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Error bounds in the approximation
of functions

Badri N. Sahney and V. Venu Gopal Rao

Let f(z) ¢ Lipo. , O < a <1 , in the range (-7, T) , and

periodic with period 27 , outside this range. Also let

(*) Flx) ~ L a, + a vx+b sinvxr) = A (x) .
> 9, vél ( ,COSVa+b sin ) véo N

We define the norm as

am 1/p
= p >
i, = {f " lrePas) L pza

and let the degree of approximation be given by
% = i
EX(f) ?m i Tnllp
n

where Tn(x) is some n~th trigonometric polynomial.

We define a generating sequence {pn} such that it is
non-negative, non-increasing and

(¥%) P(n) =py+py + ... +p, > as n>o.
Approximation of functions belonging to the class Lipa by the
(e, §) , 0 <8 =1, mean of its Fourier series is due to

Chapman and Riesz. The following is the main result of our

paper:

THEOREM. If f(x) <e periodic and belongs to the class
Lip(a, p) , 0 < a =<1, and if the sequence {pn} is defined
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as in (**), and if
1/q

n q
f _[P_(y_l)_. dy - 0(P(n)/na+l/q_l)

1 49924

then
. a
EA(f) = min uf-m i, = 0Q/n7)
n
waere Nn(x) is the (N, pn) mean of the Fourier series (%)

and, in particular, Zh(x) = Nn(x) .

We define the norm as

(1.1) i1, = {cﬂ lf<x>|pdx}l/p s pz1,

and let the degree of approximation be given by (see [7])

(1.2) BX(f) = ;in Hf—Tnllp .
n

Here Tn(x) is some #n-th trigonometric polynomial.

Let f(x) € Lipoo , 0 <0 <1, in the interval (-m, ) , and

periodic with period 27 outside this range. Also let

(1.3) flz) ~ %'ao + vzl (avcosvx+bvsinvx)
= § A (z)
v=0 v

We write

(1.4) o, ¢) = DEElE=t) gy
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2.
The following theorems are known:

THEOREM A. If the periodie fumction f(x) belongs to the class
Lipa , for 0 < o <1, then the (c, 8§) mean of its Fourier series for

0 <o <6=1, gives

(2.1) max = O[l/na) 5

fla)-od()
O=x=2m

and for 0 < o =8 =1 satisfies

(2.2) max f(x)—oi(x). = 0[logn/na) R

O=x=2w
where Gi(x) ig the (e, 8) mean of the partial sum of (1.3).

THEOREM B. If the periodic function flx) belongs to the class
Lipa , for 0 < a =1, then the (e, 1) mearn of its Fourier series is

given by
n

(2.3) % 1 If(x)—Sk(x)I = O(logn/na) R
k=1 ’

where S, is the partial sum of (1.3).
It is known [3] that for o =1 the order of (2.3) is not 0(1/n)

Theorem A was proved by Chapman and Riesz (see [/]) independently.
Theorem B is a simplified form of the result due to Alexits and Leindler
[3]). Later Alexits and Krdlik [2] changed the summation in (2.3) from

k=»n to k=2n-1, along with some other improvements.
Let {pn} be a non-negative, non-increasing generating sequence for

the (¥, pn) method such that
(2.h) P = P(n) = Po+Py * oo *p, 7@ as no>e.

Some of the related recent work on the Norlund method (N, pn) is
due to lzumi and lzumi [4] and Sahney [6].
The object of this paper is to prove the following theorems:

THEOREM 1. If flx) is periodic and belongs to the class Lip{a, p)
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for 0 <a <1, such that 0 < a < 8§ =1, then

[}

(2.5) EA(F)

min
T
n

= 0(1/n*/P)

]

where 026)(m) is the (e, 8) mean of (1.3). Here, in particular,

7 (2) = ofl(x) .

THEOREM 2. If f(x) <s periodic and belongs to the class Lip(a, p)
for 0 <a =1, and if the sequence {pn} is as defined in (2.4) with the

other requirements therein and if

1/q
2.6) “” () dy} - ofEz1]
qot+2-q at+l/q-1} °
ly n
then
(2.7) EX(f) = r;in IIf—NnIIp
n

|
()
——
[~

where Nn(x) is the (N, pn) mean of (1.3), and, in particular,

Tn(x) = Nn(x) .

3.

Proof of Theorem 1. Following Zygmund [7] we can write

1 1t n Ai_lsinkt
R I S

(8)
(3.1) flz) - o ~'(x) = o(¢)
n nAg 0 ¢

0 k

-

T/n n n Ai’lsinkt
U +f ]q‘)(t) ) =———dt + 0(1)

mA 0 m/n k=0 ¢

|
S O

= I1 I, ¢+ o(1) , say.

By Holder's inequality and the fact that ¢(x) € Lip(a, p) , we get
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6-1 .
T/n n A, “sinkt
2y 1y - By g
TA 0 t k=0 t
n
1/q
I .
=0—6
7 0

k=0 t

n Aé-lsinkt 9
e

0 1-o

G

where 1/p + 1/¢ =1 such that 1 < p = ,

Also, similarly, as above
1 m p l/p m
5o 5o a ]
2 n6 m/n m/n
]l/q

o[%]ool)[f:/n [%]Gq 3%%5

n Ak

k=0 ¢t

G_lsinkt q 1/q
ke,
1-a

1}
S
ol

)"

[}
(o)
=
o:l"‘

"

)
—
\li_.‘/\__z

1-q+aq-08qq T

1 1
[ —

[

Q
r—
ol

+

o

1
il
~
T3
| S

Hence
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(3.4) I= OLa—l/p} + o[nd + o[na_l/pJ .
Therefore
8
(3.5) E*(f) = min |f-0
n (8) “ n’p
= o(u/m Py |
4,

Proof of Theorem 2. Following Zygmund [7] we write

T 7
(4.1) flz) - () ;ﬁ%ﬂf ole) L pintntosr + o)
0 =0

2 m/n T (¢) B . 4,
STy

+ +
Jl J2 o(1) , say.

Applying Holder's inequality and then by the fact that ¢(z) € Lip(a, p) ,
we have
n

) pysin(n-k)t
k=0

q
dt

(4.2) g

]l/q

tl—a

=
1]
o
——
]
—~
X+
=
——
S——
o =
~
S

0(n) ([tuqﬂ]g/n]l/q

0(n)0(1 /219
= 0(1/na+(l/q-1))

0(1/na'l/p) .

Similarly
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n
1/p ) sin(n-k)t;q l/q
O ey P. ) f" k=0 X
- pl—L_ R AN d
(8-3) J2 O(P(n)] fn/n % \ dtj T/n e !
1
s
_ 1], P(1/¢
i O[P(")] O(l)[fn/n REC
11/q
-0 n (P(li) L dy
P( ) (a-l)q 42
1/q
- n (ee)? ,
P( ) ,04-q%2 &y
_ P(n)
- O[Pm)J O[naﬂ/q— J
= 0(1/nu_l/p}
Hence
(4.h) EX(f) = min iIf-Nan
Nn
_ 1
) O[na-l/p]

This completes the proof of Theorem 2.

5.
As p > (and therefore qg =1 ), Theorem 1 is equivalent to Theorem

n+d-1

A, for 0 <& <8 =1, Also Theorem 2, for p, = ( 6-1

] is equivalent

to Theorem 1.
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