = \sigma'$$

we have $\sigma = \sigma'$.

 $(\boxtimes)_7$ If $\eta, \eta' \in \max(s_i)$ are distinct, $\rho, \rho' \colon \lfloor i/4 \rfloor \to n$, then $\sigma_{\rho,\eta}^i \neq \sigma_{\rho',\eta'}^i$.

So suppose that $i < \omega$ is even and we have already defined $s_{i-1}, \bar{q}^{i-1}, m_{i-1}$ and f_{i-1} (we stipulate $s_{-1} = \{\langle \rangle\}, q_{\langle \rangle}^{-1} = p, f_{-1} = f$ and $m_{-1} = 0$). Let $j = \lfloor i/4 \rfloor$ (so either i = 4j or i = 4j + 2).

The strategy **st** and demand $(\boxtimes)_1$ determine s_i and $\bar{\eta}^i = \langle \eta^i_k : k < k_i \rangle$. To define \bar{p}^i, \bar{q}^i and f_i we consider the following run of the subgame of level i of $\partial_n^{\ominus}(p, \mathbb{P})$. Assume we are at stage $k < k_i$ of the subgame. Now, $p_{\eta_i^i}^i$ is given by the strategy st (and $(\boxtimes)_1$, of course). Suppose for a moment that $G \subseteq \mathbb{P}$ is generic over **V**, $p_{\eta_k^i}^i \in G$. Working in **V**[*G*] we may choose $\bar{\ell}, \bar{L}, g^*, \bar{\sigma}^*, M$ such that

- $(\boxtimes)_8^{\alpha} M = n^j, \bar{\ell} = \langle \ell_m : m \leq M \rangle \text{ and } j = \ell_0 < \cdots < \ell_M, \bar{L} = \langle L_m : m \leq M \rangle \text{ and } j = \ell_0 < \cdots < \ell_M, \bar{L} = \langle L_m : m \leq M \rangle$ $\begin{array}{l} m_{i-1} < L_0 < \cdots < L_M, \\ (\boxtimes)_8^\beta \ g^* \in \mathbb{S}_n, \ f_{i-1}[G] \leq_i^* g^* \ \text{and} \ \bar{\sigma}^* = \langle \sigma_\rho^* : \rho \in {}^{\ell_M} n \rangle, \ \sigma_\rho^* \in {}^{L_M} \omega \ (\text{for} \ \rho \in {}^{\ell_M} n), \end{array}$
- $(\boxtimes)_8^{\gamma} g^* * (\rho | \tilde{\ell_m}) \Vdash_{\mathbb{S}_n} \mathfrak{T} | L_m = \sigma_{\rho}^* | L_m \text{ "for each } m \leq M \text{ and } \rho \in \ell_M n,$
- $(\boxtimes)_8^{\delta}$ if $\rho_0, \rho_1 \in {}^{\ell_M}n, \rho_0 \restriction j \neq \rho_1 \restriction j$ but $\sigma_{\rho_0}^* \restriction L_0 = \sigma_{\rho_1}^* \restriction L_0$, then there is no condition $g \in \mathbb{S}_n$ such that $g^* \leq_i^* g$ and for some $L < \omega$ and distinct $\sigma_0, \sigma_1 \in {}^L \omega$ we have that $g * \rho_0 \Vdash \tau \upharpoonright L = \sigma_0, g * \rho_1 \Vdash \tau \upharpoonright L = \sigma_1$,
- $(\boxtimes)_{\$}^{\varepsilon}$ for each m < M and $\rho_0 \in \ell_m n$ the set $\{\sigma_a^* \mid [L_m, L_{m+1}) : \rho_0 \triangleleft \rho \in \ell_M n\}$ has at least $n^j \cdot k_i + 777$ elements.

