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Abstract

In this study, a non-linear deterministic model for the transmission dynamics of skin sores
(impetigo) disease is developed and analysed by the help of stability of differential equations.
Some basic properties of the model including existence and positivity as well as boundedness
of the solutions of the model are investigated. The disease-free and endemic equilibrium were
investigated, as well as the basic reproduction number, R0, also calculated using the next-gen-
eration matrix approach. When R0 < 1, the model’s stability analysis reveals that the system is
asymptotically stable at disease-free critical point globally as well as locally. If R0 > 1, the sys-
tem is asymptotically stable at disease-endemic equilibrium both locally and globally. The
long-term behaviour of the skin sores model’s steady-state solution in a population is inves-
tigated using numerical simulations of the model.

Introduction

Skin sores (impetigo) is a highly contagious, superficial skin infection that most commonly
affects children [1], which increases in prevalence in late summer [2]. Streptococcus pyogenes
(group A Streptococcus) is one of the most important bacterial causes of skin and soft tissue
infections worldwide [3]. Impetigo most typically affects exposed parts, such as the face and
extremities. The lesions are well-localised, however they are frequently numerous and might
be bullous or non-bullous [4].

Staphylococcus aureus and Streptococcus pyogenes produce this epidermal infection [5].
Although Staphylococcus aureus is the most common cause of impetigo in developed coun-
tries, S. pyogenes is still a major cause in developing countries [6]. Infections of the skin are
caused primarily by group A streptococci (GAS) [7]. GAS infections have the potential to
become invasive and can lead to serious post-infectious consequences of glomerulonephritis
and rheumatic heart disease [8].

The age-specific prevalence of skin sores among children of up to 14 years of age is high,
but remarkably consistent across the age groups studied [9]. Impetigo has increased occur-
rence in close contact, warm and humid environments [10]. In vitro investigations are used
to assess the efficacy of prospective novel antimicrobial agents, with in vivo studies in animal
models and/or people following if they are successful [11]. According to recent estimates,
impetigo affects anywhere from 111 million children in impoverished nations to 140 million
people worldwide at any given moment [12].

Impetigo is divided into non-bullous (also known as impetigo contagiosa) and bullous
types. Bullous impetigo is caused by a staphylococcal toxin and does not require a host
response to manifest clinical disease, whereas non-bullous impetigo is an infection-related
host response [1] (Figs 1 and 2).

In recent years, mathematical modelling is becoming key techniques in the area of infec-
tious disease propagation and control [13–18]. The studies on the mathematical analysis of
human diseases and epidemic models have been conducted, which combine numerical studies
with dynamic system methodologies such as stability analysis, LaSalles invariance principle,
Routh–Hurwitz criterion and Lyapunov function [19].

Tanaka and Ono [20] provide an overview of how mathematical modelling can improve
understanding of skin diseases, considering both their benefits and challenges. They discuss
the significance of strong linkages between experimental, mathematical modelling and data
analysis in order to effectively utilise the modelling technique to improve skin research in
the post-genomic era.

Lydeamore et al. [7] constructed a stochastic representation of the susceptible-infectious-
susceptible model. They have provided the first model-based estimates of skin sores infection
duration (between 12 and 20 days), infection strength and baseline reproductive ratio in three
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different settings. By performing the estimation in a modelling
framework, the interval-censored nature of the data was taken
into account.

Motivated by the works of [7], for this manuscript, a non-
linear deterministic model to study and analyse the transmission
of skin sores is proposed. Moreover, we subdivide the total popu-
lation into susceptible (J(t)), infected (K(t)) and recovered (K(t))
classes.

The manuscript is organised by four sections. In the first
section, introduction to the transmission disease skin sores is
presented. We construct a mathematical model for the dynamics

of skin sore transmission in section ‘Model formulation’.
Additionally, we go over the fundamental characteristics of the
model and stability analysis of the disease-free and endemic equi-
libria. The topic of numerical simulation is covered in section
‘Numerical simulation’. At last, the conclusion is provided in sec-
tion ‘Conclusion’.

Model formulation

In this section, we develop a new mathematical model for skin
sores transmission dynamics by dividing the total population N
(t) into three compartments: susceptible (J(t)), those who are at
risk of becoming infected by the disease; infected (K(t)), those
who have the pathogen in their organism and can transmit it;
and recovered (L(t)), those who have recovered from the disease.
The model also assumes that there is a positive recruitment rate b
into susceptible class (J(t)) and positive natural death rate ρ for all
time under the study. The susceptible individuals can become
infected at rate (ψJ/N ) through contact with infected individuals
which are depending on time, where ψ is effective contact rate.
The remaining model parameters are likewise defined as follows:
σ is the recovery rate and ω is the rate of susceptibility of recov-
ered individuals (Fig. 3, Table 1).

