Error bounds in the approximation of functions

Badri N. Sahney and V. Venu Gopal Rao

Let $f(x) \in \operatorname{Lip} \alpha, 0<\alpha<1$, in the range $(-\pi, \pi)$, and periodic with period 2π, outside this range. Also let

$$
\begin{equation*}
f(x) \sim \frac{1}{2} a_{0}+\sum_{v=1}^{\infty}\left(a_{v} \cos v x+b_{v} \sin v x\right) \equiv \sum_{v=0}^{\infty} A_{v}(x) . \tag{*}
\end{equation*}
$$

We define the norm as

$$
\|f\|_{p}=\left\{\int_{0}^{2 \pi}|f(x)|^{p} d x\right\}^{1 / p}, \quad p \geq 1
$$

and let the degree of approximation be given by

$$
E_{n}^{*}(f)=\min _{T_{n}}\left\|f-T_{n}\right\|_{p}
$$

where $T_{n}(x)$ is some n-th trigonometric polynomial.
We define a generating sequence $\left\{p_{n}\right\}$ such that it is
non-negative, non-increasing and
(**)

$$
P(n)=p_{0}+p_{1}+\ldots+p_{n} \rightarrow \infty \quad \text { as } n \rightarrow \infty
$$

Approximation of functions belonging to the class Lip α by the (c, δ) , $0<\delta \leq 1$, mean of its Fourier series is due to Chapman and Riesz. The following is the main result of our paper:

THEOREM. If $f(x)$ is periodic and belongs to the class $\operatorname{Lip}(\alpha, p), 0<\alpha \leq 1$, and if the sequence $\left\{p_{n}\right\}$ is defined
as in (**), and if

$$
\left(\int_{1}^{n} \frac{(p(y))^{q}}{y^{\alpha+2-q}} d y\right)^{1 / q}=O\left(P(n) / n^{\alpha+1 / q-1}\right)
$$

then

$$
E_{n}^{*}(f)=\min _{N_{n}}\left\|f-N_{n}\right\|_{p}=O\left(1 / n^{\alpha}\right)
$$

where $N_{n}(x)$ is the $\left(N, p_{n}\right)$ mean of the Fourier series (*) and, in particular, $T_{n}(x)=N_{n}(x)$.

1.

We define the norm as

$$
\begin{equation*}
\|f\|_{p}=\left\{\int_{0}^{2 \pi}|f(x)|^{p} d x\right\}^{1 / p}, \quad p \geq 1 \tag{1.1}
\end{equation*}
$$

and let the degree of approximation be given by (see [7])

$$
\begin{equation*}
E_{n}^{*}(f)=\min _{T_{n}}\left\|f-T_{n}\right\|_{p} \tag{1.2}
\end{equation*}
$$

Here $T_{n}(x)$ is some n-th trigonometric polynomial.
Let $f(x) \in \operatorname{Lip} \alpha, 0<\alpha<1$, in the interval $(-\pi, \pi)$, and periodic with period 2π outside this range. Also let

$$
\begin{align*}
f(x) & \sim \frac{1}{2} a_{0}+\sum_{v=1}^{\infty}\left(a_{v} \cos v x+b_{v} \sin v x\right) \tag{1.3}\\
& =\sum_{v=0}^{\infty} A_{v}(x)
\end{align*}
$$

We write

$$
\begin{equation*}
\phi(x, t)=\frac{f(x+t)+f(x-t)}{2}-f(x) \tag{1.4}
\end{equation*}
$$

2.

The following theorems are known:
THEOREM A. If the periodic function $f(x)$ belongs to the class Lip α, for $0<\alpha<1$, then the (c, δ) mean of its Fourier series for $0<\alpha<\delta \leq 1$, gives

$$
\begin{equation*}
\max _{0 \leq x \leq 2 \pi}\left|f(x)-\sigma_{n}^{\delta}(x)\right|=O\left(1 / n^{\alpha}\right) \tag{2.1}
\end{equation*}
$$

and for $0<\alpha \leq \delta \leq 1$ satisfies

$$
\begin{equation*}
\max _{0 \leq x \leq 2 \pi}\left|f(x)-\sigma_{n}^{\delta}(x)\right|=o\left(\log n / n^{\alpha}\right) \tag{2.2}
\end{equation*}
$$

