
J. Functional Programming 4 (2): 207-247, April 1994 © 1994 Cambridge University Press 207

Simple type-theoretic foundations for
object-oriented programming

BENJAMIN C. PIERCE AND DAVID N. TURNER
Department of Computer Science, University of Edinburgh,

The King's Buildings, Edinburgh EH9 3JZ, UK

Abstract

We develop a formal, type-theoretic account of the basic mechanisms of object-oriented
programming: encapsulation, message passing, subtyping and inheritance. By modelling object
encapsulation in terms of existential types instead of the recursive records used in other
recent studies, we obtain a substantial simplification both in the model of objects and in the
underlying typed A-calculus.

1 Introduction

Static type systems for object-oriented programming languages have progressed
significantly in the past decade. The line of research begun by Cardelli (1988),
Cook (1989), Reddy (1988), and Kamin (1988), and further developed by Cardelli
(Cardelli and Wegner, 1985; Cardelli and Mitchell, 1989; Cardelli, 1992a; Cardelli,
1990), Mitchell (1989, 1990, 1991), Bruce (1990, 1991, 1992), Wand (1987, 1988,
1989), and many others (Canning et al, 1989; Cook et al, 1989; Castagna et al,
1992a, b; Ghelli, 1991; Graver and Johnson, 1990) has culminated in type-theoretic
accounts (Bruce, 1992; Cardelli, 1992a; Mitchell et al, 1993) of many of the features
of languages like Smalltalk (Goldberg and Robson, 1983). Our goal is to reformulate
the essential ideas of these accounts using a simpler type theory.

The key step in our approach is an alternative treatment of encapsulation.
Reynolds (1978) identified two complementary approaches to encapsulation: pro-
cedural abstraction, which relies on hiding state in private variables common to a
collection of procedures, and type abstraction, which reveals the existence of state
externally but prevents illegal access to it by hiding its type. Previous accounts
of object-oriented programming have chosen procedural abstraction, encoding ob-
jects as elements of recursive record types. For example, the type of movable,
one-dimensional point objects is usually encoded as:

Point = Rec(P) §getX : Int, setX : Int-+P\}

We choose type abstraction instead, following a close analogy with Mitchell and
Plotkin's (1988a) treatment of conventional abstract types as existential types:

Point = 3{Rep) §state : Rep,
methods : §getX : Repaint, setX : Rep-*Int^>Rep\}§

https://doi.org/10.1017/S0956796800001040 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001040


208 B. C. Pierce and D. N. Turner

Both the state of an object (the component state) and the methods operating on
it are visible in this encoding, with the existential type protecting the state from
external access.

The principal benefit of this change is a simplification in the underlying type
theory: it allows us to give a complete model of encapsulation, message passing,
subtyping and inheritance (including the special names self and super) using neither
recursive types, which until now have generally been regarded as essential (Bruce,
1992; Mitchell, 1990), nor the sophisticated record extension operations that appear
in some accounts. Moreover, the naivete of our basic encoding yields a clear
separation between the simple aspects of the object model, encapsulation and
subtyping, and other, more complex but less essential features such as inheritance. By
regarding inheritance as 'just a matter of programming' in terms of the constructions
provided by the basic object model, we can develop and compare several alternative
implementations, including an implementation of polymorphic classes, a useful
extension that has not yet been attempted in other models. The expressive power of
our model of objects is comparable to previous models; indeed, it appears that the
only significant difference is that our model requires a different treatment of binary
methods (c.f. section 10).

Section 2 develops our encoding of objects in more detail. In section 3 we
introduce subtyping. Proper treatment of the interaction between encapsulation and
subtyping requires a mechanism for expressing refined subtyping constraints, which
we obtain by extending subtyping to type operators. Section 4 sketches a simple
high-level syntax for object type declarations with a uniform translation into the
basic calculus. Section 5 introduces the basic concepts of inheritance, using a simple
high-level syntax for class definitions. In sections 6 and 7 we show in detail how
two different forms of inheritance can be implemented within the framework of our
basic object model. Section 8 develops a longer example, a functional variant of two
of the Smalltalk collection classes, illustrating a more interesting use of inheritance;
this example is generalized to polymorphic collections in section 9 with yet another
implementation of inheritance. In section 10 we compare our work to other proposed
static type systems for object-oriented programming, and survey some extensions of
our basic model.

Owe model of objects is given in Fg, a higher-order explicitly-typed 1-calculus
with subtyping. A short introduction to Fg is given in Appendix A. Appendix B
summarizes the syntax and typing rules for easy reference. The examples in the
paper were typeset using a prototype compiler for Fg that typechecks and evaluates
declarations preceded by the symbol #. Declarations may be split across a number
of lines, and are terminated using a semicolon. A 7, symbol indicates that the rest of
the line is a comment and will be ignored by the compiler.

Basic familiarity with polymorphic type systems, subtypes, existential types and
conventional object-oriented languages will be helpful for understanding this paper;
background reading on these topics can be found in Mitchell and Plotkin (1988a),
Cardelli and Wegner (1985), Cardelli (1988a), Budd (1991), Goldberg and Robson
(1983), and Reynolds (1985).

https://doi.org/10.1017/S0956796800001040 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001040


Simple type-theoretic foundations for object-oriented programming 209

2 Objects

As in most type-theoretic accounts of object-oriented programming, we restrict
our attention to purely functional objects, in which methods must return a new
copy of the internal state instead of updating it in place. (Questions of typing are
not affected by this simplification; the model can straightforwardly be extended to
include imperative-style object-oriented programming (Bruce and vanGent, 1994),
modulo one technical proviso; c.f. section 10.) The state of an object is represented
by a single value. For example, the state of a one-dimensional point object with
x-coordinate 5 is the one-field record

# {x=5};

<val> : {|x: Intl}

A method is a function that implements some transformation on the state. For
example, a bump method for point objects might return a state whose x-coordinate
has been increased by one:

# bump = fun(state:{|x: Int|}) {x = plus 1 state.x};
bump = <val> : {|x:Int|} -> {|x:Int|}

A setx method takes an extra parameter, which becomes the x-coordinate of the
new state:

# setX = fun(state:{|x: Intl}) fun(newX: Int) {x = newX};
setX = <val> : {|x:Int|} -> Int -> {|

Instead of returning the new state for an object, a method may extract some other
information. For example, the getx method returns the current x-coordinate:

# getX = fun(state:{|x: Intl}) state.x;
getX = <val> : {|x:Int|} -> Int

Since the internal state of a Smalltalk-style object is accessible only to its methods,
the object's interface to the outside world can be expressed by replacing the type of
the state by an abstract token Rep in the types of its methods:

bump: Rep->Rep
setX: Rep->Int->Rep
getX: Rep->Int

Formally, this replacement is accomplished by regarding the type of the methods as
a function from the representation type to the type of a record of functions:

# PointM = Fun(Rep) {|
# bump: Rep->Rep,
# setX: Rep->Int->Rep,
# getX: Rep->Int
# I};
PointM : *->*

This function can be applied to any particular representation of points, such as the
record type {I x: Int I}, to yield the types of the methods of objects based on that
representation.

https://doi.org/10.1017/S0956796800001040 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001040


210 B. C. Pierce and D. N. Turner

An object satisfying the above specification consists of a record of methods of
type PointM Rep for some concrete state type Rep, paired with a 'current state' of
type Rep and surrounded by an abstraction barrier that protects the current state
from access except through the methods. This encapsulation is directly expressed by
an existential type:

# Point = Some(Rep) {| state: Rep, methods: PointM Rep I};

Point : *

Abstracting PointM from Point yields a higher-order type operator that, given an
interface specification, forms the type of objects satisfying it:

# Object = Fun(M:*->*) Some(Rep) {I state: Rep, methods: M Rep I};

Object : (*->*)->*

Here * is the kind of well-formed types such as Int and lnt->lnt and *->* is the
kind of functions from types to types, such as Fun(X:*)x->x. Since Object takes
an argument of kind *->* and returns a type, its own kind is (*->*)->*. The
type of point objects can now be expressed more concisely by applying the Object
constructor to the specification PointM:

# Point = Object PointM;

Point : *

At this stage, the separation of Point into a specification of its methods and
an operator capturing the common structure of all object types is just a matter of
notational convenience. This separation will be crucial, however, for handling the
interaction between encapsulation and subtyping.

New point objects are created using the existential introduction form <R,r>:T,
which packages the witness type R and the body r into an element of the existential
type T. For example, a point object with representation type {|x: lnt |}, internal
state {x=5}, and method implementations as above can be created as follows:

# pi = < {|x: Int|>,

=5},

fun(s:{|x:Int|}) {x=plus 1 s.x},

fun(s:{|x:Int|}) fun(i: Int) {x=i},

fun(s:{|x:Intl» s.x}}

Note that, unlike some object-oriented languages, the elements of an object type
here may have different internal representations and different implementations of
their methods. For example, a point with representation type {|x:lnt,other:Int|}
might be implemented as follows:

# p2 = < {Ix: Int, other: Int|},

# {state = {x=5,other=999},

# methods = {bump = fun(s:{|x:Int,other :Int|})

# {x=plus 1 s.x,other=s.other},

# setX = fun(s:{|x:Int,other:Int|}) fun(i:Int)

# {x=i,other=s.other},

# getX = fun(s:{|x:Int,other:Int|})

#
#
#
#
#

pi

{state =

methods

>: Point;

= <val> : Point

{x=5},

= {bump

setX

getX

https://doi.org/10.1017/S0956796800001040 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001040


Simple type-theoretic foundations for object-oriented programming 211

# s.x}}

# >: Point;

p2 = <val> : Point

The internal bump method of an arbitrary point p can be invoked usjng the
following message-sending function:

# Point'bump =

# fun(p: Point)

# open p as <Rep,r> in

# < Rep, {state = r.methods.bump r.state, methods = r.methods} >; Point

# end;

Point'bump = <val> : Point -> Point

First we open p, binding the variable Rep to its representation type and the record
containing its state and methods to the variable r. The typechecking rule for open
ensures that the representation type can only be used abstractly in the body of
the open: the only functions applicable to the state component r . s t a t e are those
in r.methods. We apply the bump function from r.methods to r . s ta te , producing
a new value of type Rep, which is used to create a new point object (having the
same methods and hidden representation type as the original). The name Point'bump
introduces a convention that we will follow throughout: T'm names the function that
sends the message m to objects of type T = object TM.

The Point'setx function is implemented in almost exactly the same way; the only
difference is that we need to add an extra parameter i, the new x-coordinate for the
point, and then apply the function setx from r.methods to both r . s t a t e and i :

# Point'setX =

# fun(p: Point)

# open p as <Rep,r> in

# fun(i: Int)

# < Rep, {state = r.methods.setX r.state i, methods = r.methods}

# >: Point

# end;

Point'setX = <val> : Point -> Int -> Point

Since the getx method does not return a new state, we do not need to create a new
point object; we just apply the getx function from r .methods to the state to yield an
integer, which we then return:

# Point'getX =

# fun(p: Point)

# open p as <Rep,r> in

# r.methods.getX r.state

# end;

Point'getX = <val> : Point -> Int

Now we can write programs that send the messages setx, getx, and bump to point
objects:

# Point'getX (Point'bump (Point'setX pi 3));

4 : Int

https://doi.org/10.1017/S0956796800001040 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001040


212 B.C. Pierce and D. N. Turner

The conventional use of existential types in modelling abstract types differs from
their use here in modelling objects, in that a 'package' (an instance of an existential
type) implementing an abstract type is normally opened just once, as soon as it
is created, whereas a package representing an object is kept closed until the last
possible moment, when its internal state and methods must be combined in the
body of a message-sending function.

In the recursive-records encoding of objects, sending a message to an object is
usually modelled by extracting a method from the record and applying it to any
additional arguments. There, the responsibility for performing any unpacking and
repacking of internal state is placed on the receiver of a message; we give the
responsibility to the sender.