599

It should be clear how the construction is done. (First we take care of clause $(\boxtimes)_8^{\delta}$ by going successively through all pairs of elements of ${}^j n$ and trying to force distinct values for initial segments of $\underline{\tau}$, if this is possible. Then we ensure $(\boxtimes)_8^{\varepsilon}$ basically by deciding longer and longer initial segments of $\underline{\tau}$ on fronts/levels of a fusion sequence of conditions in \mathbb{S}_n and using the assumption that $\underline{\tau}$ is forced to be "new".) Now, going back to **V**, we may choose a condition $q_{\eta_k^i}^i \in \mathbb{P}$ stronger than $p_{\eta_k^i}^i$ and a \mathbb{P} -name $g^{*,k}$ for a condition in \mathbb{S}_n and objects $\overline{\ell^k}, \overline{L^k}, \overline{\sigma}^{*,k}$ such that

$$q_{\eta_k^i}^i \Vdash_{\mathbb{P}} ``\bar{\ell}^k, \bar{L}^k, \underline{g}^{*,k}, \bar{\sigma}^{*,k}, n^j \text{ satisfy clauses } (\boxtimes)_8^{\alpha} - (\boxtimes)_8^{\varepsilon} \text{ as } \bar{\ell}, \bar{L}, g^*, \bar{\sigma}^*, M \text{ there ".}$$

The condition $q_{\eta_k^i}^i$ is treated as an inning of Antigeneric at stage *k* of the subgame of $\partial_n^{\ominus}(p, \mathbb{P})$ and the process continues.

After the subgame of level *i* is completed, we have defined \bar{p}^i and \bar{q}^i . We also choose f_i to be a \mathbb{P} -name for an element of \mathbb{S}_n such that $\Vdash_{\mathbb{P}}$ " $f_{i-1} \leq_i^* f_i$ " and $q_{\eta_k^i}^i \Vdash_{\mathbb{P}}$ " $f_i = g^{*,k}$ " for all $k < k_i$ (remember that **st** is nice, so the conditions $q_{\eta_k^i}^i$ are pairwise incompatible). This completes the description of what happens at the stage *i* of the construction (one easily verifies that $(\boxtimes)_1 - (\boxtimes)_3$ are satisfied) and we proceed to the next, i + 1, stage. Note that |(i + 1)/4| = j.

We let $m_{i+1} = \max(L_M^k : k < k_i) + 5$ and let $\ell = \max(\ell_M^k : k < k_i) + 5$. Similarly as at stage i, s_{i+1} and $\bar{\eta}^{i+1} = \langle \eta_k^{i+1} : k < k_{i+1} \rangle$ are determined by the strategy **st** and $(\boxtimes)_1$; note that $\max(s_{i+1}) = \{\nu^\frown \langle n \rangle : \nu \in \max(s_i)\}$ so $k_{i+1} = k_i$. To define $\bar{p}^{i+1}, \bar{q}^{i+1}$ and f_{i+1} we consider the following round of the subgame of level i + 1 of $\partial_n^\ominus(p, \mathbb{P})$. At a stage $k < k_{i+1}$ of the subgame, letting $\eta = \eta_k^{i+1}$, the condition p_{η}^{i+1} is given by the strategy **st**. Suppose for a moment that $G \subseteq \mathbb{P}$ is generic over **V**, $p_{\eta}^{i+1} \in G$. In **V**[*G*] we may choose a condition $h^* \in S_n$ such that

 $(\boxtimes)_9 \quad f_i[G] \leq_{4\ell}^* h^* \text{ and for every } \rho \in {}^{\ell}n \text{ the condition } h^* * \rho \text{ decides the value of } \\ \tilde{\tau} \upharpoonright m_{i+1}, \text{ say } h^* * \rho \Vdash_{\mathbb{S}_n} \tilde{\tau} \upharpoonright m_{i+1} = \sigma_{\rho} \tilde{}^{n}.$