where $\sigma_{n}^{\delta}(x)$ is the ($\left.c, \delta\right)$ mean of the partial sum of (1.3).
THEOREM B. If the periodic function $f(x)$ belongs to the class Lip α, for $0<\alpha \leq 1$, then the ($c, 1$) mean of its Fourier series is given by

$$
\begin{equation*}
\frac{1}{n} \sum_{k=1}^{n}\left|f(x)-S_{k}(x)\right|=O\left(\log n / n^{\alpha}\right) \tag{2.3}
\end{equation*}
$$

where S_{k} is the partial sum of (1.3).
It is known [3] that for $\alpha=1$ the order of (2.3) is not $O(1 / n)$.
Theorem A was proved by Chapman and Riesz (see [1]) independently. Theorem B is a simplified form of the result due to Alexits and Leinder [3]. Later Alexits and Králik [2] changed the summation in (2.3) from $k=n$ to $k=2 n-1$, along with some other improvements.

Let $\left\{p_{n}\right\}$ be a non-negative, non-increasing generating sequence for the $\left(N, p_{n}\right)$ method such that

$$
\begin{equation*}
P_{n} \equiv P(n)=p_{0}+p_{1}+\ldots+p_{n} \rightarrow \infty \quad \text { as } n \rightarrow \infty \tag{2,4}
\end{equation*}
$$

Some of the related recent work on the IVorlund method $\left(N, p_{n}\right)$ is due to Izumi and Izumi [4] and Sahney [6].

The object of this paper is to prove the following theorems:
THEOREM 1. If $f(x)$ is periodic and belongs to the class Lip (α, p)
for $0<\alpha<1$, such that $0<\alpha<\delta \leq 1$, then

$$
\begin{align*}
E_{n}^{*}(f) & =\min _{T_{n}}\left\|f-\sigma_{n}^{(\delta)}\right\|_{p} \tag{2.5}\\
& =O\left(1 / n^{\alpha-1 / p}\right)
\end{align*}
$$

where $\sigma_{n}^{(\delta)}(x)$ is the (c, δ) mean of (1.3). Here, in particular, $T_{n}(x)=\sigma_{n}^{\delta}(x)$.

THEOREM 2. If $f(x)$ is periodic and belongs to the class Lip (α, p) for $0<\alpha \leq 1$, and if the sequence $\left\{p_{n}\right\}$ is as defined in (2.4) with the other requirements therein and if

$$
\begin{equation*}
\left(\int_{1}^{n} \frac{(p(y))^{q}}{y^{\alpha+2-q}} d y\right)^{1 / q}=o\left(\frac{p(n)}{n^{\alpha+1 / q-1}}\right) \tag{2.6}
\end{equation*}
$$

then

$$
\begin{align*}
E_{n}^{*}(f)= & \min _{n}\left\|f-N_{n}\right\|_{p} \tag{2.7}\\
= & o\left(\frac{1}{n}\right),
\end{align*}
$$

where $N_{n}(x)$ is the $\left(N, p_{n}\right)$ mean of (1.3), and, in particular, $T_{n}(x)=N_{n}(x)$.

3.

Proof of Theorem 1. Following Zygmund [7] we can write
(3.1) $f(x)-\sigma_{n}^{(\delta)}(x)=\frac{1}{\pi A_{n}^{\delta}} \int_{0}^{\pi} \phi(t) \sum_{k=0}^{n} \frac{A_{k}^{\delta-1} \sin k t}{t} d t+o(1)$

$$
\begin{aligned}
& =\frac{1}{\pi A_{n}^{\delta}}\left[\int_{0}^{\pi / n}+\int_{\pi / n}^{\pi}\right] \phi(t) \sum_{k=0}^{n} \frac{A_{k}^{\delta-1} \sin k t}{t} d t+o(1) \\
& =I_{1}+I_{2}+o(1), \text { say }
\end{aligned}
$$