3 Subtyping

Most object-oriented languages organize the specifications of objects into a subtype
hierarchy, capturing the intuition that some objects may provide more services than
others. For example, consider a refined form of point objects that carry colour as
well as position information:
# CPointM = Fun(Rep) {I getX: Rep->Int, setX: Rep->Int->Rep, bump: Rep->Rep,
# getC: Rep->Colour, setC: Rep->Colour->Rep I};
CPointM : *->*
# CPoint = Object CPointM;
CPoint : *

We would expect that an element of CPoint can safely be used in any context where
a Point is expected. This intuition is formalized by extending our 2-calculus with
a subtype relation, writing T \- S < T to mean that S is a subtype of T under
assumptions T. The subtype relation we use here is a straightforward higher-order
extension (due to Cardelli, 1990, and Mitchell, 1990) of the familiar calculus of
second-order bounded quantification, F<, (Cardelli and Wegner, 1985; Cardelli et al.,
1991; Curien and Ghelli, 1991).

Using the subtyping rules in Appendix B, it is easy to check that CPoint is indeed
a subtype of Point, as follows. The definitions of CPoint and Point are equivalent
(by /?-conversion) to:

# CPoint = Some(Rep) {I
# state: Rep,
# methods: {| getX: Rep->Int, setX: Rep->Int->Rep, bump: Rep->Rep,
# getC: Rep->Colour, setC: Rep->Colour->Rep 1}
# l>;
CPoint : *

# Point = Some(Rep) {I
# state: Rep,
# methods: {| getX: Rep->Int, setX: Rep->Int->Rep, bump: Rep->Rep 1}

# I};
Point : *

By the rules for existential and record subtyping (S-SOME and S-RECORD), CPoint <
Point if

https://doi.org/10.1017/S0956796800001040 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001040


Simple type-theoretic foundations for object-oriented programming 213

•ClgetX: Rep->Int, setX: Rep->Int->Rep, bump: Rep->Rep,
getC: Rep->Colour, setC: Rep->Color->RepI}

{IgetX: Rep->Int, setX: Rep->Int->Rep, bump: Rep->Rep |},

which holds (by S-RECORD again) since the former has more fields and the types of
the common fields agree.

The encoding of message passing in section 2 must be generalized to interact
properly with subtyping. For example, the typing of Point'bump already allows it to
be applied to an element of CPoint (using rules T-SUBSUMPTION and T-ARROW-E),

but the result of the application is an element of Point, rather than an element
of CPoint. (We want the result to be of type CPoint since Point'bump is supposed
to be a functional analog of the operation of sending the bump method to an
object.) It would be unfortunate if sending such a message caused the sender to lose
information about the type of the receiver.

Cardelli and Wegner (1985) proposed that the proper type for a function such as
Point'bump should be:

Point'bump : All(P<Point) P->P

i.e. given any subtype of the type of point objects, Point'bump should map elements
of this type into results of the same type. This is an intuitively reasonable typing;
unfortunately, it is not possible to generalize our implementation of Point'bump so
that it possesses this typing.

(It is instructive to check that the 'obvious' generalization

wrong'bump =

fun(P<Point)

fun(p: P)

open p as <Rep,r> in

< Rep, {state = r.methods.bump r.state, methods = r.methods} >: P

end;

is not well typed. The typing rule for the open expression requires that the type
of the expression being opened have the form Some(R)T, for some T; but here the
type declared for p is P, which has the form of a variable rather than an existential
quantifier. To use the open rule, we must apply the rule of subsumption to p,
promoting its type to be Point (this is legal, since P < Point). But now, when we
apply the internal bump function to the state and combine the result with the old
record of methods, we are only justified in claiming to have built the internal state
of a new Point, not the internal state of an element of P, and so the existential
introduction <Rep,.. .>:P is ill typed. In effect, this is the same problem that we had
before introducing the bounded quantifier: to use an element of P as a Point, the
rule of subsumption must be applied, leading to an irrevocable loss of information.)

Indeed, a simple semantic argument (c.f. Robinson and Tennent, 1988) shows
that, in some models (for example, those based on partial equivalence relations
(Bruce and Longo, 1990), the only inhabitants of the type All(P<Point) P->P are
identity functions. To see this, imagine a subtype P of Point containing just one

https://doi.org/10.1017/S0956796800001040 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001040


214 B. C. Pierce and D. N. Turner

element. If we instantiate Point'bump with P and then pass the one element of P as its
argument, the result can clearly only be the same point. That is, on this one-element
type P, Point'bump behaves like an identity function. But since we are working
in a A-calculus whose notion of polymorphism is parametric (Reynolds, 1983), the
behaviour of polymorphic functions cannot depend upon their type arguments. The
fact that Point'biimp is an identity function at one type implies that it is an identity
function at all types.

To obtain a sound typing for Point'bump, we need to consider more carefully what
we want the typing to express. It is not the case that we need to be able to apply
Point'bump to elements of arbitrary subtypes of Point; it suffices that we be able to
apply it to elements of arbitrary object types whose interfaces are more refined than
the interface of point objects:

Point'bump : All(M<PointM) (Object M) -> (Object M)

Informally, it should be clear what is meant by the quantification All(M<PointM).
But we need to define what it means formally, in terms of the subtype relation, for
one type operator to be a subtype of another. In fact, there are several reasonable
alternatives; for the present purposes, it suffices to consider the simplest possible
one: subtyping on types is simply extended pointwise to operators. An operator
M:*->* is a subtype of N:*->* if, whenever M and N are instantiated with the same
type T, the results stand in the subtype relation: M T < N T. In particular, we say
that Fun(A:K)S is a subtype of Fun(A:K)T if S<T. Hence, CPointM < PointM, since we
have already checked that

{IgetX: Rep->Int, setX: Rep->Int->Rep, bump: Rep->Rep,
getC: Rep->Colour, setC: Rep->Colour->RepI}

{IgetX: Rep->Int, setX: Rep->Int->Rep, bump: Rep->Rep 1}

for every possible instantiation of the type variable Rep.
Our earlier implementation can easily be generalized so that it possesses the

required type:

# Point'bump =
# fun(M<PointM)
# fun(p: Object M)
# open p as <Rep,r> in
# < Rep, {state = r.methods.bump r.state,
# methods = r.methods}
# >: Object M
# end;
Point'bump = <val> : All(M<PointM) (Object M) -> (Object M)

Since CPointM < PointM, we can apply this version of Point'bump to the type operator
CPointM yielding a message-sending function which maps an element of CPoint to a
CPoint, as desired:

# Point'bump CPointM;
<val> : (Object CPointM) -> (Object CPointM)

https://doi.org/10.1017/S0956796800001040 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001040


Simple type-theoretic foundations for object-oriented programming 215

The polymorphic message sending functions for points can now be applied to
coloured points without losing type information; if cp is a coloured point, we can
write:

# Point'getX CPointM (Point'bump CPointM (Point'setX CPointM cp 3));

4 : Int

Intuitively, our use of operator subtyping permits the typing of message-sending
operations to distinguish the updateable portions of a data structure, in which
subtyping must not be allowed, from the portions that are never changed by the
message-sending functions, where subtyping is permissible, even in the presence of
type constructors such as existential quantifiers that introduce type variable bindings.
Operator subtyping appears in many type theoretic accounts of object-oriented
programming. Mitchell (1990) uses it explicitly, while Cook, Hill, and Canning
(1989) and Bruce (1992, 1993) rely on the closely related formalism of F-bounded
quantification to achieve a similar effect. Mitchell, Honsell and Fisher's (1993) more
recent type system for delegation-based inheritance uses a similar mechanism to
ensure the soundness of their object extension operator.

4 High-level syntax for objects

We have presented our encodings in 'bare' Fg so as to be very precise about the
type-theoretic treatment of the basic mechanisms of object-oriented programming.
Of course, the constructions we have given are too verbose to be of direct use in
practice. To alleviate this problem, our implementation of F< provides a concise
high-level syntax for declaring object types and their associated message-sending
functions.

Our high-level syntax for object types relies on the observation that message-
sending functions like Point'setX can be generated uniformly from the types of
the methods: given the Object Type declaration below, we automatically generate
the types PointM and Point and the implementations of Point 'getX, Point'setX and
Point'bump.

# Point =

# ObjectType(Rep) with

# getX: Int,

# setX: Int->Rep,

# bump: Rep

# end;

PointM = Fun(Rep) {IgetX: Rep->Int, setX: Rep->Int->Rep, bump: Rep->Rep|}

Point = Object PointM

Point'getX : All(M<PointM) (Object M) -> Int

Point'setX : All(M<PointM) (Object M) -> Int -> (Object M)

Point'bump : All(M<PointM) (Object M) -> (Object M)

Intuitively, the generation of these functions is quite straightforward: the compiler
needs to find all the occurrences of the representation type Rep in the result types of
the methods and insert the necessary re-packaging code to build new objects instead
of returning a bare instance of Rep. For example, the implementation of Point'bump

https://doi.org/10.1017/S0956796800001040 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001040


216 B. C. Pierce and D. N. Turner

generated by the compiler is identical to that show in section 3. A theoretical
justification of this compilation procedure is developed in detail in Hofmann and
Pierce (1994).

The following declaration of CPoint generates functions for sending the setx,
getX, bump, setC and getC messages. Here, the functions CPoint'setX, CPoint'getX
and CPoint'bump are actually redundant, since the corresponding Point message-
sending functions have essentially the same typing. In general, however, CPoint's
version of a given method may have a more specific type than Point's. For ex-
ample, the coloured point getX method could have type Pos (where Pos, the type
of positive numbers, is a subtype of Int). In this case, CPoint 'getX would have
type All(M<CPointM) (Object M) -> Pos and having both the Point and the CPoint
message-sending functions would be useful:

# CPoint =
# ObjectType(Rep) with
# getX: Int ,
# setX: Int->Rep,
# bump: Rep,
# setC: Colour->Rep,
# getC: Colour
# end;
CPointM = Fun(Rep)

•ClgetX: Rep->Int, setX: Rep->Int->Rep, bump: Rep->Rep,
setC: Rep->Colour->Rep, getC: Rep->ColourI}

CPoint = Object CPointM
CPoint'getX : All(M<CPointM) (Object M) -> Int
CPoint'setX : All(M<CPointM) (Object M) -> Int -> (Object M)
CPoint'bump : All(M<CPointM) (Object M) -> (Object M)
CPoint'setC : All(M<CPointM) (Object M) -> Colour -> (Object M)
CPoint'getC : All(M<CPointM) (Object M) -> Colour

5 Inheritance

In the following sections, we demonstrate how inheritance can be implemented
within the formal framework we have developed so far. It is important to note
that the basic theoretical work of the paper is completely finished at this point.
We began with a simple model of objects, using existential types to capture the
essential notion of encapsulation. This model was refined by the introduction of the
Object type constructor (moving us from the second-order polymorphic ^.-calculus,
System F, to a higher-order calculus with a richer set of kinds, System Fm). The
introduction of subtyping required another extension of the basic calculus, and the
interaction of subtyping and encapsulation forced a crucial refinement in the typing
of message-sending functions like Point'bump. From this point on, however, we will
require no further changes, either to our encoding of objects or to the underlying
system of types. (At the level of values, on the other hand, we will need to use the
fixed-point constructor rec, which has not been necessary up until now, to model
the behaviour of self.)

The word 'inheritance' is used to describe a variety of language features that

https://doi.org/10.1017/S0956796800001040 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001040


Simple type-theoretic foundations for object-oriented programming 217

allow object definitions to be constructed incrementally by sharing implementations
of methods in hierarchies of classes. We can think of classes as templates which
can either be used to create objects or extended to create new classes. In adopting
this definition we also make an important distinction between objects and classes:
objects may only be manipulated by sending them messages, their methods may not
be extended or changed; classes, on the other hand, may be extended but cannot be
sent messages.