Then, going back to **V** we choose a \mathbb{P} -name $h^{*,\eta}$ for a condition in \mathbb{S}_n , a sequence $\bar{\sigma}^{\eta} = \langle \sigma_{\rho}^{\eta} : \rho \in {}^{\ell}n \rangle$ and a condition $q_{\eta}^{i+1} \ge p_{\eta}^{i+\tilde{1}}$ such that

$$q_{\eta}^{i+1} \Vdash_{\mathbb{P}} `` \underline{h}^{*,\eta}, \overline{\sigma}^{\eta} \text{ are as in } (\boxtimes)_9 ".$$

The condition q_{η}^{i+1} is treated as an inning of Antigeneric at stage *k* of the subgame of $\partial_n^{\ominus}(p, \mathbb{P})$ and the process continues.

After the subgame of level i + 1 is completed, we have defined \bar{p}^{i+1} and \bar{q}^{i+1} . Since for every $\eta \in \max(s_{i+1})$ we have that $p_{\eta}^{i+1} \ge q_{\eta \upharpoonright (i+1)}^i$, we may use $(\boxtimes)_8^{\varepsilon}$ and choose $\rho(\eta) \colon [j, \ell) \to n$ (for $\eta \in \max(s_{i+1})$) such that

 $(\boxtimes)_{10}$ if $\eta, \eta' \in \max(s_{i+1})$ are distinct and $\theta, \theta' \in {}^{j}n$, and $\rho = \theta \cap \rho(\eta), \rho' = \theta' \cap \rho(\eta')$, then $\sigma_{\rho}^{\eta} \neq \sigma_{\rho'}^{\eta'}$.

Let f_{i+1} be a \mathbb{P} -name for a condition in \mathbb{S}_n such that $\Vdash_{\mathbb{P}} f_i \leq_{i+1}^* f_{i+1}$ and

$$q_{\eta}^{i+1} \Vdash_{\mathbb{P}} `` \underline{h}^{*,\eta} \leq_{i+1}^{*} f_{i+1} \text{ and } (\forall \theta \in {}^{j}n) (f_{i+1} * \theta = \underline{h}^{*,\eta} * (\theta \cap \rho(\eta))) ".$$

Also, for $\eta \in \max(s_{i+1})$ and $\rho \in {}^{j}n$, we let $\sigma_{\rho,\eta}^{i+1} = \sigma_{\rho^{-}\rho(\eta)}^{\eta}$. This completes the description of what happens at the stage i + 1 of the construction (one easily checks that $(\boxtimes)_1 - (\boxtimes)_7$ are satisfied). Thus we have finished the description of the inductive step of the construction of $s_i, \bar{\eta}^i, \bar{p}^i, \bar{q}^i, f_i$ (for $i < \omega$).

After the construction is carried out we may pick a condition $q \in \mathbb{P}$ stronger than p and such that for each $i < \omega$ the family $\{q_{\eta}^{i} : \eta \in \max(s_{i})\}$ is predense above q (possible by $(\boxtimes)_{1}$).

Suppose that $G \subseteq \mathbb{P}$ is generic over $\mathbf{V}, q \in G$. Then there is $\eta \in {}^{\omega}(n+1)$ such that $\eta \upharpoonright (i+1) \in \max(s_i)$ and $q^i_{\eta \upharpoonright (i+1)} \in G$ for each $i < \omega$. Therefore we may use $(\boxtimes)_3$ to conclude that there is a condition $g \in \mathbb{S}_n$ stronger than all $f_i[G]$. Going back to \mathbf{V} , we may choose a \mathbb{P} -name g for a condition in \mathbb{S}_n such that $q \upharpoonright \vdash_{\mathbb{P}} (\forall i < \omega)(f_i \leq g)$.