By Hölder's inequality and the fact that $\phi(x) \in \operatorname{Lip}(\alpha, p)$, we get
(3.2) $\quad I_{1}=\frac{1}{\pi A_{n}^{\delta}} \int_{0}^{\pi / n} \frac{\phi(t)}{t^{\alpha}} \sum_{k=0}^{n} \frac{A_{k}^{\delta-1} \sin k t}{t^{1-\alpha}} d t$

$$
\begin{aligned}
& =O\left(\frac{1}{n}\right)\left(\int_{0}^{\pi / n}\left|\frac{\phi(t)}{t^{\alpha}}\right|^{p} d t\right)^{1 / p}\left(\int_{0}^{\pi / n}\left|\sum_{k=0}^{n} \frac{A_{k}^{\delta-1} \sin k t}{t^{1-\alpha}}\right|^{q} d t\right)^{1 / q} \\
& =O\left(\frac{1}{\delta}\right) \cdot O(1)\left\{\int_{0}^{\pi / n}\left(a\left(\frac{n^{\delta} \cdot n t}{1-\alpha}\right)\right)^{q} d t\right\}^{1 / q} \\
& =O(n)\left(\int_{0}^{\pi / n} t^{\alpha q} d t\right)^{1 / q} \\
& =O(n)\left(\left[t^{1+\alpha q}\right]_{0}^{\pi / n}\right)^{1 / q} \\
& =O\left(\frac{1}{n^{\alpha-(1-1 / q)}}\right) \\
& =O\left(\frac{1}{n^{\alpha-1 / p}}\right),
\end{aligned}
$$

where $1 / p+1 / q=1$ such that $1 \leq p \leq \infty$.
Also, similarly, as above
(3.3) $\quad I_{2}=o\left(\frac{1}{n^{\delta}}\right)\left(\int_{\pi / n}^{\pi}\left|\frac{\phi(t)}{t^{\alpha}}\right|^{p} d t\right)^{1 / p}\left(\int_{\pi / n}^{\pi}\left|\sum_{k=0}^{n} \frac{A_{k}^{\delta-1} \sin k t}{t^{1-\alpha}}\right|^{q} d t\right)^{1 / q}$

$$
=O\left(\frac{1}{n}\right) O(1)\left(\int_{\pi / n}^{\pi}\left(\frac{1}{t}\right)^{\delta q} \frac{d t}{t^{(1-\alpha) q}}\right)^{1 / q}
$$

$$
=o\left(\frac{1}{n}\right)\left(\int_{\pi / n}^{\pi} \frac{d t}{t^{q+\delta q-\alpha q}}\right)^{1 / q}
$$

$$
=O\left(\frac{1}{n} \delta\right)\left(\left[t^{1-q+\alpha q-\delta q}\right]_{\pi / n}^{\pi}\right)^{1 / q}
$$

$$
=o\left(\frac{1}{n}\right)+o\left(\frac{1}{n}\right)\left(\frac{1}{n^{1 / q-1+\alpha-\delta}}\right)
$$

$$
=O\left(\frac{1}{n^{\delta}}\right)+O\left(\frac{1}{n^{\alpha-1 / E}}\right)
$$

Hence

$$
\begin{equation*}
I=O\left(\frac{1}{n}\left(\frac{1}{\alpha-1 / p}\right)+O\left(\frac{1}{n^{\delta}}\right)+O\left(\frac{1}{n^{\alpha-1 / p}}\right)\right. \tag{3.4}
\end{equation*}
$$

Therefore

$$
\begin{align*}
E_{n}^{*}(f) & =\min _{\sigma_{n}^{(\delta)}}\left\|f-\sigma_{n}^{\delta}\right\|_{p} \tag{3.5}\\
& =O\left(1 / n^{\alpha-1 / p}\right) .
\end{align*}
$$

4.

Proof of Theorem 2. Following Zygmund [7] we write

$$
\text { (4.1) } \begin{aligned}
f(x)-N_{n}(x) & =\frac{2}{\pi P(n)} \int_{0}^{\pi} \frac{\phi(t)}{t} \sum_{k=0}^{n} p_{k} \sin (n-k) t d t+o(1) \\
& =\frac{2}{\pi P(n)}\left(\int_{0}^{\pi / n}+\int_{\pi / n}^{\pi}\right) \frac{\phi(t)}{t} \sum_{k=0}^{n} p_{k} \sin (n-k) t d t+o(1) \\
& =J_{1}+J_{2}+o(1), \text { say. }
\end{aligned}
$$