In the high-level syntax provided by our prototype compiler, the following dec-
laration creates both a class (a value named pointClass whose type, Class PointM,
may be read as 'A class whose instances are objects with interface PointM') and, for
convenience, an initial instance of this class named point'new (the definition of the
type constructor Class is given in the next section):

# (

#
#
#
#
#
#

:lass point : Point =
vars x

with

setX

getX

bump

end;

pointClass

point'new :

: Int = 0

= fun(i:Int) stateQx = i,

= stateQx,

= stateSx = plus stateSx 1

: Class PointM

Object PointM

The phrase 'vars x : Int = 0' declares the internal state type to be a record with
a single field x of type Int, whose initial value in point'new is 0. (We allow more
than one internal state variable. For example, the declaration

vars x : Int = 0, y : Int = 0

introduces two instance variables x and y, and declares the internal state type to be
a record containing two fields x and y of type Int.) The methods setX, getX and bump
are defined in terms of an implicit parameter state, which represents the internal
state of the object. The field 1 of a state s is accessed and updated by writing sQl
and s9l=i, respectively. (We shall see later that these do not mean quite the same
thing as s.l and {l=i}, although the intuition is similar.)

Multiple instance variables can be updated by cascaded applications of 9, as
in (sQl=i)Qm=j. This illustrates why it is necessary to specify which state is to be
updated by 9: if we assumed that the first argument of 9 would always be state,
then there would be no way to update more than one instance variable in the present
purely functional framework. In a richer language with side-effects, we could omit
this argument.

Now, we wish the setx, getx and bump methods of coloured points to behave
just like those of points. The basic idea of inheritance is to provide a notation that
allows these methods to be written just once, in the definition of points, and then
reused in the definition of coloured points.

# class cpoint : CPoint from point : Point =

# vars c : Colour = red

# inherit setX, getX, bump

# with

https://doi.org/10.1017/S0956796800001040 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001040


218 B.C. Pierce and D. N. Turner

# setC = fun(c:Colour) stateOc = c,

# getC = stateSc

# end;

cpointClass : Class CPointM
cpoint'new : Object CPointM

The phrase 'from point : Point' in the class header and the inherit clause two
lines below indicate that this declaration is not free-standing, but rather defines the
behaviour of coloured points incrementally, with respect to the existing class point.
Only the new methods setC and getC are defined explicitly; the other three are
taken from point. (In most object-oriented languages, the inherit clause is implicit:
all methods not explicitly overridden in a subclass definition are inherited from the
superclass. However, compiling such definitions into our low-level typed 1-calculus
becomes a little less straightforward.)

Most object-oriented languages carry the idea of inheritance two significant steps
further. First, we may wish that the bump method in the definition of points could
be implemented in terms of calls to the setx and getx methods, instead of changing
the state directly. This is good programming practice, since it localizes the behaviour
of 'setting the x-coordinate' in exactly one definition: the setx method. In typical
object-oriented languages, this need is satisfied by providing the ability to send
messages to 'self', i.e. to the very object executing the method in which self is
mentioned. Here, we use a slightly different syntax, viewing self as just a record of
methods rather than as a whole object:

# class point : Point =

# vars x : Int = 0

# with

# setX = fun(i:Int) state@x=i,

# getX = stateOx,

# bump = self.setX state (plus (self.getX state) 1)

# end;

pointClass : Class PointM
point'new : Object PointM

This implementation of bump uses the getx method of self to extract the current
x coordinate, increments it by l, and uses self's setx method to store the updated
value in the state, yielding a new state, which it returns as its own result. As before,
it is necessary to pass the state argument explicitly, since we might want to apply
several methods in turn (as in the following example).

Now, imagine that the coloured point class provides a new implementation of
setx (one that updates the x-coordinate as usual but also changes the point's colour
to blue, for example):

# class cpoint : CPoint from point : Point =

# vars c : Colour = red

# inherit getX, bump

# with

# setX = fun(i:Int)

# let state' = super.setX state i

# in self.setC state' blue end,

https://doi.org/10.1017/S0956796800001040 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001040


Simple type-theoretic foundations for object-oriented programming 219

# setC = fun(c:Colour) state@c=c,
# getC = stateSc
# end;
cpointClass : Class CPointM
cpoint'new : Object CPointM

As in the implementation of bump, we can use self .setc to change the colour,
rather than modifying it directly. But since we are defining setx, we clearly cannot
use self. setx. Nevertheless, since we have already defined the x-coordinate-setting
behaviour of setx once, it would be ideal if we were not forced to redefine this
aspect of the behaviour of the new setx, but could refer to the original behaviour
of the setx method of points. This ability is provided by the implicit parameter
super in the second line of the definition of the setx method. Also note that, since
we are working in a purely functional language, we are forced to be explicit about
which state is being updated or queried. In the implementation of setx, state is
the original state passed to the method as an implicit parameter and state' is the
state after the x field has been changed. The final result of the method thus has new
values for both x and c.

The second major step taken in many object-oriented language designs is to
arrange that the behaviour of this new setx is also seen by the bump method (which
was defined earlier in the class point and inherited by cpoint), so that sending bump
to a colored point changes its colour to blue as well as incrementing its x-coordinate:

# cl = cpoint'new;
cl = <val> : Object CPointM
# CPoint'getC CPointM cl;
red : Colour
# c2 = Point'bump CPointM cl;
c2 = <val> : Object CPointM
# CPoint'getC CPointM c2;
blue : Colour

This so-called late binding of recursive references in bump to self. setx and self. getX
is often cited as a characteristic feature of object-oriented languages. Although we
shall see that it is by no means a necessary feature (somewhat simpler and perhaps
equally useful variants of inheritance can be built without it), the task of providing it
is an interesting challenge, and the fact that it can be provided quite straightforwardly
stands as additional evidence that our type theory is rich enough to capture a wide
variety of object-oriented features.

6 Implementing inheritance

We now explain in detail how inheritance can be implemented. We begin with a
simple version of inheritance where the instance variables of a class are accessible
from methods in its subclasses, working in several stages so as to introduce the more
difficult technical constructions one by one. Section 7 develops a more sophisticated
implementation where superclass instance variables are hidden from subclasses. (It
is this version that our compiler uses as the base for the high-level class definitions
described in the previous section.)

https://doi.org/10.1017/S0956796800001040 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001040


220 B. C. Pierce and D. N. Turner

From this point through to section 9, the development becomes somewhat more
technical. Since the details of inheritance have no bearing on the basic object model
developed in the early sections of the paper, some readers may want to skim these
sections, or even skip directly to section 10.

The essential differences between a class and an object are threefold:

1. The internals of an object are protected by a hard encapsulation boundary;
there is no way to pull them out, make incremental modifications, and replace
the packaging. (Languages in which this sort of incremental modification of
objects is allowed are called delegation-based; their notion of encapsulation is
somewhat different from the kind we are considering.)

2. The methods of an object are specialized to work on internal states of one
particular type, typically records with a fixed collection of fields. But subclass
definitions may add new fields. To deal with this flexibility, the methods of a
class must be polymorphic in the final representation type.

3. The methods of an object are essentially functions from states to states. But
to implement the behaviour of self introduced in the previous section, it is
necessary to postpone deciding which record of methods the special name self
refers to; in a given class, instances of self do not necessarily refer to the
methods of that class, but perhaps to the methods of some subclass that has
not yet been defined. Thus, the methods in a class should be thought of as
functions from self to functions from states to states.

A class, then, is essentially just an object with enough of the packaging left off,
and enough decisions about representation and recursive self-reference postponed,
that it can still be extended. When the class is instantiated to form an object, the
representation and references to self are fixed and the methods all become concrete
functions:

pointClass
r - p e Object PointM
Class PointM

extend

cpointClass new
^ ^^ cp 6 Object CPointM

e Class CPointM

Note that classes themselves are values, not types: we can write many different
classes of type Class PointM, each of which can be used to build objects of type
Object PointM. Moreover, the type of a coloured point class is not a subtype of the
type of a point class, although the type of coloured point objects is a subtype of the
type of point objects.

Let us assume, for the moment, that points and coloured points have exactly the
same representation type, so that we only need to deal with inheritance of methods:

# CommonRep = {I x:Int,colour:Colour I};
CommonRep : *

https://doi.org/10.1017/S0956796800001040 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001040


Simple type-theoretic foundations for object-oriented programming 221

Then the (second) point class from the previous section can be implemented in pure
F£ as a record of methods, abstracted on a record self of methods with the same
types:

# pointClass =

# fun(self:PointM CommonRep)

# {getX = fun(s:CommonRep) s.x,

# setX = fun(s:CommonRep) fun(i:Int) {x=i,colour=s.colour},

# bump = fun(s:CommonRep) self.setX s (plus (self.getX s) 1)}

# : PointM CommonRep;

pointClass = <val> : (PointM CommonRep) -> (PointM CommonRep)

(The type assertion ': PointM CommonRep' is included to help the typechecker print
the type of pointClass in a readable form; without the assertion, an equivalent but
more verbose type is printed.)

The recursive references to setX and getx in bump are delayed by referring to
the setx and getx fields from self. These delayed references are resolved when we
create an instance of pointClass by supplying it as the argument to the polymorphic
fixed point operator rec: All (A) (A->A) ->A to create a concrete record of functions,
which is then encapsulated as a point object as before:

# p = < CommonRep,

# {state = {x=l,color=red},

# methods = rec (PointM CommonRep) pointClass}

# >: Object PointM;

p = <val> : Object PointM

The class pointClass here has no superclasses; its behaviour is defined directly.
Coloured points, on the other hand, are defined incrementally, by means of a
function mapping an implementation of the point methods (called super here) to an
implementation of the coloured point methods:

# buildCPointClass =

# fun(super:PointM CommonRep) 7. superclass methods

# fun(self:CPointM CommonRep) 7, recursively defined "self" methods

# {getX = super.getX,

# setX = super.setX,

# getC = fun(s:CommonRep) s.colour,

# setC = fun(s:CommonRep) fun(c:Colour) {x=s.x, colour=c},

# bump = super.bump}

# : CPointM CommonRep;

buildCPointClass = <val>

: (PointM CommonRep)

-> (CPointM CommonRep)

-> (CPointM CommonRep)

The getX, setX, and bump methods are inherited by copying them from the abstracted
record of point methods. The parameter self plays the same role here as it did
in pointClass, delaying recursive references to the coloured point methods until
instantiation time. (It happens that there are no such references here.)

To create a coloured point object, we first use pointClass to build an implemen-
tation of the inherited point methods, supplying it with a record of coloured point

8 FPR 4

https://doi.org/10.1017/S0956796800001040 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001040


222 B. C. Pierce and D. N. Turner

methods obtained by taking a fixed point as before (which can be regarded as a
record of point methods since CPointM CommonRep is a subtype of PointM CommonRep):

# cp = < CommonRep,

# {state = {x=l,colour=red},

# methods = rec (CPointM CommonRep)

# fun(self: CPointM CommonRep)

# buildCPointClass (pointClass self) self}

# >: Object CPointM;

cp = <val> : Object CPointM

Now let us consider the more realistic case where defining a subclass involves
extending both the state and the collection of methods. Here, points should be
represented using just an x field, while the representation of coloured points also
has a colour field.

# PointR = {I x:Int l>;

PointR : *

# CPointR = {| x:Int, colour:Colour |};

CPointR : *

At the same time, we provide general extension and instantiation functions that can
be applied to arbitrary class definitions.

The new variability in representations creates a technical difficulty. It is not
literally true any more that the setx method behaves identically in points and
coloured points: the setx of points expects a state argument of type PointR, which
it discards and replaces with a new value, while the setx of coloured points expects
a state argument of type CPointR and returns a record with a new x field and a copy
of the old colour field.

