CORRIGENDUM

Correction to "On the distribution of winners' scores in a round-robin tournament"

Yaakov Malinovsky
Department of Mathematics and Statistics University of Maryland, Baltimore County, Baltimore, MD 21250, USA.
E-mail: yaakovm@umbc.edu.

The normalized scores $s_{1}^{*}, s_{2}^{*}, \ldots, s_{n}^{*}$ are exchangeable random variables for the fixed n, i.e., n -exchangeable or finite exchangeable. Their distribution depends on n, and their correlation is a function of n. Therefore, if they are a segment of the infinite sequence $s_{1}^{*}, s_{2}^{*}, \ldots$, then they are not exchangeable, i.e., not infinite exchangeable and also not stationary. Accordingly, Berman's theorem [2] (Theorem 2.1 in the article) and Theorems 4.5.2. and 5.3.4. from [5], which hold for stationary sequences, cannot be used in the proofs of Results 2.1. and 2.2. However, from Theorem 1 presented and proved below, for $P\left(X_{i j}=1 / 2\right)=p \in[1 / 3,1)$ or $p=0$, Results 2.1. and 2.2. follows, and therefore, so do the follow-up Corollaries 2.1. and 2.2.

Let $I_{j}^{(n)}=I\left(s_{j}^{*}>x_{n}(t)\right)$, where we choose $x_{n}(t)=a_{n} t+b_{n}$, in which a_{n} and b_{n} are as defined in equation (1) in the article:

$$
a_{n}=(2 \log n)^{-1 / 2}, \quad b_{n}=(2 \log n)^{1 / 2}-\frac{1}{2}(2 \log n)^{-1 / 2}(\log \log n+\log 4 \pi) .
$$

Set $S_{n}=I_{1}^{(n)}+I_{2}^{(n)}+\cdots+I_{n}^{(n)}$.
We prove the following result.
Theorem 1. For $p=0$ or $p \in[1 / 3,1)$ and a fixed value of $k, \lim _{n \rightarrow \infty} P\left(S_{n}=k\right)=e^{-\lambda(t)}\left(\lambda(t)^{k} / k!\right)$, $\lambda(t)=e^{-t}$.

For $p=0$ or $p \in[1 / 3,1)$, Results 2.1. and 2.2. follow from Theorem 1 , since $P\left(s_{(n-j)}^{*} \leq x_{n}\right)=P\left(S_{n} \leq j\right)$, and therefore

$$
\lim _{n \rightarrow \infty} P\left(s_{(n-j)}^{*} \leq x_{n}\right)=\lim _{n \rightarrow \infty} P\left(S_{n} \leq j\right)=e^{-e^{-t}} \sum_{k=0}^{j} \frac{e^{-t k}}{k!}
$$

Remark 1. It remains an open problem if Theorem 1 holds also for $p \in(0,1 / 3)$.
Proof. (Theorem 1) The result follows from Assertions presented below. Set

$$
\pi_{i}^{(n)}=P\left(I_{i}^{(n)}=1\right), \quad W_{n}=\sum_{i=1}^{n} I_{i}^{(n)}, \quad \lambda_{n}=E\left(W_{n}\right)=\sum_{i=1}^{n} \pi_{i}^{(n)} .
$$

$$
\begin{align*}
& \text { Assertion 1. } \\
& \qquad d_{\mathrm{TV}}\left(L\left(W_{n}\right), \operatorname{Poi}\left(\lambda_{n}\right)\right) \leq \frac{1-e^{\lambda_{n}}}{\lambda_{n}}\left(\lambda_{n}-\operatorname{Var}\left(W_{n}\right)\right)=\frac{1-e^{\lambda_{n}}}{\lambda_{n}}\left(\sum_{i=1}^{n}\left(\pi_{i}^{(n)}\right)^{2}-\sum_{i \neq j} \operatorname{Cov}\left(I_{i}^{(n)}, I_{j}^{(n)}\right)\right),
\end{align*}
$$

where $d_{\mathrm{TV}}\left(L\left(W_{n}\right), \operatorname{Poi}\left(\lambda_{n}\right)\right)$ is the total variation distance between distributions of W_{n} and Poisson distribution with mean λ_{n}.

Assertion 2.

$$
\begin{equation*}
\pi_{1}^{(n)}=P\left(s_{1}^{*}>x_{n}(t)\right) \sim 1-\Phi\left(x_{n}(t)\right), \tag{A2}
\end{equation*}
$$

where $c_{n} \sim k_{n}$ means $\lim _{n \rightarrow \infty} c_{n} / k_{n}=1$.

Assertion 3.

$$
\begin{equation*}
\lim _{n \rightarrow \infty} n \pi_{1}^{(n)}=\lim _{n \rightarrow \infty} n P\left(s_{1}^{*}>x_{n}(t)\right)=\lambda(t)=e^{-t} . \tag{A3}
\end{equation*}
$$

Assertion 4.

$$
\begin{equation*}
\lim _{n \rightarrow \infty} n^{2}\left(P\left(s_{1}^{*}>x_{n}(t), s_{2}^{*}>x_{n}(t)\right)\right)=\lambda(t)^{2}=e^{-2 t} \tag{A4}
\end{equation*}
$$

