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Neutron imaging employs the unique characteristics of neutrons’ interactions with matter to probe 

materials in a mode that is highly complementary to X-rays. More specifically: neutrons interact 

with the nuclei of a material’s constituent atoms, while X-rays interact with the electron shell. 

While these modes are highly complementary, the flux of neutron sources is significantly lower 

than typical X-ray sources. To contextualize the extreme discrepancy in flux, consider modern 

synchrotron sources are around 10
9 × brighter than the sun. In this astral context a neutron source 

yields fluxes comparable to the stars outside the solar system (10
7 × less bright than the sun). For 

imaging experiments, this generally means that exposure times are much higher for neutron sources 

than for X-ray sources. This temporal problem is even more problematic for tomography which 

integrates a series of angular image projections into a unified volumetric image (tomogram). 

Depending on the size of the object being imaged, high-resolution tomograms can require on the 

order of thousands of projection images. Overcoming this limitation via dose reduction can render 

time-dependent and high-throughput neutron tomography much more feasible and enable novel 

insights in areas of research such as batteries, fuel cells and water transport in porous media. 

In the context of this work, dose reduction refers to sparser angular projection sampling density 

than optimal (i.e., as determined by the Nyquist-Shannon sampling theorem) and not lower photon 

counts per projection. When dose reduction is employed for tomography, reconstructions tend to be 

noisy with streaking artifacts, which deeply corrupt the fidelity of reconstructed data. This has led 

to a variety of techniques for reconstructing sparsely sampled projections including, most recently, 

neural networks (NN). NNs have been employed toward many image processing tasks achieving 

state of the art results and recently have been applied to a variety of X-ray CT dose reduction 

approaches such as the Filtered Back Projection Convolutional Network [1] and Residual Encoder-

Decoder Convolutional Neural Network [2]. The work herein contrasts these (and other [3, 4]) 

neural network-based approaches with both traditional de-noising methods (TV minimization, 

Gaussian Filtering) and an iterative reconstruction method (SIRT: 10 iterations). 
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Likewise, to assist in data augmentation the models were trained with random cropped (128 × 128) 

portions of the images to avoid memorizing the data set. 

Raw projection images of an alkaline AAA battery were cropped and converted to attenuation space 

where they were filtered by the method of Vo et al. [5] to remove stripe artifacts. These images 

henceforth are referred to as ground truth. There were 5 down-sampling conditions used which 

comprise taking every n
th 

projection with n = 2,4,8,16, and 32 (400, 200, 100, 50, and 25 

projections respectively). These constitute the down-sampled data sets where each method was 

assessed on a single set of down-sampled images (n = constant) paired with the ground truth (n = 1; 

800 projections). All NN models were trained on the reconstruction image space where the data 

were split into training (80%) and validation (20%) sets to ensure the models did not over-fit. 

Figure 1 shows the results of employing the FBPConvNet architecture to the different down 

sampled datasets along with the inputs and ground truth. This method performed the highest of the 

tested methods in the peak-signal-to-noise-ratio (PSNR) metric that indicates the pixel-wise 

similarity of two images. The PSNR distributions for each method at each down sampling condition 

are shown in Figure 2. In conclusion, the neural-network-based methods perform higher than all the 

traditional de-noising methods at removing this structured noise that arises from dose reduction, 

enabling a pathway to accelerate 4D tomography [6]. 
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Figure 1: Demonstration of FBPConvNet results (highest performing method) on different sparsely 

sampled input data. 

 

Figure 2: Comparison of denoising methods on PSNR for each down sampled dataset (with respect 

to fully sampled FDK). FBPConvNet is the highest in each down sampling condition. 
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