To resolve this difficulty, we need the observation that the setx method of points
does not actually need to know that the state type is PointR, but only that the state
contains an x-coordinate, i.e. it needs a way of extracting a component of type PointR
from the state and a way of overwriting just this component to produce a new copy
of the state. By abstracting pointClass on a pair of functions for extracting (get)
and overwriting (put), we obtain a new point class that is polymorphic in the 'final
representation type' FinalR of some eventual subclass:

# pointClass =

# fun(FinalR)

# fun(get: FinalR->PointR)

# fun(put: FinalR->PointR->FinalR)

# fun(self: PointM FinalR)

# {getX = fun(s:FinalR) (get s).x,

# setX = fun(s:FinalR) fun(i:Int) put s {x=i>,

# bump = fun(s:FinalR) put s -[x=(plus (get s).x 1)}

# }: PointM FinalR;

pointClass = <val>

: All(FinalR)

(FinalR->PointR)

-> (FinalR->PointR->FinalR)

-> (PointM FinalR)

-> (PointM FinalR)

https://doi.org/10.1017/S0956796800001040 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001040


Simple type-theoretic foundations for object-oriented programming 223

Abstracting the method interface PointM and the local representation type PointR in
the type of pointClass yields a type operator describing the types of arbitrary class
definitions.

# Class =
# Fun(SelfM:*->*)

# Fun(SelfR)

# All(FinalR)

# (FinalR->SelfR) ->

# (FinalR->SelfR->FinalR) ->

# (SelfM FinalR) ->

# (SelfM FinalR);

Class : (*->*)->*->*

The generic instantiation function new takes a class and an initial state and con-
structs an object using the fixed-point constructor as before, choosing the 'final
representation' to be the same as the 'local representation', and supplying an identity
function as the extractor and, as the overwriter, a two-argument function that simply
returns its second argument.

# new =
#
#
#
#
#
#
#
#
#
#
#
#
#
#

funCSelfM:*->*)

fun(SelfR)

fun(selfClass: Class

fun(s: SelfR)

<SelfR,

{state = s,

methods =

SelfM SelfR)

rec (SelfM SelfR)

(fun(self:

selfClass

}>: Object SelfM;

new = <val>

: All(SelfM:*->*)

All(SelfR)

SelfM SelfR)

i SelfR

(fun(s:SelfR)

(fun(s:SelfR)

self)

(Class SelfM SelfR) -> SelfR ->

s)
fun(s':SelfR) s')

(Object SelfM)

Point objects are created by applying new to the type of the point methods, a
representation type, an appropriately typed point class, and an initial value of the
representation type.

# p = new PointM PointR pointClass {x=l};
p = <val> : Object PointM

Finally, we can write a generic class extension function, extend. This function is
abstracted on

• an existing class definition superclass,

• a function inc that describes the 'increment' between the methods of the given
class and those of the new class, and

8-2

https://doi.org/10.1017/S0956796800001040 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001040


224 B. C. Pierce and D. N. Turner

• an extractor get and an overwriter put for converting between the representa-
tion type SuperR of the given class and the desired representation type NewR of
the new class.

Given these parameters, extend constructs a new class in which the extractor and
overwriter converting between FinalR and NewR are composed with those that convert
between NewR and SuperR, to enable the superclass methods to access their part of
the state.

For convenience, we first define the Increment type. It is like a class type, except
that it is also abstracted on the implementation of its superclass methods.

# Increment =
# Fun(SuperM: *->*) 7. superclass interface
# Fun(NewM: *->*) 7. new class interface
# Fun (NewR) 7. new representation
# All (FinalR) '/. final representation
# (FinalR->NewR) -> 7. extractor
# (FinalR->NewR->FinalR) -> '/. overwriter
# (SuperM FinalR) -> '/, superclass methods
# (NewM FinalR) -> 7. self methods
# NewM FinalR; 'I, ...returning the new methods
Increment : (*->*)->(*->*)->*->*

# extend =
# fun(SuperM:*->*) 7. superclass interface
# fun(SuperR) 7. superclass representation
# fun (NewM < SuperM) 7. new class interface
# fun (NewR) 7. new class representation
# fun (superclass: Class SuperM SuperR) 7. the superclass
# fun(inc: Increment SuperM NewM NewR) '/, "increment" function
# fun(get: NewR->SuperR) 7. new->super extractor
# fun (put: NewR->SuperR->NewR) '/. new<-super overwriter
#
# 7. Build the extended class...
# (fun(FinalR)
# fun(g: FinalR->NewR)
# fun(p: FinalR->NewR->FinalR)
# fun(self: NewM FinalR)
# inc FinalR g p
# (superclass FinalR
# (fun(s:FinalR) get(g(s)))
# (fun(s:FinalR) fun(s':SuperR) p s (put (g s) s'))
# self)
# self)
# : Class NewM NewR;
extend = <val>

: All(SuperM:*->*)
All(SuperR)
All(NewM<SuperM)
All(NewR)

(Class SuperM SuperR)
-> (Increment SuperM NewM NewR)
-> (NewR->SuperR)

https://doi.org/10.1017/S0956796800001040 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001040


Simple type-theoretic foundations for object-oriented programming 225

-> (NewR->SuperR->NewR)
-> (Class NewM NewR)

The coloured point class can now be implemented by extending pointClass:

# cpointClass =
# extend PointM PointR CPointM CPointR pointClass
# (fun(FinalR)
# fun(get: FinalR->CPointR)
# fun(put: FinalR->CPointR->FinalR)
# fun(super: PointM FinalR)
# fun(self: CPointM FinalR)
# {getX = super.getX,
# setX = super.setX,
# getC = fun(s:FinalR) (get s).colour,
# setC = fun(s:FinalR) fun(c:Colour) put s {x=0, colour=c},
# bump = super.bump
# })
# (fun(s:CPointR) {x=s.x})
# (fun(s:CPointR) fun(s':PointR) {x=s'.x, colour=s.colour});
cpointClass = <val> : Class CPointM CPointR

Applying new to cpointClass yields an object of type Object CPointM,

# cp = new CPointM CPointR cpointClass {x=l, colour=red};
cp = <val> : Object CPointM

which can be manipulated by sending it messages as in section 3:

# Point'getX CPointM (Point'bump CPointM cp);
2 : Int

7 Private instance variables

In the literature on object-oriented programming, it has sometimes been argued (e.g.
Snyder, 1986) that giving subclasses direct access to the instance variables of their
superclasses is a violation of proper encapsulation discipline. In this section, we
develop an alternative implementation of extend and new where instance variables
are hidden from subclasses. Methods defined in the point class will see the same
representation

# PointR = {| x:Int |};
PointR : *

as before, but the new methods defined in the coloured point class will only see the
new instance variable colour:

# CPointR = {I colour:Colour |};
CPointR : *

We begin by introducing some higher-level operations for manipulating maps
between state vectors of different shapes. An 'extractor' from a larger type S to a
smaller type T, written Extractor s T, is a pair of functions — one for extracting
the T component of an element of S and one for overwriting the T component of an
element of S with a new value:

https://doi.org/10.1017/S0956796800001040 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001040


226 B. C. Pierce and D. N. Turner

# Extractor = Fun(S) Fun(T) {| get: S->T, put: S->T->S I};
Extractor : *->*->*

The simplest extractor is the one that maps between a type S and S itself:
# idExtractor =
# fun(S)
# -[get = fun(s:S) s,
# put = fun(s:S) fun(t:S) t}
# : Extractor S S;
idExtractor = <val> : All(S) Extractor S S

Given extractors el and e2 of appropriate types, we can form the 'composition' of
el and e2 as follows:
# composeExtractors =
# fun(Tl) fun(T2) fun(T3)
# fun(el: Extractor Tl T2)

# fun(e2: Extractor T2 T3)

# {get = fun(tl:Tl) e2.get (el.get tl),

# put = fun(tl:Tl) fun(t3:T3)

# el.put tl (e2.put (el.get tl) t3)}

# : Extractor Tl T3;

composeExtractors = <val>

: All(Tl)

A1KT2)

A1KT3)

(Extractor Tl T2)

-> (Extractor T2 T3)

-> (Extractor Tl T3)

Finally, we can define extractors for the special case when the larger type s is just a
pair of the smaller type T with some other type:
# Pair = Fun(Tl) Fun(T2) {| fst:Tl, snd:T2 I};

Pair : *->*->*

# fstExtractor =

# fun(Tl) fun(T2)

# {get = fun(p: Pair Tl T2) p.fst,

# put = fun(p: Pair Tl T2) fun(t:Tl) {fst=t, snd=p.snd»

# : Extractor (Pair Tl T2) Tl;

fstExtractor = <val> : All(Tl) A1KT2) Extractor (Pair Tl T2) Tl

# sndExtractor =

# fun(Tl) fun(T2)

# {get = fun(p: Pair Tl T2) p.snd,

# put = fun(p: Pair Tl T2) fun(t:T2) {fst=p.fst, snd=t>}
# : Extractor (Pair Tl T2) T2;
sndExtractor = <val> : All(Tl) A11(T2) Extractor (Pair Tl T2) T2

The crucial change is in the definition of the operator Class. Instead of including
an explicit representation type in the type of a class, we existentially quantify the
class with respect to a type variable that stands for some hidden representation
type that was chosen when the class was built. The initial value of the local state
component is also specified in the class, instead of being chosen at instantiation
time:

https://doi.org/10.1017/S0956796800001040 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001040


Simple type-theoretic foundations for object-oriented programming 227

# Class =

# Fun(SelfM:*->*)

# Some(SelfR)

# {| localstate: SelfR,

# buildM: All(FinalR)

# (Extractor FinalR SelfR) ->

# (SelfM FinalR) ->

# (SelfM FinalR) I};

Class : (•->*)->*

For example, the class of point objects is:

# pointClass =

# < PointR,

# {localstate = {x=l},

# buildM =

# fun(FinalR)

# fun(e: Extractor FinalR PointR)

# fun(self: PointM FinalR)

# {getX = fun(s:FinalR) (e.get s).x,

# setX = fun(s:FinalR) fun(i:Int) e.put s {x=i},

# bump = fun(s:FinalR) self.setX s (plus (self.getX s) 1)}}

# >: Class PointM;

pointClass = <val> : Class PointM

The new function obtains the representation type for the new object by opening
the class to reveal its hidden representation type and initial state; since these are
immediately used to create a new object that also hides its representation, the
representation type is not allowed to escape:

# new =

# fun(SelfM:*->•)

# fun(selfClass: Class SelfM)

# open selfClass as <SelfR,selfData> in

# < SelfR,

# {state = selfData.localstate,

# methods =

# rec (SelfM SelfR)

# (fun(self:SelfM SelfR)

# selfData.buildM SelfR (idExtractor SelfR) self)}

# >: Object SelfM

# end;

new = <val> : All(SelfM:*->*) (Class SelfM) -> (Object SelfM)

Similarly, the extend function opens the packaged superclass to reveal its repre-
sentation type and initial state, and uses these to form the representation type and
initial state of the new class by pairing them with the new local representation type
NewDeltaR and the new local state deltastate. Extractors for the local state of the
superclass (needed by the function superData. buildM, which builds the superclass
methods) and the new class (needed by the function build, which builds the new
local methods) are constructed from an extractor from the final representation type
to the new state type (the pair of the new local state type and the superclass state
type) by composing it with fstExtractor and sndExtractor:

https://doi.org/10.1017/S0956796800001040 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001040


228 B. C. Pierce and D. N. Turner

# extend =
# fun(SuperM:*->*)
# fun(NewM < SuperM)
# fun(NewDeltaR)
# fun(superclass: Class SuperM)
# fun(deltastate: NewDeltaR)
# fun(inc: Increment SuperM NewM NewDeltaR)
# open superclass as <SuperR,superData> in
# < Pair SuperR NewDeltaR,
# {localstate = {fst = superData.localstate,
# snd = deltastate},
# buildM =
# fun(FinalR)
# fun(e: Extractor FinalR (Pair SuperR NewDeltaR))
# fun(self: NewM FinalR)
# let esnd = composeExtractors
# FinalR (Pair SuperR NewDeltaR) (NewDeltaR)
# e (sndExtractor SuperR NewDeltaR)
# in inc FinalR esnd.get esnd.put
# (superData.buildM FinalR
# (composeExtractors FinalR (Pair SuperR NewDeltaR) SuperR e
# (fstExtractor SuperR NewDeltaR))
# self)
# self
# end}
# >: Class NewM
# end;
extend = <val>