Applying Hölder's inequality and then by the fact that $\phi(x) \in \operatorname{Lip}(\alpha, p)$, we have

$$
\text { (4.2) } \begin{aligned}
J_{1} & =O\left(\frac{1}{P(n)}\right)\left(\int_{0}^{\pi / n}\left|\frac{\phi(t)}{t^{\alpha}}\right|^{p} d t\right)^{1 / p}\left(\int_{0}^{\pi / n}\left|\frac{\sum_{k=0}^{n} p_{k} \sin (n-k) t}{t^{1-\alpha}}\right|^{q} d t\right)^{1 / q} \\
& =O\left(\frac{1}{P(n)}\right) \cdot O(1)\left\{\int_{0}^{\pi / n}\left(\frac{O(P(n) \cdot n t)}{t^{1-\alpha}}\right)^{q} d t\right\}^{1 / q} \\
& =O(n)\left(\left[t^{\alpha q+1}\right]_{0}^{\pi / n}\right)^{1 / q} \\
& =O(n) \cdot O\left(1 / n^{\alpha+1 / q}\right) \\
& =O\left(1 / n^{\alpha+(1 / q-1)}\right) \\
& =O\left(1 / n^{\alpha-1 / p}\right) .
\end{aligned}
$$

Similarly
(4.3) $\quad J_{2}=O\left(\frac{1}{P(n)}\right)\left(\int_{\pi / n}^{\pi}\left|\frac{\phi(t)}{t^{\alpha}}\right|^{p} d t\right)^{1 / p}\left(\int_{\pi / n}^{\pi}\left|\frac{\sum_{k=0}^{n} p_{k} \sin (n-k) t}{t^{1-\alpha}}\right|^{q} d t\right)^{1 / q}$
$=O\left(\frac{1}{P(n)}\right) \cdot O(1)\left(\int_{\pi / n}^{\pi}\left|\frac{P(1 / t)}{t^{1-\alpha}}\right|^{q} d t\right)^{1 / q}$
$=O\left(\frac{1}{P(n)}\right)\left(\int_{1}^{n} \frac{(P(y))^{q}}{y^{(\alpha-1) q}} \cdot \frac{d y}{y^{2}}\right)^{1 / q}$
$=o\left(\frac{1}{P(n)}\right)\left(\int_{1}^{n} \frac{(P(y))^{q}}{y^{\alpha q-q+2}} d y\right)^{1 / q}$
$=O\left(\frac{1}{P(n)}\right) \cdot O\left(\frac{P(n)}{n^{\alpha+1 / q-1}}\right)$
$=O\left(1 / n^{\alpha-1 / p}\right)$.
Hence
(4.4)

$$
\begin{aligned}
E_{n}^{\star}(f) & =\min _{N_{n}}\left\|f-N_{n}\right\|_{p} \\
& =o\left(\frac{1}{n^{\alpha-1 / p}}\right)
\end{aligned}
$$

This completes the proof of Theorem 2.
5.

As $p \rightarrow \infty$ (and therefore $q=1$), Theorem 1 is equivalent to Theorem A, for $0<\alpha<\delta \leq 1$. Also Theorem 2, for $p_{n}=\binom{n+\delta-1}{\delta-1}$ is equivalent to Theorem 1.

References .

[1] G. Alexits, Convergence problems of orthogonal series (Pergamon Press, New York, Oxford, London, Paris, 1961).
[2] G. Alexits und D. Králik, "Über die Approximation mit starken de la Vallée-Poussinschen Mitteln", Acta Math. Acad. Sci. Hungar. 16 (1965), 43-49.
[3] G. Alexits und L. Leindler, "über die Approximation im starken Sinne", Acta Math. Acad. Sci. Hungar. 16 (1965), 27-32.
[4] Masako Izumi and Shin-ichi Izumi, "On the Nörlund summability of Fourier series", Proc. Japan Acad. 45 (1969), 773-778.
[5] G.G. Lorentz, Approximation of functions (Holt, Rinehart \& Winston, New York; Chicago, Illinois; Toronto, Ontario; 1966).
[6] Badri N. Sahney, "On the Nфrlund summability of Fourier series", Canad. J. Math. 22 (1970), 86-91.
[7] A. Zygmund, Trigonometric series, Vol. 1, 2nd ed. (Cambridge University Press, Cambridge, 1959).

Department of Mathematics, Statistics and Computer Science, The University, Calgary,

Alberta, Canada;
and
Department of Mathematics,
Institute of Advanced Studies,
Australian National University,
Canberra, ACT.

