T. Ono
Nagoya Math. J.
Vol. 59 (1975), 59-64

ON THE HOPF FIBRATION S’ — S* OVER Z

TAKASHI ONO

§1. Statement of the result

Let K be the classical quaternion field over the field Q of rational
numbers with the quaternion units 1,7, 7, k, with relations ¢ = 72 = —1,
k =1 = —ji. For a quaternion xec K, we write its conjugate, trace
and norm by Z,Tx and Nz, respectively. Put

A=K XK, B=Qx K
and consider the map h: A — B defined by
1.1 h(z) = (Nx — Ny, 2%y) , z=(x,y)ecd.

The map h is the restriction on @°® of the map R®— R* which induces
the classical Hopf fibration S"— S* where each fibre is S:.Y For a
natural number ¢, put

1.2) S4t) ={z=(@,y)eA, Ne + Ny=1t},
1.3) Szt) ={w = w,v)eB, w* + Nv =t} .
Then, & induces a map

1.4) he: Sa() — Sp( .

Now, let o be the unique maximal order of K which contains the
standard order Z + Zi + Zj + Zk. As is well-known, o is given by

0=2Zp+ Zi+ Zj+ Zk, po=3A+i+i+k.

The group o* of units of o is a finite group of order 24. The 24 units
are: +1,+4, =7, xk, H{(x1xi+j+k). We know that the number of
quaternions in o with norm = is equal to 24s,(n) where s, (n) denotes the
sum of odd divisors of n.

Received November 6, 1974.
1) H. Hopf, Uber die Abbildungen von Sphiren auf Sphiren niedrigerer Dimen-
sion, Fund. Math. 25 (1935) 427-440.
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Back to our geometrical situation, put
A,=0Xo0, B, =Z X 0o

and define S,(t), Sp(t); by taking z,w in (1.2), (1.3) from A, B re-
spectively. Then, the map h; in (1.4) induces a map

1.5) hez: Sa(t)z — Spt?))z -

Because of the presence of 2 in (1.1), h,, is actually a map S,(t).
— Sp(t)%, where we have put

1.6) Sp)E = {w = (u,v) € Sp(t); , v e 20} .

To each w e Sz(t)%, we shall associate two numbers as follows. First,
we denote by @, the number of zeS,({); such that h,,(2) = w. Next,
we denote by mn, the greatest common divisor of the following six
integers:

am 3t + w), (¢ — w), T (ov), T (), $T (), $T(kv) .
The purpose of the present paper is to prove the relation:
1.8) a,, = 24s,(n,) , we Sy(tH} .

This is a type of formula which the author has in mind for the alge-
braic fibration over Z and has proved for Hopf fibrations of type S®— S22

For proofs of facts concerning the arithmetic of quaternions the
reader is referred to the report by Linnik.®

§2. Change of the fibration.
Our problem is to determine the fibre of the map k., in (1.5). To

do this, it is convenient to replace the map h by a map f in the follow-
ing way. Namely, put

S={r=(p0ecQ X K X Q, Ng=ac},
f(® = (Nz, 2y, Ny) , =@, WeA=K XK,
9(e) = (@ — ¢,2p) , o=(a,B,0)ed,
(o) = (a, T(pP), T(ER), T(4P), T(kB),c) and ¢=r<f.
" 2) T. Ono, On the Hopf fibration over Z, Nagoya Math. J. Vol. 56 (1975), 201-
207, T. Ono. Quadratic fields and Hopf fibrations (to appear).

3) Yu V. Linnik, Quaternions and Cayley numbers. Some applications of quater-
nion arithmetic. (Russian), Uspehi Mat. Nauk, IV, 5(33), (1949) 49-98.
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he ‘,z/ S4®)z % z

A hz Az g
e 1\?’*@ e | o s Jrr 50
J z Jz B(U°)z S,z z
A NG .
kzl 9z Z'Z Z yt,kz,(t)z t,Z
2.1) (2.2) 2.3)

Clearly, the diagram (2.1) is well-defined and commutative. If we re-
strict everything on the integral part, we obtain naturally the com-
mutative diagram (2.2), where

Next, consider the portion of (2.2) corresponding to a natural number
t as follows. Put

Z(t)Z: {‘7: (a,ﬁ,c)eZZ, a -+ ¢ = t} ,
S(t)Z = {S = (a? bl’ b27 b3, bu C) 626’ a+c= t} .