: All(SuperM:*->*)
All(NewM<SuperM)
All(NewDeltaR)

(Class SuperM)
-> NewDeltaR
-> (Increment SuperM NewM NewDeltaR)
-> (Class NewM)

The class of coloured points is now defined by extending the point class:

# cpointClass =
# extend PointM CPointM CPointR pointClass
# {color=red}
# (fun(FinalR)
# fun(get: FinalR->CPointR)
# fun(put: FinalR->CPointR->FinalR)
# fun(super: PointM FinalR)
# fun(self: CPointM FinalR)
# -CgetX = super. getX,
# setX = super.setX,
# getC = fun(s:FinalR) (get s).colour,
# setC = fun(s:FinalR) fun(c:Colour) put s {colour=c},
# bump = super.bump
# });
cpointClass = <val> : Class CPointM

https://doi.org/10.1017/S0956796800001040 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001040


Simple type-theoretic foundations for object-oriented programming 229

# cp = new CPointM cpointClass;

cp = <val> : Object CPointM

# Point'getX CPointM (Point'bump CPointM cp);

2 : Int

The high-level class definitions of section 5 can be compiled very straightforwardly
into calls to the extend function defined in this section. Method bodies are implicitly
abstracted on a state vector state, so that the setx method

fun(i:Int) state@x=i

becomes:

fun(state:{x:Int}) fun(i:Int) put state {x=i}

The notation for accessing and updating instance variables (sflli for accessing the
field with the ±th label and s@li=e for updating the l i field of the state vector s) is
compiled into calls to get and put:

sQli = (get s ) . l i

sQli=e = put s { l l=(ge t s ) . l l , . . . , l i = e , . . . . ln=(get s ) . l n }

where {11. .In} is the set of instance variables in the local part of the state vector.
(Although the latter abbreviation is a kind of polymorphic record update, it can
always be translated directly into lower-level record operations, since the set of
instance variable names in a given class definition is always known statically; the
powerful extensible record types of Wand, 1987, Remy, 1989, Cardelli, 1992a, Cardelli
and Mitchell, 1991, and Jategaonkar and Mitchell, 1988, are not required.)

Of course, in a setting where instance variables were mutable, references to the
implicit state variable state could be dropped, since there would never be any need
to apply get or put to any state vector other than state.

8 Example: Smalltalk-style collections

The Smalltalk collection classes are often cited as a paradigm example of the use
of inheritance in object-oriented programming. The standard Smalltalk-80 program-
ming environment includes a rich variety of class definitions for data structures
representing sets, bags, lists, arrays and other sorts of collections. The definitions of
these classes are organized in an inheritance hierarchy so that a great deal of func-
tionality is shared between groups of behaviourally similar classes. In this section,
we implement a simple, purely functional variant of the classes Collection and Bag.

For the moment, we assume that the elements of a collection are always integers.
The class intCollection, which forms the root of the hierarchy of collection classes,
describes the behaviour common to all integer collections. We provide just two
operations: size, which counts the elements of a collection, and fold, which applies
a given function to all the elements of a collection in turn, passing the result of the
previous application as the second argument in each case:

https://doi.org/10.1017/S0956796800001040 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001040


230 B. C. Pierce and D. N. Turner

# IntCollection =

# ObjectType(Rep) with

# fold: All(A) (Int->A->A) -> A -> A,

# size: Int

# end;
IntCollectionM = Fun(Rep)

•Clfold: Rep->(All(A)(Int->A->A)->A->A), size: Rep->Int|}
IntCollection = Object IntCollectionM
IntCollection'fold : All(M<IntCollectionM)

(Object M) -> (All(A)(Int->A->A)->A->A)
IntCollection'size : All(M<IntCollectionM) (Object M) -> Int

The size method can be implemented straightforwardly in terms of fold. But fold
itself cannot be implemented generically for an arbitrary collection; its behaviour
depends upon the specific sort of collection in question; in other words, fold
is a virtual (or deferred) method, which must be supplied in the subclasses of
IntCollection:

# class intCollection : IntCollection =

# virtual fold

# with

# size = self.fold state Int

# (fun(elt:Int) fun(count:Int) succ count)
# 0
# end;
intCollectionClass : Class IntCollectionM
intCollection'new : Object IntCollectionM

The keyword virtual is like inherits, except that it directs the compiler to copy the
listed methods from the self method vector rather than from super. Its translation
into pure Fg is given in the next section.

A bag is a simple sort of concrete collection. Here, we provide just one operation
in addition to fold and size: an add method that inserts a new element into a bag:

# IntBag =

# ObjectType(Rep) with

# fold: All(A) (Int->A->A) -> A -> A,

# size: Int,

# add: Int -> Rep

# end;

IntBagM = Fun(Rep)

{|fold: Rep-XAll(A)(Int->A->A)->A->A), size: Rep->Int,

add: Rep->Int->Rep|}

IntBag = Object IntBagM

IntBag'fold : All(M<IntBagM) (Object M) -> (All(A)(Int->A->A)->A->A)

IntBag'size : All(M<IntBagM) (Object M) -> Int

IntBag'add : All(M<IntBagM) (Object M) -> Int -> (Object M)

The class declaration for bags must implement add (since it is new) and fold (since
it was declared as virtual), but it can inherit size from the superclass. We use a list
of integers to represent the elements of a bag and the f oldList function to fold a
function over the list representing the elements of a bag:

https://doi.org/10.1017/S0956796800001040 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001040


Simple type-theoretic foundations for object-oriented programming 231

# class intBag : IntBag from intCollection : IntCollection

# vars 1 :

# inherit

# with

# fold =
#
#
#
# add =

#
# end;

intBagClass

intBag'new :

List Int = nil Int

size

fun(A)

fun(f: Int->A->A)

fun(a: A)

foldList Int stateQl A f a,

fun(i:Int)

stateOl = (cons Int i stateSl)

: Class IntBagM

Object IntBagM

The function cons here builds a new list from an old list and an element to be added
to the front; we can build lists of any type, so we instantiate cons by naming the
type of the elements as its first argument.

Note that the definition of size that intBag inherits from intCollection makes
an internal call to the fold method of intBag. This capability is the essence of
Smalltalk-style inheritance.

We can now write a simple program that builds a bag and calculates its size:

# bl = IntBag'add IntBagM intBag'new 7;

bl = <val> : Object IntBagM

# b2 = IntBag'add IntBagM bl 88;

b2 = <val> : Object IntBagM

# IntCollection'size IntBagM b2;

2 : Int

9 Polymorphic collections

Of course, we would like to be able to build collections with elements of any
type whatsoever, not just integers. This can be accomplished by a straightforward
generalization of our implementation of inheritance. To simplify the presentation, we
return to the variant of inheritance developed in section 6, where instance variables
of superclasses are visible to subclasses.

First, we introduce the notion of a polymorphic class — a class, in the sense
of section 6, abstracted on an additional type parameter E. Since the concrete
representation type depends upon the eventual value of E, the types Self R and FinalR
become one-argument type operators; similarly, the interface SelfM becomes a two-
argument operator (one argument, as before, stands for the hidden representation
type; the other stands for the element type):

# PolyClass =

# Fun(SelfM:*->*->*)

# Fun(SelfR:*->*)

# All(E)

# All(FinalR:•->*)

# (FinalR E->SelfR E) ->

# (FinalR E->SelfR E->FinalR E) ->

https://doi.org/10.1017/S0956796800001040 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001040


232 B. C. Pierce and D. N. Turner

# (SelfM E (FinalR E)) ->
# (SelfM E (FinalR E));
PolyClass : (*->•->*)->(*->*)->*

For example, since the collection class has no instance variables of its own, its local
representation type is expressed by the operator:

# CollectionR = Fvin(E) {I |};
CollectionR : *->*

The interface of the collection methods is:

# CollectionM =
# Fun(E) Fun(Rep)
# -CI fold: Rep -> All (A) (E->A->A) -> A -> A,
# size: Rep -> Int I};
CollectionM : *->*->*

The collection class itself is formed from the class of integer collections by abstracting
on E:

# collectionClass =
# (fun(E)
# fun(FinalR:*->*)
# fun(get: FinalR E->CollectionR E)
# fun(put: FinalR E->CollectionR E->FinalR E)
# fun(self : CollectionM E (FinalR E))
# {fold = self.fold,
# size = fun(state:FinalR E)
# self.fold state Int
# (fun(elt:E) fun(count:Int) succ count)
# 0 »
# : PolyClass CollectionM CollectionR;
collectionClass = <val> : PolyClass CollectionM CollectionR

The functions polynew and polyextend are the evident generalizations of new and
extend. We show just polyextend here:

# Polylncrement =
# Fun(SuperM: *->*->*) '/, superclass interface
# Fun(NewM: *->*->*) •/, new class interface
# Fun(NewR: *->*) '/, new representation
# All(E) 7. element type
# All (FinalR :*->*) 7. final representation
# (FinalR E->NewR E) -> 7. extractor
# (FinalR E->NewR E->FinalR E) -> 7. overwriter
# (SuperM E (FinalR E)) -> 7. superclass methods
# (NewM E (FinalR E)) -> 7. self methods
# (NewM E (FinalR E)); '/•... returning the new methods
Polylncrement : (*->*->*)->(*->*->*)->(*->*)->*
# polyextend =
# fun (SuperM :*->*->*) 7. superclass interface
# fun(SuperR:*->*) 7. superclass representation
# fun (NewM < SuperM) 7. new class interface
# fun(NewR:*->*) 7. new class representation

https://doi.org/10.1017/S0956796800001040 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001040


Simple type-theoretic foundations for object-oriented programming 233

# fun (superclass: PolyClass SuperM SuperR) '/, the superclass

# fun (build: Polylncrement SuperM NewM NewR) '/, "increment" function

# fun (get: All(E) NewR E->SuperR E) '/, new->super extractor

# fun (put: All(E) NewR E->SuperR E->NewR E) '/, new<-super overwriter

#

# '/. Build the extended class...

# (fun(E)

# fun(FinalR:*->*)

# fun(g: FinalR E->NewR E)

# fun(p: FinalR E->NewR E->FinalR E)

# fun(self: NewM E (FinalR E))

# build E FinalR g p

# (superclass E FinalR

# (fun(s:FinalR E) get E (g(s)))

# (fun(s:FinalR E) fun(s':SuperR E) p s (put E (g s) s'))

# self)

# self)

# : PolyClass NewM NewR;

polyextend = <val>

: All(SuperM:•->*->*)

All(SuperR:*->*)

All(NewM<SuperM)

All(NewR:*->*)

(PolyClass SuperM SuperR)

-> (Polylncrement SuperM NewM NewR)

-> (All(E)(NewR E)->(SuperR E))

-> (All(E)(NewR E)->(SuperR E)->(NewR E))

-> (PolyClass NewM NewR)

Now the representation and interface specification of polymorphic bags are:

# BagM =

# Fun(E) Fun(Rep)

# {I fold: Rep -> All(A) (E->A->A) -> A -> A,

# size: Rep -> Int,

# add: Rep -> E -> Rep |};

BagM : *->•->•

# BagR = Fun(E) {I elements : List E |};

BagR : *->*

and a suitable class definition is:

# bagClass =

# polyextend CollectionM CollectionR BagM BagR collectionClass

# (fun(E)

# fun(FinalR:*->*)

# fun(g: FinalR E->BagR E)

# fun(p: FinalR E->BagR E->FinalR E)

# fun(super: CollectionM E (FinalR E))

# fun(self: BagM E (FinalR E))

# {add = fun(state:FinalR E)

# fun(newelt:E)

# p state {elements = cons E newelt (g state).elements},

# fold = fun(state:FinalR E)

https://doi.org/10.1017/S0956796800001040 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001040


