The number n is multiply perfect if and only if $\mathcal{T}_1(n) \equiv 0 \pmod{n}$. By (1) this is equivalent to

(2)
$$T_1(n) \equiv S_1(n) - \varphi_1(n) + 1 \pmod{n}$$
.

The right hand side of (2) is congruent to $-\sum_{d|n,d>1} \mathcal{M}(d) dS_1(n/d) + 1 \equiv -\sum_{d|n,d>1} \mathcal{M}(d) n\frac{1}{2}(1+n/d) + 1 \pmod{n}.$ If n is odd, each 1 + n/d is even and $n/n\frac{1}{2}(1+n/d)$. Thus an odd n is multiply perfect if and only if $T_1(n) \equiv 1 \pmod{n}$.

Now let $n = \prod_{p \mid n} p^{\alpha}$ be even. Correcting the statement of our problem we have to assume $n \neq 2$. We wish to show that n is multiply perfect if and only if $T_1(n) \equiv 1 + n/2 \pmod{n}$. Thus we have to show $\sum_{d\mid n, d > 1} \mathcal{M}(d) n \frac{1}{2} (1+n/d) \equiv n/2 \pmod{n}$ or $\sum_{d\mid n, d > 1} \mathcal{M}(d) (1+n/d) + 1 \equiv 0 \pmod{2}$. This is equivalent to (4) $2 \mid \sum = \sum_{d\mid n} \mathcal{M}(d) (1+n/d)$.

But
$$\Sigma = \overline{\Sigma}_{d|n} \mu(d)(n/d) + \overline{\Sigma}_{d|n} \mu(d) = \overline{\Sigma}_{d|n} \mu(d)(n/d)$$

= $\varphi(n) = \prod_{p|n} (p^{\alpha} - p^{\alpha} - 1).$

Thus Σ is even unless n = 2. This proves (4).

<u>P 3.</u> Let F be a finite field of characteristic p. Let V_n be an n-dimensional vector space over F. In V_n a symmetric bilinear form (a,b) is given. Let $n \ge 2$ if p = 2 and $n \ge 3$ if p is odd. Show that there is a vector $a \ne 0$ in V_n such that (a,a) = 0. P. Scherk

Solution by the proposer. Let $F = \{\xi, \eta, \ldots\}$ be a finite field of characteristic p. Let G denote the multiplicative group of all the squares $\neq 0$. If p = 2, $\xi^2 = \eta^2$ if and only if $\xi = \eta$. Thus the mapping of the elements $\neq 0$ of F onto G is oneone and G is the multiplicative group of F. If p > 2, this mapping is two-one and G is a subgroup of index two in the multiplicative group of F. Let \overline{G} denote the complement of G in this group.

If 1 + G = G, $1 \in G$ would successively imply 2, 3, ..., p-leG and finally $p = 0 \in G$. Thus

(1) $1 + G \neq G$.