In our case, since $s_{1}^{*}, \ldots, s_{n}^{*}$ are identically distributed, $\sum_{i=1}^{n}\left(\pi_{i}^{(n)}\right)^{2}=n P\left(s_{1}^{*}>x_{n}\right) P\left(s_{1}^{*}>x_{n}\right)$, and $\sum_{i \neq j} \operatorname{Cov}\left(I_{i}^{(n)}, I_{j}^{(n)}\right)=n(n-1)\left[P\left(s_{1}^{*}>x_{n}(t), s_{2}^{*}>x_{n}(t)\right)-P\left(s_{1}^{*}>x_{n}(t)\right) P\left(s_{2}^{*}>x_{n}(t)\right)\right]$. Hence, from (A2) and (A3) it follows that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left(\pi_{i}^{(n)}\right)^{2}=0 \tag{F1}
\end{equation*}
$$

and from (A3) and (A4) it follows that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sum_{i \neq j} \operatorname{Cov}\left(I_{i}^{(n)}, I_{j}^{(n)}\right)=0 . \tag{F2}
\end{equation*}
$$

Then, from (F1) and (F2) it follows that $\lim _{n \rightarrow \infty} d_{\mathrm{TV}}\left(L\left(W_{n}\right), \operatorname{Poi}\left(\lambda_{n}\right)\right)=0$, and this completes the proof of Theorem 1.

Proof. (Assertion 1). If $p=P\left(X_{i j}\right)=0$ then $X_{i j}$ has Bernoulli distribution which is log-concave; or if $p \geq 1 / 3$ then $2 X_{i j}$ has log-concave distribution (i.e., for integers $u \geq 1,(p(u))^{2} \geq p(u-1) p(u+1)$). Proposition 1 and Corollary 2 [6] hold in our model with $p=0$ or $p \in[1 / 3,1)$, and therefore $\sum_{i=1, i \neq j}^{n} I_{i}^{(n)} \mid I_{j}^{(n)}=1$ is stochastically smaller than $\sum_{i=1, i \neq j}^{n} I_{i}^{(n)}$. Therefore, from the Corollary 2.C. 2 [1] we obtain (A1).

Proof. (Assertion 2). Follows from [4, pp. 552-553, Thms. 2 or 3].
Proof. (Assertion 3). Follows from Assertion 2 combined with [3] result on p. 374 of his book.
Proof. (Assertion 4). Recall that $s_{1}=X_{12}+X_{13}+\cdots+X_{1 n} \quad$ and $\quad s_{2}=X_{21}+X_{23}+\cdots+X_{2 n}$. Hence, condition on the event $X_{12}=k, k \in\{0,1 / 2,1\}, s_{1}$ and s_{2} are independent. Let $s_{1^{\prime}}=X_{13}+\cdots+X_{1 n}, s_{2^{\prime}}=X_{23}+\cdots+X_{2 n}$ and denote by $s_{1^{\prime}}^{*}$, $s_{2^{\prime}}^{*}$ the corresponding normalized scores (zero expectation and unit variance). We have,

$$
\begin{align*}
& P\left(s_{1}^{*}>x_{n}(t), s_{2}^{*}>x_{n}(t) \mid X_{12}=k\right)=P\left(s_{1}^{*}>x_{n}(t) \mid X_{12}=k\right) P\left(s_{2}^{*}>x_{n}(t) \mid X_{12}=k\right) \\
& =P\left(s_{1^{\prime}}^{*}>x_{n-1}(t) \frac{x_{n}(t)}{x_{n-1}(t)} \sqrt{\frac{n-1}{n-2}}-\frac{\sqrt{2}(k-1 / 2)}{\sqrt{n-2}}\right) \\
& \quad \times P\left(s_{2^{\prime}}^{*}>x_{n-1}(t) \frac{x_{n}(t)}{x_{n-1}(t)} \sqrt{\frac{n-1}{n-2}}-\frac{\sqrt{2}((1-k)-1 / 2)}{\sqrt{n-2}}\right) \\
& \tag{F3}\\
& \sim P\left(s_{1^{\prime}}^{*}>x_{n-1}(t)\right) P\left(s_{2^{\prime}}^{*}>x_{n-1}(t)\right) .
\end{align*}
$$

Combining (F3) with the formula of total probability we obtain

$$
P\left(s_{1}^{*}>x_{n}(t), s_{2}^{*}>x_{n}(t)\right) \sim P\left(s_{1^{\prime}}^{*}>x_{n-1}(t)\right) P\left(s_{2^{\prime}}^{*}>x_{n-1}(t)\right),
$$

and combining it with Assertion 3 we obtain (A4).

Acknowledgement. I am grateful to Pavel Chigansky for pointing out my mistake.

References

[1] Barbour, A.D., Holst, L., \& Janson, S (1992). Poisson approximation. Oxford Studies in Probability. Oxford, NY: The Clarendon Press.
[2] Berman, S.M. (1964). Limiting distribution of the maximum of a diffusion process. The Annals of Mathematical Statistics 35, 319-329.
[3] Cramér, H (1946). Mathematical methods of statistics. Princeton, NJ: Princeton University Press.
[4] Feller, W (1971). An introduction to probabilty theory and its applications, 2nd ed., Vol. II. New York-London-Sydney: Wiley.
[5] Leadbetter, M.R., Lindgren, G., \& Rootzén, H (1983). Extremes and related properties of random sequences and processes. Springer Series in Statistics. New York-Berlin: Springer-Verlag.
[6] Ross, S.M. (2021). Team's seasonal win probabilities. Probability in the Engineering and Informational Sciences. In press.