234 B. C. Pierce and D. N. Turner

# fun(R)

# fun(f :E->R->R) fun (start :R)

# foldList E (g state).elements R f start,

# size = super.size})

# (fun(E) fun(s:BagR E) O )

# (fun(E) fun(s:BagR E) fun(s' :CollectionR E) s) ;

bagClass = <val> : PolyClass BagM

When we create a bag, we choose both the type of its elements and the initial
value of its internal state:

# mybag = polynew BagM Color BagR

# bagClass

# {elements = nil Color};

mybag = <val> : Object (BagM Color)

The message-sending functions Bag'add, Collection'size, etc. are also abstracted
on the type of the elements:

# Bag'add;

<val> : All(E) All(M<BagM E) (Object M) -> E -> (Object M)

# Collection'size;

<val> : All(E) All(M<CollectionM E) (Object M) -> Int

We can send messages to the integer bag mybag as follows:

# mybagl = Bag'add Colour (BagM Colour) mybag blue;

mybagl = <val> : Object (BagM Color)

# mybag2 = Bag'add Colour (BagM Colour) mybagl red;

mybag2 = <val> : Object (BagM Color)

# Collection'size Colour (BagM Colour) mybag2;

2 : Int

10 Related work

Bruce (1992, 1993) develops a formal semantics (based on previous models by
Mitchell, 1990 and Cook, 1990, and their collaborators) and a proof of soundness
for a high-level object-oriented language with essentially the same features as ours.
Bruce's model is fundamentally quite similar to that developed here. In particular,
his use of F-bounded quantification corresponds to our use of higher-order bounded
quantification, and his inh relation between object types corresponds to operator
subtyping. The principal difference is that Bruce uses recursive types instead of type
operators to represent the interface types of objects, leading him to conclude that:

"While the semantics of our language is rather complex, involving fixed points at both
the element and type level, we believe that this complexity underlies the basic concepts
of object-oriented programming languages. Inherently complex features include the implicit
recursion inherent in the keyword, self, to refer to the current object, and its corresponding
type..." (Bruce, 1992, abstract)

While we agree that fixed points at the element level are required to model the
inheritance of methods referring to self, we have argued that the complexity of
recursive types is not inherent in the basic concepts of object-oriented programming.
Bruce's account also seems to be complicated by the fact that it uses both recursive

https://doi.org/10.1017/S0956796800001040 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001040


Simple type-theoretic foundations for object-oriented programming 235

types (for interfaces) and existential types (for hiding instance variables); it is not
clear why both should be needed.

We formulate our account in terms of more primitive record operations than
Bruce, using explicit extractors and overwriters to handle extension of the state
during inheritance; Bruce uses extensible records (Remy, 1989; Cardelli and Mitchell,
1989) for this purpose. Of course, our translation from the high-level syntax described
in section 5 into pure F£ must generate appropriate extractors and overwriters, which
amounts to implementing a kind of extensible records; however, since the set of
fields of a record being extended is always known statically, the full complexity of
row variables (Wand, 1987; Cardelli, 1992a) is not needed.

Cardelli's treatment of object-oriented programming (1992a, b) aims to describe
the same basic features of encapsulation, subtyping and inheritance as Bruce's
and ours. Like us (and unlike Bruce), Cardelli adopts a syntactic point of view,
trying to capture a set of fundamental requirements in the form of a typed X-
calculus. Like Bruce (and unlike us), his basic model of objects is recursive records;
consequently, recursive record types are used in a critical way. Instead of F-bounded
quantification, however, Cardelli uses a set of flexible record extension operators
based on the concept of rows to achieve the degree of abstraction necessary to
support inheritance. Finally, Cardelli shares our concern with formal economy:
his high-level calculus of extensible records can be faithfully translated into a
pure calculus of bounded quantification. In one dimension, this low-level calculus
is simpler than ours: it uses only second-order bounded quantification, while we
require higher-order bounded quantification. On the other hand, ours is simpler in
that it omits recursive types in favour of existential types (which can themselves be
encoded using only universal quantification).

Abadi (1993) and Mitchell, Honsell and Fisher (1993) present related models
of objects and delegation-based inheritance (Ungar and Smith, 1987). In both of
these systems, a basic i-calculus-like formalism is extended with new syntactic
forms designed to directly capture the operations of message-sending and object
construction. A semantics of the extended language is given, and a set of typing
rules (implicitly based on recursive types) is proved sound with respect to the
semantics.

The difference between class-based formulations of objects and inheritance and
formulations based on delegation appears to be mainly one of style and notation:
the same formal problems arise in both cases, and they can be handled by similar
techniques. Indeed, it is not hard to modify our encodings of objects and message-
sending from sections 2 and 3 to obtain a simple, statically typed model of delegation.

A more significant difference between all these models and that proposed here
arises from the fact that we use existential quantification rather than recursive types
types to capture the notion of encapsulation. This foundational difference gives rise
to a slight difference in expressive power, which appears in the treatment of binary
(in general, n-ary) methods — methods whose list of arguments includes objects of
the very same type as the receiver. Such methods can be divided into two essentially
different categories:

https://doi.org/10.1017/S0956796800001040 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001040


236 B. C. Pierce and D. N. Turner

1. Strong binary methods, whose implementation depends upon the ability to
obtain direct, concrete access to the internal states of several objects at the
same time. The typical example of a strong binary method is a union operation
on sets of integers, where the internal representation of sets of integers is some
efficient data structure such as a balanced tree. The internal representation is
not normally exposed in the interface of set objects, but the implementation
of union must be able to obtain the internal representations of both arguments
to perform its task with acceptable efficiency.

2. Weak binary methods, which accept one or more arguments of the same type
as the receiver, but which need not access the internal states of these extra
arguments directly. The usual example discussed in the literature on static type
systems for objects, equality methods for point objects, falls into this category;
since all the important components of a point's internal state are exposed in
its public interface, it is possible to compare one point to another by looking
directly at the x coordinate of one of them and comparing it to the number
obtained by asking the other for its x coordinate.

Models of objects based on recursive types support the use of weak binary methods
but not strong ones. Our model supports neither directly. However, in Pierce and
Turner (1993b) we propose an easy generalization of the basic object model, based
on Cardelli and Wegner's partially abstract types (Cardelli and Wegner, 1985), that
supports the strong form of binary methods. Indeed, since this generalization is
based on type-theoretic machinery already available in Fg, the ideas apply equally
to any model based on higher-order subtyping.

A more abstract characterization of object types, studied by Hofmann and Pierce
(1994), can be used to relate encodings based on existential types and those based
on recursive types by showing that both can be viewed as valid implementations for
a type system with a primitive Object type constructor.

Recent papers by Castagna, Ghelli and Longo (Castagna et al, 1992, Castagna,
1992; Ghelli, 1991) have proposed an intriguing new approach to the foundations
of object-oriented programming. Taking overloading and subtyping as basic, rather
than encapsulation and subtyping, they develop an underlying calculus that promises
to model some features — notably the multi-methods of languages such as CLOS
(Bobrow et al., 1988 — that fall completely outside the scope of previous theories,
including ours. Indeed, one of the benefits of their work is that, by comparing it to
other type-theoretic models of objects, one sees very clearly how essentially different
are the basic premises of object-oriented languages such as Simula and Smalltalk,
where messages have exactly one receiver and a strong notion of encapsulation is
maintained, from languages in the family of CLOS, which give up the strong notion
of encapsulation in return for a more symmetric notion of method-body selection
based on the types of any number of arguments. The magnitude of this difference
is underscored by the fact that modeling CLOS-like multi-methods would seem to
require a formal language with some non-parametric notion of run-time computation
on types.

https://doi.org/10.1017/S0956796800001040 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001040


Simple type-theoretic foundations for object-oriented programming 237

Most existing object-oriented languages include mutable instance variables. Mu-
table state can also be provided in our framework by extending Fg with a Re/type
constructor similar to that found in ML and specifying a call-by-value reduction
strategy. This necessitates a small change in the fixed-point operator used during
object creation, but our basic object model is unaffected. Bruce and van Gent (1994)
describe a similar extension of Bruce's TOOPL language (Bruce, 1993).

Our approach can also be extended to a typed account of multiple inheritance
by adding intersection types (Coppo et al., 1981) to Fg (Compagnoni and Pierce,
1993).

Acknowledgements

Our ideas have been sharpened by conversations with Dave Berry, Kim Bruce,
Luca Cardelli, Giuseppe Castagna, William Cook, Giorgio Ghelli, Carl Gunter,
Bob Harper, Giuseppe Longo, Dave MacQueen, Robin Milner, Kevin Mitchell,
Randy Pollack, Nick Rothwell, Stuart Schieber and Phil Wadler. We are especially
grateful to Martin Hofmann for important insights into the formal background of
our constructions and to Randy Pollack for helping us understand Fg. Kim Bruce,
Adriana Compagnoni, Mike Fourman, Bob Harper, Martin Hofmann and Kevin
Mitchell suggested a number of improvements to earlier drafts. Comments from the
referees helped us clarify many details and suggested some important large-scale
reorganization of our presentation.

An earlier version of this paper was presented at POPL '93 (Pierce and Turner,
1993a). This work was jointly supported by Harlequin Limited, the UK Science and
Engineering Research Council, and the ESPRIT Basic Research Actions TYPES
and CONFER.

A Introduction to F™

This appendix gives a short review of F£, the explicitly-typed A-calculus used
throughout the paper as the formal basis of our encoding of objects. Formally,
the type system is a straightforward generalization of Cardelli and Wegner's (1985)
bounded quantification with a notion of type operator familiar from Girard's (1972)
system F03. The syntax and typing rules are summarized in Appendix B.

The examples in the paper were typeset by a prototype compiler for Fg that
typechecks and evaluates declarations preceded by the symbol #. Declarations may
be split across a number of lines, and are terminated with a semicolon. A '/. symbol
indicates that the rest of the line is a comment.

The compiler's response to an expression is to print its value and type (complex
values are printed as <val>):

# 1;
1 : Int

Variables always begin with a lowercase letter; this allows us to distinguish variables
from type variables, which start with uppercase letters. We bind top-level expressions
to variables by writing id = e. For example:

https://doi.org/10.1017/S0956796800001040 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001040


238 B. C. Pierce and D. N. Turner

# five = 5;
five = 5 : Int

Record values are written as {1 = e, . . . , l ' = e'}. (Note that record types use
slightly different brackets.) We select elements of a record using the syntax e.x,
where x is a label:

# record = {x = 1, y = 2};
record = <val> : {|x: Int, y: Intl}
# record.x;
1 : Int

The notion of subtyping (Cardelli and Wegner, 1985) formalizes the observation
that values of certain types may always be safely substituted for values of other
types. For example, we can allow a record of type {I x: Int, y: Int I} to be used
in a context expecting a record of type {I x: Int I}, since presence of the extra field
cannot be detected in such a context, and so will never lead to run-time error. The
subtype relation is defined by a collection of inference rules (listed in Appendix B)
with conclusions of the form F I- S < T.