Note that for each $i < \omega$ the family $\{(q_{\eta}^{i}, f_{i} * \rho) : \eta \in \max(s_{i}) \text{ and } \rho \in \lfloor i/4 \rfloor n\}$ is predense in $\mathbb{P} * S_{n}$ above (q, g), and hence $(by (\boxtimes)_{5})$

$$(q,g) \Vdash_{\mathbb{P} * \mathbb{S}_n} \quad `` \underline{\tau} \upharpoonright m_i \in \{ \sigma^i_{\rho,\eta} : \eta \in \max(s_i) \text{ and } \rho \in \lfloor i/4 \rfloor n \} \text{ for every odd } i < \omega \text{ ''}.$$

Also,

 $(\boxtimes)_{11}$ if $i \geq 3$ is odd, $\eta \in \max(s_i)$, $\rho \in \lfloor i/4 \rfloor n$ and $\eta' = \eta \upharpoonright (i-1)$ and $\rho' = \rho \upharpoonright \lfloor (i-2)/4 \rfloor$, then $\eta' \in \max(s_{i-2})$ and $\sigma_{\rho',\eta'}^{i-2} = \sigma_{\rho,\eta}^i \upharpoonright m_{i-2}$.

[Why? Since st is a nice strategy, $\eta \upharpoonright i \in \max(s_{i-1})$ and $\eta' \in \max(s_{i-2})$. It follows from $(\boxtimes)_1$ that $q_{\eta'}^{i-2} \leq q_{\eta \upharpoonright i}^{i-1} \leq q_{\eta}^i$ and by $(\boxtimes)_3$ we have $q_{\eta}^i \Vdash_{\mathbb{P}} f_{i-2} \leq_{i=1}^* f_i$. Therefore $q_{\eta}^i \Vdash_{\mathbb{P}} f_{i-2} * \rho' \leq f_i * \rho$ and $(q_{\eta'}^{i-2}, f_{i-2} * \rho') \leq (q_{\eta}^i, f_i * \rho)$, so using $(\boxtimes)_5$ we may conclude that $\sigma_{\rho',\eta'}^{i-2} = \sigma_{\rho,\eta}^i [m_{i-2}]$

Let $T = \left\{ \nu \in {}^{\omega >}\omega : (\exists i < \omega \text{ odd})(\exists \eta \in \max(s_i))(\exists \rho \in {}^{\lfloor i/4 \rfloor}n)(\nu \trianglelefteq \sigma_{\rho,\eta}^i) \right\}$. Then *T* is a perfect tree and $(q, g) \Vdash_{\mathbb{P}*\mathbb{S}_n} \mathcal{I} \in [T]$. So the theorem will readily follow once we show that *T* is *n*-ary. To this end we are going to argue that

 $(\boxtimes)_{12}$ if $i \ge 3$ is odd, $\eta \in \max(s_i), \rho \in {\lfloor i/4 \rfloor} n$, then

$$\left|\left\{\sigma_{\pi,\nu}^{i}:\nu\in\max(s_{i})\text{ and }\pi\in^{\lfloor i/4\rfloor}n \And \sigma_{\rho,\eta}^{i}\restriction m_{i-2}=\sigma_{\pi,\nu}^{i}\restriction m_{i-2}\right\}\right|\leq n.$$

Case A: i = 4j + 1 for some $j < \omega$. Suppose that $\eta, \nu \in \max(s_i), \rho, \pi \in \lfloor i/4 \rfloor n$ are such that $\sigma_{\rho,\eta}^i \neq \sigma_{\pi,\nu}^i$ but $\sigma_{\rho,\eta}^i \lceil m_{i-2} = \sigma_{\pi,\nu}^i \rceil m_{i-2}$. The latter and $(\boxtimes)_7$ (and $(\boxtimes)_{11}$) imply that $\eta \upharpoonright (i-1) = \nu \upharpoonright (i-1)$, and since $i-1, i \notin K$ we get that $\eta(i-1) = \nu(i-1) = n = \eta(i) = \nu(i)$ (remember that **st** is nice for *K*), so $\eta = \nu$. If $\rho \upharpoonright (j-1) \neq \pi \upharpoonright (j-1)$, then let $\rho' = \rho \upharpoonright (j-1) \frown \langle \pi(j-1) \rangle$, otherwise $\rho' = \pi$.