Then, fz, ¢, induce the maps f; ,, ¢, 5, respectively. It is almost trivial
to check that the diagram (2.3) is well-defined and commutative. The
only non-trivial map is g,, and it is in fact a bijection: First of all,
9:,z is well-defined, because we have

9(0) = (@ —¢28) and N@O) =@ —c)+4Ng=(a+ ) =1

for ¢ = (a,8,¢) € 2(t);. Next, suppose that g(o) = g(¢’) with ¢ = (@, 8, ¢), 0’
= (a/,p,¢) e 2(t);. Then we have = and a — ¢ = o’ — ¢, but, since
a+c=a 4+ c¢ =t we have ¢ = ¢/, i.e. g, is injective. Finally, take
an element w = (u,?) € Sp(t)%, where uecZ and ve20 by (1.6). Put
a=3t+w, p=13%v, c= 3t —u). Then Beo. Substituting v =28 in
the relation #? + Nv = t*, we see that a,ce Z, 0 + ¢ = t and NB = ac, i.e.
o= (a,B,¢) € X(t);. Furthermore, we have g(o) = (@ — ¢,28) = (u,v) = w,
which proves that g, , is surjective. Hence, the study of the map 7, ,
is reduced to the study of the map f,,. Now, we can make one more
reduction in view of the equality

[:%(O') = fz_l(o') ’ g€ Z(t)z ’

which can be verified easily. Therefore, our problem is reduced to the
determination of the structure of the fibre

X(o) = f7Y(0) for ¢ = (@,8,¢)e X, witha +¢c=1.
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§ 3. Number of solutions

We shall denote by I, the set of all non-zero fractional right ideals
of K with respect to the maximal order o and by I; the subset of I,

congsisting of right ideals in 0. For an n-tuple (a,, ---,a,) %= (0, --.,0),
a; € K, we denote by idg (a,, - --,a,) the right ideal in I, generated by
Q-+, 0,. As is well-known, every right ideal a in I, is principal:

a=ao, ac K*. Hence, we may define the norm of a by Na = Na.
LEMMA (3.1) The following diagram is commutative:

idx

A, — {0} — I

¢zl lN

70— 0} 2 i

Here, the map idy is to take the greatest common divisor of six integers

and ¢,2) = t5f4(2) = (Nw, T(ozy), TGxY), T(GTY), T(ETY), NY).

Proof. Take an element z = (x,y) € A; — {0}. There is an ¢ e o such
that idgz () = x0 + yo = an. We must prove that

(Na)Z = (N2)Z + T(ezyZ + TGz Z

3.2) . -
+ TGzZ + T(kTPZ + (NPZ .

Now, since xo + yo = a0, we can write ¥ = a2, ¥y =ap with 2,pxco.
Then, Nz = (Na)(N2) € (Na)Z, Ny = (Na)(Np) € (Nw)Z. Let ¢ be any one
of the four quaternions p,%,7,k. Then we have
T(ezy) = T(edway) = (Na)T(2p) € (Na)Z .
From these, we see that the right hand side of (3.2) is contained in the
left hand side. To prove the other inclusion, write « = x¢ + y5 with
&,npeo. Then, we have
Na = (£% + 79)(@E + yn)
= Exag + TYyy + EBYy + TYXE
= (N2)(N§) + (NN + TEzyy) .
Here, obviously, (Nz)(N&)e (Nx)Z, (Ny)(Np) e (Ny)Z. As for the term
T(zyy), we have, first of all, T(EZyy) = T(H5zy). Next, write 75 as
P =ap+ai+aj+ak with a2 1<v<4.
Then we have
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T@EzY) = a,T(pxy) + a,TGTY) + a,T(7Y) + a,T(kzy)
e Tz Z + TC@aYZ + TGxYZ + T(kTYZ ,

which proves that the left hand side of (3.2) is contained in the right
hand side, q.e.d.
For a natural number n, put

Iim) = {ielz, Ni=n}.