For example, we use the usual rule (c.f. Cardelli, 1986) for subtyping between
record types:

{/,,...,/„} £{/c,,...,fcm}
for each fc, = /,-, F h S,- < T,

F h {lfc1:S1,...,fcm:Swj} e *
k : S f e : S | } < { j / : r / : T 4 ( "F I- {|ki:Si,...,fem:Sm|} < {j/i:ri,...,/B:T4

Consider, for example, the extract function, which extracts the x-field from its

argument record r (we write A-abstraction using the syntax fun(x:T)e):

# extract = fun (r: {|x: Intl}) r.x;
extract = <val> : {|x:Int|} -> Int

Subtyping allows the extract function to accept not only records of type {I x: Int I}
as arguments, but records of any type which is a subtype of {|x: Intl}:

# extract {x = 7, y = 8};
7 : Int

As usual, the subtyping behaviour of the function type constructor is contravariant
in the function argument type and covariant in the result type. Intuitively, a function
may replace another function if it makes fewer demands on its arguments and gives
a better result:

F h Ty < Si r \- S2 < T2

— — - — — (S-ARROW)
1 t- il—»O2 < Il-*l2

We can abstract a type variable A from a term e using the syntax fun(A<T) e. The
bound, T, for the abstracted type variable ensures that any instantiation of A will be
a subtype of T. Thus, we can write the following function, which is polymorphic in
the type A but requires that A is a record type containing an x field of type Int.
(Type application uses the syntax 'e T'.)

https://doi.org/10.1017/S0956796800001040 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001040


Simple type-theoretic foundations for object-oriented programming 239

# extractX = fun (A < {|x: Int|}) fun(r: A) {fst = r.x, snd = r};
extractX = <val> : All(A<{|x:Int|}) A -> {|fst:Int, snd:A|}
# extractX {|x: Int, y: Int|} {x = 5, y = 6};
<val> : -Clfst: Int, snd: {|x:Int, y:Int|}|}

The following operations on booleans and integers are built in:

false
true
not
and

plus
minus
eqlnt

Bool
Bool
Bool -> Bool
Bool -> Bool -> Bool

Int -> Int -> Int
Int -> Int -> Int
Int -> Int -> Bool

Our syntax for existential types is fairly standard. Consider the following imple-
mentation of counters based on the representation type Int:

# counterlmpl = {
# zero = 0,
# inc = fun(x: Int) plus x 1,
# isZero = fun(x: Int) eqlnt x 0
# };
counterlmpl = <val> : {I zero: Int, inc: Int->Int, isZero: Int->Bool|}

To hide the representation type Int, yielding an abstract type of counters, we use the
syntax <T, e> : T', where T is the actual representation type and T' is an existential
type that specifies the abstract type's external interface (neither type annotation may
be omitted).

# counter =
# '/. The implementation
# <Int, counterImpl> :
# '/. The interface type
# Some(C) {|
# zero : C,
# inc : C -> C,
# isZero : C -> Bool
# I};
counter = <val> : Some(C) {I zero: C, inc: C->C, isZero: C->Bool|}

Since we have subtyping, we allow a bound for the existentially quantified type
variable c (this provides what are known as partially abstract types (Cardelli and
Wegner, 1985).

Abstract types are unpacked using the open construct. In the example below,
unpacking counter binds the hidden counter representation to C, and binds the
implementation to impl:

# open counter as <C,impl> in
# impl.isZero(impl.inc impl.zero)
# end;
false : Bool

https://doi.org/10.1017/S0956796800001040 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001040


240 B. C. Pierce and D. N. Turner

The rules for existential types ensure that the only way we can create a counter is
to use the operator impl. zero, and similarly the only way to modify or examine a
counter is by using impl.inc and impl.isZero.

F™ incorporates Girard's notion of type operators (Girard, 1972), which can be
thought of as forming a simply-typed A-calculus at the level of types. To ensure
their well-formedness, types and type operators are assigned kinds, K, which have
the form • or K->K. Expressions of kind * are ordinary types; expressions of kind
•->* are functions from types to types; etc. We can bind types and type operators
to type variables in the same way as we did for expressions; the compiler responds
to a type or type operator definition by printing its kind:

# T = Int -> Int;
T : *
# (fun (x: Int) x) : T;
<val> : T

Here we declare the type T and use it as a type annotation :T on the preceding
expression. The typechecker simply checks that the annotated type is equivalent to
the type of the expression (type annotations are usually used to simplify the types
printed by the typechecker).

Abstraction for type operators uses the syntax Fun(A:K), the uppercase F in Fun
indicating that we are defining a function from types to types rather than from
values to values.

# Pair = Fun(A: *) Fun(B: *) {| fst: A, snd: B |};
Pair : *->*->*

# BothBool = Fun(F: *->*->*) F Bool Bool;
BothBool : (*->*->*)->*
# { fst = true, snd = false } : BothBool Pair;
<val> : BothBool Pair

(The compiler allows us to omit the kind annotation in the abstraction Fun(A:K)
whenever K is *; we could have written Fun(A) Fun(B) {| f s t : A, snd: B |} in this
example.)

Every kind K has a maximal element, written Top(K). Our syntax allows the bound
of a variable to be omitted if it is Top(K), so that, for example, Some(c) actually
abbreviates Some(C<Top(*)). This type can also be written Some(C:*).

We use pointwise subtyping of operators: Fun(A:K) Tl is a subtype of Fun(A:K) T2
if Tl is a subtype of T2 under all legal substitutions for A. Since Tl has to be a subtype
of T2 under all possible substitutions for A, we cannot make any assumptions about
A; formally, it suffices to check that Tl is a subtype of T2 under the assumption that
A < Top(K). For example, Fun(T) {|a:T,b:T|} is a subtype of Fun(T) {|a:T|}, since
{|a:T,b:T|} is a subtype of -Cla:Tl>.

B Summary of F™

This appendix summarizes the syntax and typing rules of the typed A-calculus Fg,
an extension of Girard's (1972) system Fw with subtyping. The ideas behind this

https://doi.org/10.1017/S0956796800001040 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001040


Simple type-theoretic foundations for object-oriented programming 241

system are due to Cardelli, particularly to his 1988 paper 'Structural Subtyping and
the Notion of Power Type' (Cardelli, 1988b); the extension of the subtype relation
to type operators was developed by Cardelli and Mitchell (Cardelli, 1990; Mitchell,
1990; Bruce and Mitchell, 1992). Cardelli (1990) has given a more powerful treatment
of operator subtyping, including both monotonic and antimonotonic subtyping in
addition to pointwise subtyping.

We omit a detailed treatment of the semantics of F£. For the examples in this
paper, it suffices to regard the meaning of a term as the normal form of its type-
erasure (our compiler uses a call-by-name, untyped reduction strategy). A semantic
model of a version of F< extended with recursive types (and including recursively
defined values, which are needed here to model self) has been given by Bruce and
Mitchell (1992).

B.I Syntax

B.1.1. Notation: The typing rules that follow define sets of valid judgements of the
following forms:

r I- e e T term e has type T
r h T s K type T has kind K
r I- Ti < T2 Ti is a subtype of T2

\- T context F is a well-formed context

r h S ~ T abbreviates r h S < T and T h T < S.

B.1.2. Definition: The sets of kinds, types, terms and contexts are defined by the
following abstract grammar:

K ::= * kind of types
K->K kind of type operators

A
Fun {AX) T
T T
Top(K)
T->T
All <A^T)T
Some (A$T)T
§h:Ti,...,ln:Tn\}
X

fun (x:T)e
e e
fun (A^T)e
e T
(T,e):T
open e as (A, x) in e end
{/i =ei,..., /„ = £„}
e./

type variable
type operator
application of an operator
top type
function type
universally quantified type
existentially quantified type
record type
variable
abstraction
application
type abstraction
type application
packing
unpacking
record construction
field selection

https://doi.org/10.1017/S0956796800001040 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001040


242 B. C. Pierce and D. N. Turner

F : := • empty context
| F, x.T variable binding
| F, A^T type var binding with bound

B.I.3. Convention: Whenever we write F, A^T or F, x.T we implicitly require that
A and x are not already defined in F.

B.1.4. Definition: A type T is closed with respect to a context F if FTV{T) s dom(T).
A term e is closed with respect to F if FTV(e) U FV(e) = dom(Y). A context F is
closed if

2. F = Fi, A^T, with Fi closed and T closed with respect to Fi, or

3. F = Fi, x:T, with Fi closed and T closed with respect to Fj.

A subtyping statement F h S < T is closed if F is closed and S and T are closed
with respect to F; a typing statement F h e e T is closed if F is closed and e and T
are closed with respect to F

B.1.5. Convention: In the following, we assume that all statements under discussion
are closed. In particular, we allow only closed statements in instances of inference
rules. Moreover, we assume that all variables bound in a context have distinct
names. This convention, which amounts to regarding all variables as bound and
viewing bound variables as deBruijn indices (deBruijn, 1972), replaces the usual
side-conditions in rules such as T-SOME-E.

B.2 Contexts

h • context (C-EMPTY)

F h T e K
(C-TVAR)

(C-VAR)

I- F, A^T context

F I- T s *

I- F, x.T context

B.3 Kinding

The K-TVAR rule finds the kind of A by simply looking up the bound associated
with A in the context, and then finding the kind of the bound. For example, if the
type variable A has been introduced using the K-ARROW-I rule, then the context
contains a bound A < Top(/C) for some K. However, using the K-TOP rule we have
that Top(X) e K and so, using the K-TVAR rule we have that A e K as expected:

(K-TVAR)

(K-ARROW-I)

F h A e K

\- T2 e K2

F h FuniAX^Tj e KX->K2

https://doi.org/10.1017/S0956796800001040 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001040


Simple type-theoretic foundations for object-oriented programming

r I- S e KX^K2 r h T e Ki

T h S T e K2

F context
T I- Top(K) e K

T, s * r h r 2 e

r,A*Ti h T2 e *
T h A1164<T1)T2 e *

r,A<Ti \- T2 e *
F h Some(4<Ti)T2 e *

h F context for each i, F I- T, e *
F h (l/i -Ti / -T } e *

fi.4 Subtyping

r \- U < S r \- T e K S=pT
T \- U < T

h F context

F h

F

F

F

S e

F

F

1- S

K

F 1-

f~ Ti

F

n <
F

1- Al

Si <
F h

r
i

<

s
<

F
h

Si
h

1(4

- S

' 1- A < T{A)

r \- T e K

r \- T < T
T T \- T < U

r \- s < u
F 1- Top(K')T!,..., T

< Top(X')T,,..., TB

Si F h S2 < T2

T,AzTi \- S2 <

omet4sSi)S2 e *

„ e K

T2

T2

T2

F h Some64sSi)S2 < Some(A<.Ti)T2

{h,...,ln}c{ki,...,km}
for each fc, = /j5 F \- St < Tj

T h {|fci:Si,...,fcM:SB,|} s *

T I- {|Ac1:S1,...,/cm:Sm|} < {\h:Ti,...,ln:Tnl

243

(K-ARROW-E)

(K-TOP)

(K-ARROW)

(K-ALL)

(K-SOME)

(K-RECORD)

(S-CONV)

(S-TVAR)

(S-REFL)

(S-TRANS)

(S-TOP)

(S-ARROW)

(S-ALL)

(S-SOME)

(S-RECORD)

https://doi.org/10.1017/S0956796800001040 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001040


244 B. C. Pierce and D. N. Turner

r,A<Top{K) h S < T

T I- Fun(AX)S < Fun(A:K)T

r \- s < T r h s u e K

r \- s u < T u

B.5 Typing

T l - e e S r \- S < T

r h e e T

h F context

r h x e r(x)
x:Ti \- e e T2

T h f\in(x:Ti)e e ^ ^ T a

T h / e Ti^T2 F h a e

F h / a e T2

^i I- e e T2

T h fun^4<Ti)e e

T h / e A11^4<Ti)r2 h S <

r h /s
r h r~Some^C/1)l/2

h S < I f i T h e e

F h e.Z e T

References

(S-ABS)

(S-APP)

(T-SUBSUMPTION)

(T-VAR)

(T-ARROW-I)

(T-ARROW-E)

(T-ALL-I)

(T-ALL-E)

F h (S,e):T e T

h e\ e Some^4<Si)S2 F,/l^Si, x:S2 h e2 e T

F I- open ei as (>4, x) in e2 end e T

h F context for each i, F I- e,- e T,

F h e e (|Z:T|)

(T-SOME-I)

(T-SOME-E)

(T-RECORD-I)

(T-RECORD-E)

Abadi, M. (1993) Baby Modula-3 and a Theory of Objects, Research Report 95, Digital
Equipment Corporation, Systems Research Center, Palo Alto, CA.

