Probability in the Engineering and Informational Sciences (2023), 37:3 737-739
doiz10.1017/50269964822000158 CAMBRIDGE
UNIVERSITY PRESS

CORRIGENDUM

Correction to “On the distribution of winners’ scores in a
round-robin tournament”
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E-mail: yaakovm @umbc.edu.

The normalized scores 87,85, ...,8, are exchangeable random variables for the fixed n, i.e.,
n-exchangeable or finite exchangeable. Their distribution depends on n, and their correlation is a function
of n. Therefore, if they are a segment of the infinite sequence s}, s, . . ., then they are not exchangeable,
i.e., not infinite exchangeable and also not stationary. Accordingly, Berman’s theorem [2] (Theorem 2.1
in the article) and Theorems 4.5.2. and 5.3.4. from [5], which hold for stationary sequences, cannot be
used in the proofs of Results 2.1. and 2.2. However, from Theorem 1 presented and proved below, for
P(Xij=1/2)=p € [1/3,1) or p =0, Results 2.1. and 2.2. follows, and therefore, so do the follow-up
Corollaries 2.1. and 2.2.

Let I;”) = I(sj. > x,(t)), where we choose x, (t) = a,t + b,, in which a,, and b,, are as defined in
equation (1) in the article:

an = (2logn)™'2, b, = (2logn)'/? - %(2logn)‘l/2(log logn + log4n).

Set S, = 11(") + 12(") +o I,
We prove the following result.

Theorem 1. For p = 0 or p € [1/3,1) and a fixed value of k, lim, . P(S, = k) = e=*W (A(1)k/k!),

Alt) =e™.
For p = 0 or pe[l1/3,1), Results 2.1. and 2.2. follow from Theorem 1, since
P(s{,_;) < xn) = P(Sy < j), and therefore
J o -tk
lim P(s,_;) <x,) = lim P(S, < j)= e e
n—o0 n-j) 00 X!
=0

Remark 1. It remains an open problem if Theorem 1 holds also for p € (0, 1/3).

Proof. (Theorem 1) The result follows from Assertions presented below. Set
a" =P =), W= )", A= EW,) =) x".
i=1 i=1

Assertion 1.

) 1 —eln 1—e [ (M2 (n) y(n)
drv(L(W,),Poi(4,)) < L (Ap — Var(Wy,)) = 1 Zl(”i ) —ZCOV(Ii )] (AD

i= i#]

where drv(L(W,),Poi(41,)) is the total variation distance between distributions of W,, and Poisson
distribution with mean A,,.
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Assertion 2.
2 = P(s > x,(1) ~ 1 = ®(x, (1)), (A2)

where ¢, ~ k,, means lim,,_,., ¢, /k, = 1.

Assertion 3.

lim mr = hm nP(s1 >x,(1) =A(t) = e (A3)

Assertion 4.
lim n?(P(s] > x,(1), 85 > x,(1))) = A(t)* = 7. (A4)
In our case, since s7,.. ., s} are identically distributed, )" 1(7r(”) )? = nP(s} > x,)P(s} > x,), and

Yiz; Cov(I{™ 11") = n(n— DIP(st > xu(1), 85 > x,(1)) = P(s7 > x,(1))P(s} > x,(1))]. Hence, from
(A2) and (A3) it follows that

lim Z<n§">>2 - 0. (F1)
i=1
and from (A3) and (A4) it follows that
. (n) y(n)y _
lim Z Cov(1", 10" =0. (F2)
i#]

Then, from (F1) and (F2) it follows that lim,,_,, drv(L(W,,),Poi(1,)) = 0, and this completes the
proof of Theorem 1. O

Proof. (Assertion 1). If p = P(X;;) = 0 then X;; has Bernoulli distribution which is log-concave; or if
p > 1/3 then 2X;; has log-concave distribution (i.e., for integers u > 1, (p(u))* > p(u — 1)p(u + 1)).
Proposition 1 and Corollary 2 [6] hold in our model with p = 0 or p € [1/3,1), and therefore

liv) I("> II("> = 1is stochastically smaller than }i_, ;. I(") Therefore, from the Corollary 2.C.2 [1]
we obtam (Al) O
Proof. (Assertion 2). Follows from [4, pp. 552-553, Thms. 2 or 3]. O
Proof. (Assertion 3). Follows from Assertion 2 combined with [3] result on p. 374 of his book. ]

Proof. (Assertion 4) Recall that s;=Xpp+Xi3+---+Xy, and s, =Xp1 +Xo3+ -+ X,
Hence, condition on the event X, =k,k € {0,1/2,1}, s; and s, are independent. Let
s = X3+ -+ X1y, 52 = Xo3 + - - + Xp,, and denote by s7,, 53, the corresponding normalized scores
(zero expectation and unit variance). We have,

P(sy > x,(1), 55 > x, (1) | X12 = k) = P(s] > x,(1) | X12 = k)P (53 > xn(2) | X12 = k)

xa(t) [n-1 V2(k-1/2)

X1 () VNn=2 N
() [n=1 2((1-k) - 1/2))

X () N =2 V-2

~ P(s7, > X1 () P(sy > xp-1(2)). (F3)

=Pls} > x,1(2)

x P (s;, > X1 (1)

Combining (F3) with the formula of total probability we obtain
P(s} > xa(0). 53 > x4 (D)) ~ P(s}, > xact (D)P(3 > et (1),

and combining it with Assertion 3 we obtain (A4). O
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