Suppose $\rho' \neq \pi$. Let \underline{g} be (a \mathbb{P} -name for) $\underline{f}_i \cup \{(\operatorname{FP}_{j-1}(\underline{f}_i), \pi(j-1))\}$ and $q = q_{\eta}^i$. Then $q \geq q_{\eta \upharpoonright (i-1)}^{i-2}$, $q \Vdash \underline{f}_{i-2} \leq_{i-2}^* g$, and

$$q \Vdash " \mathfrak{g} * (\rho' \restriction (j-1)) = \mathfrak{f}_i * \rho' \text{ and } \mathfrak{g} * (\pi \restriction (j-1)) = \mathfrak{f}_i * \pi ".$$

Hence

$$(q, \underline{g} * (\rho' \upharpoonright (j-1)) \Vdash `` \underline{\tau} \upharpoonright m_i = \sigma^i_{\rho', \eta} `` and (q, \underline{g} * (\pi \upharpoonright (j-1))) \Vdash `` \underline{\tau} \upharpoonright m_i = \sigma^i_{\pi, \eta} ``$$

A. Rosłanowski and J. Steprāns

Now we use our assumption that $\sigma_{\rho,\eta}^i \upharpoonright m_{i-2} = \sigma_{\pi,\eta}^i \upharpoonright m_{i-2}$ (and $(\boxtimes)_{11}$) to conclude that $\sigma_{\rho',\eta}^i \upharpoonright m_{i-2} = \sigma_{\pi,\eta}^i \upharpoonright m_{i-2}$. Consequently, $\sigma_{\rho',\eta}^i = \sigma_{\pi,\eta}^i$ (remember $(\boxtimes)_6$ for i-2, $\eta \upharpoonright (i-1), \rho' \upharpoonright (j-1)$ and $\pi \upharpoonright (j-1)$). Trivially the same conclusion holds if $\rho' = \pi$, so we have justified that

$$\{\sigma_{\pi,\nu}^{i}: \nu \in \max(s_{i}) \text{ and } \pi \in {}^{\lfloor i/4 \rfloor}n \text{ and } \sigma_{\rho,\eta}^{i} \upharpoonright m_{i-2} = \sigma_{\pi,\nu}^{i} \upharpoonright m_{i-2}\}$$
$$\subseteq \{\sigma_{\pi,\eta}^{i}: \pi \in {}^{j}n \text{ and } \rho \upharpoonright (j-1) = \pi \upharpoonright (j-1)\}$$

and the latter set is of size at most n.

Case B: i = 4j + 3 for some $j < \omega$. Again, let us assume that $\eta, \nu \in \max(s_i)$, $\rho, \pi \in \lfloor i/4 \rfloor n$ are such that $\sigma_{\rho,\eta}^i \neq \sigma_{\pi,\nu}^i$ but $\sigma_{\rho,\eta}^i \upharpoonright m_{i-2} = \sigma_{\pi,\nu}^i \upharpoonright m_{i-2}$. Then, as in the previous case, $(\boxtimes)_7$ implies $\eta \upharpoonright (i-1) = \nu \upharpoonright (i-1)$. Also $\lfloor i/4 \rfloor = j = \lfloor (i-2)/4 \rfloor$, so $\rho \upharpoonright \lfloor (i-2)/4 \rfloor = \rho, \pi \upharpoonright \lfloor (i-2)/4 \rfloor = \pi$. Now, if $\rho = \pi$, then trivially $\sigma_{\pi,\nu}^i = \sigma_{\rho,\nu}^i$. If $\rho \neq \pi$, then we use $(\boxtimes)_6$ (with $i - 2, \rho, \pi, q_{\eta}^i, f_i$ here in place of i, ρ, ρ', q, g there, respectively) to argue that $\sigma_{\pi,\nu}^i = \sigma_{\rho,\nu}^i$. Consequently