Bobrow, D.G., DeMichiel, L.G., Gabriel, R.P., Keene, S.E., Kiczales, G. and Moon, DA.
(1988) Common Lisp Object System Specification X3J13 Document 88-002R, SIGPLAN
Not. 23.

Bruce, K. and Mitchell, J. (1992) PER models of subtyping, recursive types and higher-order
polymorphism. In: Proc. 19th ACM Symp. on Principles of Program. Lang., January.

Bruce, K.B. (1991) The equivalence of two semantic definitions for inheritance in object-
oriented languages. In: Proc. Math. Foundations of Program. Semantics, March.

https://doi.org/10.1017/S0956796800001040 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001040


Simple type-theoretic foundations for object-oriented programming 245

Bruce, K.B. (1992) A Paradigmatic Object-Oriented Language: Design, Static Typing and
Semantics, Technical Report CS-92-01, Williams College, January.

Bruce, K.B. (1993) Safe type checking in a statically typed object-oriented programming
language. In: Proc. 20th ACM Symp. on Principles of Program. Lang., January.

Bruce, K.B. and Longo, G. (1990) A modest model of records, inheritance, and bounded
quantification, Information and Computation 87: 196-240. (Also in C.A. Gunter and J.C.
Mitchell, eds., Theoretical Aspects of Object-Oriented Programming: Types, Semantics, and
Language Design, MIT Press, 1993. An earlier version appeared in Proc. IEEE Symp. on
Logic in Comput. Sci., 1988.)

Bruce, K.B. and van Gent, R. (1993) TOIL: A new Type-safe Object-oriented Imperative
Language, submitted for publication.

Budd, T. (1991) An Introduction to Object-Oriented Programming, Addison-Wesley, Reading,
MA.

Canning, P., Cook, W., Hill, W., Olthoff, W. and Mitchell, J. (1989) F-bounded quantification
for object-oriented programming. In: Proc. 4th Intern. Conf. on Functional Program. Lang.
& Computer Archit., pp. 273-280, September.

Cardelli, L. (1986) Amber, in: Cousineau, G., Curien, P.-L. and Robinet, B. (Eds.), Combinators
and Functional Programming Languages, Lecture Notes in Computer Science 242, Springer,
pp. 21-47.

Cardelli, L. (1988a) A semantics of multiple inheritance, Information and Computation 76:
138-164. (Preliminary version in Kahn, MacQueen and Plotkin, eds., Semantics of Data
Types, Lecture Notes in Computer Science 173, Springer, 1984.)

Cardelli, L. (1988b) Structural subtyping and the notion of power type. In: Proc. 15th ACM
Symp. on Principles of Program. Lang., pp. 70-79, January.

Cardelli, L. (1990) Notes about F% , Unpublished notes, October.

Cardelli, L. (1992a) Extensible Records in a Pure Calculus of Subtyping, Research report 81,
DEC Systems Research Center, January. (Also in C.A. Gunter and J.C. Mitchell, eds., The-
oretical Aspects of Object-Oriented Programming: Types, Semantics, and Language Design,
MIT Press, 1993.)

Cardelli, L. (1992b) Typed Foundations of Object-oriented Programming, Tutorial given at
POPL '92, January.

Cardelli, L. and Mitchell, J. (1991) Operations on records, Mathematical Structures in
Computer Science 1: 3-48. (Also in C.A. Gunter and J.C. Mitchell, eds., Theoretical Aspects
of Object-Oriented Programming: Types, Semantics, and Language Design, MIT Press, 1993.
Available as DEC Systems Research Center Research Report #48, August 1989, and in
Proceedings MFPS '89, Lecture Notes in Computer Science 442, Springer.)

Cardelli, L. and Wegner, P. (1985) On understanding types, data abstraction, and polymor-
phism, Comput. Surv. 17(4).

Cardelli, L., Martini, S., Mitchell, J.C. and Scedrov, A. (1991) An extension of system F with
subtyping. In: Ito, T. and Meyer, A.R. (Eds.), Theoretical Aspects of Computer Software
(Sendai, Japan), Lecture Notes in Computer Science 526, Springerg, pp. 750-770.

Castagna, G., Ghelli, G. and Longo, G. (1992) A calculus for overloaded functions with
subtyping. In: ACM Conf. on LISP and Functional Progra.g, ACM Press, San Francisco,
CA, pp. 182-192. (Also available as Rapport de Recherche LIENS-92-4, Ecole Normale
Superieure, Paris, France.)

Castagna, G. (1992) Strong Typing in Object-Oriented Paradigms, Rapport de Recherche
LIENS-92-11, Ecole Normale Superieure, Paris, France, May.

https://doi.org/10.1017/S0956796800001040 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001040


246 B. C. Pierce and D. N. Turner

Compagnoni, A.B. and Pierce, B.C. (1993) Multiple Inheritance via Intersection Types, Tech-
nical Report ECS-LFCS-93-275, LFCS, University of Edinburgh, UK, August. (Also
available as Catholic University Nijmegen Computer Science Technical Report 93-18.
Submitted for conference publication.)

Cook, W. (1989) A Denotational Semantics of Inheritance, PhD thesis, Brown University.
Cook, W.R., Hill, W.L. and Canning, P.S. (1990) Inheritance is not subtyping. In: Proc.

17th Ann. ACM Symp. on Principles of Program. Lang., pp.125-135, January. (Also in C.A.
Gunter and J.C. Mitchell, eds., Theoretical Aspects of Object-Oriented Programming: Types,
Semantics, and Language Design, MIT Press, 1993.)

Coppo, M., Dezani-Ciancaglini, M. and Venneri, B. (1981) Functional characters of solvable
terms, Zeitschrift fur Mathematische Logik und Grundlagen der Mathematik 27: 45-58.

Curien, P.-L. and Ghelli, G. (1992) Coherence of subsumption: Minimum typing and type-
checking in F s , Mathematical Struct, in Comput. Sci. 2: 55-91. (Also in C.A. Gunter and
J.C. Mitchell, eds., Theoretical Aspects of Object-Oriented Programming: Types, Semantics,
and Language Design, MIT Press, 1993.)

de Bruijn, N.G. (1972) Lambda-calculus notation with nameless dummies: a tool for automatic
formula manipulation with application to the Church-Rosser theorem, Indag. Math. 34(5):
381-392.

Ghelli, G. (1991) A static type system for message passing. In: Conf. on Object-Oriented
Program. Syst., Lang. & Applic, pp. 129-143, October. (Distributed as S1GPLAN Not.
26(11), 1991.)

Girard, J.-Y. (1972) Interpretation fonctionelle et elimination des coupures de I'arithmetique
d'ordre superieur. PhD thesis, Universite Paris VII, France.

Goldberg, A. and Robson, D. (1983) Smalltalk-80: The Language and Its Implementation,
Addison-Wesley, Reading, MA.

Graver, J.O. and Johnson, R.E. (1990) A type system for Smalltalk. In: Proc. 17th Ann. ACM
Symp. on Principles of Program. Lang., pp. 125-135, January.

Hofmann, M. and Pierce, B. (1994) A unifying type-theoretic framework for objects. In: Symp.
on Theoretical Aspects of Comput. Sci. (Extended version available as 'An Abstract View
of Objects and Subtyping (Preliminary Report)', University of Edinburgh, LFCS Technical
Report ECS-LFCS-92-226, 1992.)

Jategaonkar, L.A. and Mitchell, J.C. (1988) ML with extended pattern matching and subtypes
(preliminary version). In: Proc. ACM Conf. on Lisp and Functional Program., pp. 198-211,
July.

Kamin, S. (1988) Inheritance in Smalltalk-80: A denotational definition. In: Proc. ACM
Symp. on Principles of Program. Lang. pp. 80-87, January.

Mitchell, J. and Plotkin, G. (1988) Abstract types have existential type, ACM Trans. Program.
Lang. & Syst. 10(3).

Mitchell, J., Meldal, S. and Madhav, N. (1991) An extension of Standard ML modules with
subtyping and inheritance. In: Proc. 18th ACM Symp. on Principles of Program. Lang., pp.
270-278, January.

Mitchell, J.C. (1990) Toward a typed foundation for method specialization and inheritance.
In: Proc. 17th ACM Symp. on Principles of Program. Lang. pp. 109-124, January. (Also
in C.A. Gunter and J.C. Mitchell, eds., Theoretical Aspects of Object-Oriented Programming:
Types, Semantics, and Language Design, MIT Press, 1993.)

Mitchell, J.C, Honsell, F. and Fisher, K. (1993) A lambda calculus of objects and method
specialization. In: 1IEEE Symp. on Logic in Comput. Sci., pp. 109-124, June.

Pierce, B.C. and Turner, D.N. (1993a) Object-oriented programming without recursive types.
In: Proc. 20th ACM Symp. on Principles of Program. Lang., pp. 109-124, January.

https://doi.org/10.1017/S0956796800001040 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001040


Simple type-theoretic foundations for object-oriented programming 247

Pierce, B.C. and Turner, D.N. (1993b) Statically Typed Friendly Functions via Partially Abstract
Types, Technical Report ECS-LFCS-93-256. University of Edinburgh, LFCS, pp. 109-124.
(Also available as INRIA-Rocquencourt Rapport de Recherche No. 1899.)

Reddy, U.S. (1988) Objects as closures: Abstract semantics of object oriented languages. In:
Proc. ACM Symp. on Lisp and Functional Program., pp. 289-297, July.

Remy, D. (1989) Typechecking records and variants in a natural extension of ML. In:
Proc. 16th Ann. ACM Symp. on Principles of Program. Lang., pp. 242-249. (Also in C.A.
Gunter and J.C. Mitchell, eds., Theoretical Aspects of Object-Oriented Programming: Types,
Semantics, and Language Design, MIT Press, 1993.)

Reynolds, J.C. (1983) Types, abstraction, and parametric polymorphism. In: Mason, R.E.A.
(Ed.), Information Processing 83, Elsevier, Amsterdam, pp. 513-523.

Reynolds, J. (1985) Three approaches to type structure. In: Mathematical Foundations of
Software Development; Lecture Notes in Computer Science 185, Springer.

Reynolds, J.C. (1978) User defined types and procedural data structures as complementary
approaches to data abstraction. In: Gries, D. (Ed.), Programming Methodology, A Collection
of Articles by IFIP WG2.3, Springer, New York, pp. 309-317. (Reprinted from S.A. Schu-
man, ed., New Advances in Algorithmic Languages 1975, Inst. de Recherche d'Informatique
et d'Automatique, Rocquencourt, pp. 157-168. Also in C.A. Gunter and J.C. Mitchell,
eds., Theoretical Aspects of Object-Oriented Programming: Types, Semantics, and Language
Design, MIT Press, 1993.)

Robinson, E. and Tennent, R. (1988) Bounded quantification and record-update problems.
Message to Types electronic mail list.

Snyder, A. (1986) Encapsulation and inheritance in object-oriented programming languages.
In: Proc. OOPSLA '86. Distributed as ACM SIGPLAN Not. 21(11): 3 8 ^ 5 .

Ungar, D. and Smith, R.B. (1987) Self: The power of simplicity. In: Proc. ACM Symp. on
Object-Oriented Program.: Lang., Syst. and Applic, pp. 227-241.

Wand, M. (1987) Complete type inference for simple objects. In: Proc. IEEE Symp. on Logic
in Comput. Sci., pp. 227-241, June.

Wand, M. (1988) Corrigendum: Complete type inference for simple objects. In: Proc. IEEE
Symp. on Logic in Comput. Sci.

Wand, M. (1989) Type Inference for record concatenation and multiple inheritance. In: Proc.
4th Ann. IEEE Symp. on Logic in Comput. Sci., pp. 92-97.

https://doi.org/10.1017/S0956796800001040 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001040