This set is non-empty for any n (Lagrange) and contains s,(n) elements.

Now, take an element ¢ =(a,8,¢)e ¥, with ¢ + ¢ =1 and take a
2 = (x,Y) € X(0) = f7%(0). Using the same oo for z = (z,y) as in the
proof of (3.1), we have, by (3.1),

N(idg (2)) = Na = idq (2(2)) = idq (r2/2(2)) = idq (c4(0)) .
Hence, if we put
1, = idq (c2(0)) = idq (@, T(pp), TGP, T(GP), T(kP), 0 ,
we obtain a map
d,: X(o) — I:(n,) defined by d,(2) =idg (2) .
Note that n, = n, in 1.7) if w = g, z(0) for e 3(t),.
LEMMA (8.3) The map d, is surjective.

Proof. Take any jeIi(n,) and write { = @0, «c€o. Since a + ¢ =1,
either ¢ = 0 or ¢ # 0. Without loss of generality, we may assume that
a #+ 0. Take weo such that idg (a,B) = ao + po = wo. Then, we have
¢ = awld, B = oy with 6,y c0. From (3.1), it follows that

No = N(idg (@, B)) = idq (¢4(a, B))

= idq (Na, T(pap), T(iap), T(jap), T(kap), NB)

= aidg (a, T(op), TGR), T(iB), T(kf), ©) = an, = aNj = aNe .
Hence we have ¢ = N(wa™"). Put y =wa™, © = y'a and y = »~'8. Since
we can also write x = af, ¥ = ay, we see that z = (z,y) e 4, — {0}. We
claim that z is an element € X(¢) such that d,() =j. In fact, firstly,
we have

J(@) = (Nz, 2y, Ny) = (N(y~'a),a77'yp7'8, N(7'8)
= (Np)~'(¢*, a8, Np) = (Np)"'afa, B, ¢) = (a,B,¢) =g,
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which shows that ze¢ X(¢). Next, we have
d,(2) =idg (@, y) =9p7'a0 + p o =y 'wo = a0 = 7§,

which completes the proof of our assertion.

We shall now study the fibre d;'(j) for a fixed jelz(n,). Write
i = ao as before, and put I'; = ao*a™?, this being a finite group of order
24 depending only on j and not on the choice of the generator «.

LEMMA (3.4) The group I'; acts on the fibre d;'(j) simply and tran-
sitively by z = (x,y) — iz = Az, Ay),Ae [

Proof. We shall first check that the action is well-defined. This
follows from the relations f(iz) = (NQAx), Zi2y, N(4y)) = NA(Nz, Zy, Ny)
=fR) =9

and
d,(Az) = Ax0 + AYyo = Ad,(?) = A =Aao = a0 = a0 = { ,

where e¢eo0*. Next, clearly, the isotropy group is trivial everywhere.
Finally, let z = (z,¥),2’ = (', ¥’) be any two points of d;'(j). Assume,
for the moment, that both of x,y are 0. Then, from the relation
f(@) = Nz, zy, Ny) = f(z') = Nz, 'y, Ny), we can find 2, pe K with
N2 = Ny =1 such that 2’ = 2z and ¥’ = py. Substituting these in the
relation 'y’ = Ty, we get Jx =1 and hence 2 = p. In case where one
of « or y, say ¥y = 0, then ¥ = 0 automatically, and we have &’ = Az,
¥ =1y, N1 =1, again. In any case, we claim that this 1 belongs to
I';. In fact, the assumption d,(2) = d,(z) = | implies that | = a0 = 20 + Yo
= 2’0 + ¥'0 = dao and so la = ae for some ec 0. However, since NA=1,
we must have eco0*. Thus, 1 =aea'el;, q.e.d.

Combining (3.3) and (8.4), we obtain the following relation of car-
dinalities:

(3.5) Card (X(0)) = 2 Card (I') = 24 Card (Ix(n,)) = 24s,(n,) .

Our formula (1.8) is a translation of (3.5) through the bijection g, , in
the diagram (2.3).

The Johns Hopkins University
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