$$\{\sigma_{\pi,\nu}^{i}:\nu\in\max(s_{i})\text{ and }\pi\in^{\lfloor i/4\rfloor}n\text{ and }\sigma_{\rho,\eta}^{i}\restriction m_{i-2}=\sigma_{\pi,\nu}^{i}\restriction m_{i-2}\}$$
$$\subseteq\{\sigma_{\rho,\nu}^{i}:\nu\in\max(s_{i})\text{ and }\eta\restriction(i-2)=\nu\restriction(i-2)\}$$

and the latter set is of size at most *n*.

Now in both cases we easily get the assertion of $(\boxtimes)_{12}$, completing the proof of the theorem.

References

- J. Cichoń, A. Rosłanowski, J. Steprāns, and B. Węglorz, *Combinatorial properties of the ideal* \$\mathcal{P}_2\$.
 J. Symbolic Logic **58**(1993), no. 1, 42–54.
- [2] W. Dębski, J. Kleszcz, and S. Plewik, Perfect sets of independent functions. Acta Univ. Carolin. Math. Phys. 33(1992), no. 2, 31–33.
- [3] S. Geschke, More on convexity numbers of closed sets in Rⁿ. Proc. Amer. Math. Soc. 133(2005), no. 5, 1307–1315 (electronic).
- [4] S. Geschke and M. Kojman, *Convexity numbers of closed sets in* \mathbb{R}^n . Proc. Amer. Math. Soc. **130**(2002), no. 10, 2871–2881 (electronic).
- [5] S. Geschke, M. Kojman, W. Kubiś, and R. Schipperus, Convex decompositions in the plane and continuous pair colorings of the irrationals. Israel J. Math. 131(2002), 285–317.
- [6] M. Goldstern, *Tools for your forcing construction*. In: Set Theory of the Reals. Israel Math. Conf. Proc. 6, Bar-Ilan Univ., Ramat Gan, 1993, pp. 305–360.
- [7] T. Jech, Set theory. The third millennium edition, revised and expanded. Springer-Verlag, Berlin, 2003.
- [8] S. Kamo, Some remarks about Mycielski ideals. Colloq. Math. 65(1993), no. 2, 291–299.
- [9] J. Kellner, Preserving non-null with Suslin⁺ forcing. Arch. Math. Logic 45(2006), no. 6, 649–664.
- [10] J. Mycielski, On the axiom of determinateness. II Fund. Math. 59(1966), 203–212.
- [11] _____, Some new ideals of sets on the real line. Coll. Math. 20(1969), 71–76.
- [12] L. Newelski and A. Rosłanowski, *The ideal determined by the unsymmetric game*. Proc. Amer. Math. Soc. 117(1993), no. 3, 823–831.
- [13] A. Rosłanowski, On game ideals. Colloq. Math. 59(1990), no. 2, 159–168.
- [14] _____, Mycielski ideals generated by uncountable systems. Colloq. Math. 66(1994), no. 2, 187–200.
- [15] _____, *n-localization property*. J. Symbolic Logic 71(2006), no. 3, 881–902.

- [16] J. D. Sharp and S. Thomas, Uniformization problems and the cofinality of the infinite symmetric group. Notre Dame J. Formal Logic 35(1994), no. 3, 328–345.
 [17] S. Shelah, Properness without elementaricity. J. Appl. Anal. 10(2004), no. 2, 169–289.
 [18] S. Shelah and J. Steprāns, The covering numbers of Mycielski ideals are all equal. J. Symbolic Logic (2004), no. 2, 777, 710.
- **66**(2001), no. 2, 707–718.

Department of Mathematics, University of Nebraska at Omaha, Omaha, NE 68182-0243, U.S.A. e-mail: roslanow@member.ams.org

Department of Mathematics, York University, Toronto, ON, M3J 1P3 e-mail: steprans@yorku.ca