Based on the assumption and flow chart of the model, we
have the following system of non-linear ordinary differential
equations:

dJ
dt

= b− c
JK
N

+ vL− rJ,

dK
dt

= c
JK
N

− (s+ r)K,
dL
dt

= sK − (v+ r)L,

(1)

with

J(0) = J0 . 0, K(0) = K0 ≥ 0, L(0) = L0 ≥ 0. (2)

Fig. 2. Bullous impetigo.

Fig. 1. Non-bullous impetigo.

Fig. 3. Flow chart of the model.
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Existence, finiteness and non-negativity of solutions

Existence of solution
The mathematical model of our system is well-posed. In actuality,
Picard’s (or Cauchy–Lipschitz) theorem states that its solution
exists, is unique and is constantly dependent on the initial data.
Because we are dealing with human population, we must guaran-
tee that our solutions are positive and bounded.

Positivity of solution
Theorem 1: If V = {(J , K , L) [ R3

+:J(0) . 0, K(0) ≥ 0, L(0) ≥ 0},
then the solution set {J(t), K(t), L(t)} of the system of equation (1) is
non-negative for all t≥ 0.

Proof: We assume that t = sup {t ≥ 0 : J0(u) . 0, K0(u) ≥ 0,
L0(u) ≥ 0, ∀u [ [0, t]}. Since J0(t) > 0, K0(t)≥ 0 and L0(t)≥ 0,

then τ≥ 0. If τ < 0, then automatically J0(t) or K0(t) or L0(t) = 0 at
τ. Now, use the system of equation (1)

dJ
dt

= b− cJK
N

+ vL− rJ. (3)

The answer to equation (3) at time t is thus given by
applying a variant of the constant formula.

J(t) = K(0)e−
�T

0
((cK/N)+r)(a)dJ +

∫t
0
(b+ vL)

× e
−
�t

J
((cK/N)+r)(u)du

dJ . 0.

(4)

Furthermore, because of the non-negative in [0, τ], J(τ) > 0.
Similar evidence demonstrates that K(τ)≥ 0, and L(τ)≥ 0, this
leads to contradiction. Thus, τ =∞. As a result, for t≥ 0, the solu-
tions are positive.

Invariant region
Lemma 1: Suppose that the following system’s initial conditions
are all positive in R3

+.

V = (J , K , L) [ R3
+; 0 ≤ J(t)+ K(t)+ L(t) : N(t) ≤ b

r

{ }
,

(5)

where Ω is essentially invariant.
Proof: Finding the derivatives of N(t) = J(t) + K(t) + L(t) by

considering time as independent variable and using equation
(1), we have

dN
dt

= b− rN. (6)

After some simplification,

N(t) = b
r
+ N(0)− b

r

( )
e−rt . (7)

Then, lim sup
t�1

N(t) ≤ (b/r). Hence, Ω is positively invariant.

Therefore, all solutions of the system given in (1) including initial
condition are in Ω.

Disease-free critical points

Disease-free critical points (DFE), E0 are solutions that reach a
stable state, in which the population is free of disease. In the
absence of disease, we have K = 0. Then, the disease-free equilib-
rium points (DFE), E0, are given by:

E0 = (J0, K0, L0) = b
r
, 0, 0

( )
. (8)

The basic reproduction number (R0): The basic reproduction num-
ber R0 of mathematical model of the system of equation (1) is
determined using next-generation matrix technique [21]. Now,
let x = (K, L, J ), then the system of equation (1) can be rewritten as:

dx
dt

= F(x)− V(x) (9)

where

F(x) =
cJK
N
0
0

⎛
⎜⎝

⎞
⎟⎠, (10)

and

V(x) =
(s+ r)K
−sK + (v+ r)L

−b+ cJK
N

− vL+ rJ

⎛
⎜⎝

⎞
⎟⎠. (11)

The Jacobian matrices of F(x) and V(x) at disease-free equilib-
rium point, E0 is given by:

F =
c 0 0
0 0 0
0 0 0

⎛
⎝

⎞
⎠, (12)

and

V =
s+ r 0 0
−s v+ r 0
c −v r

⎛
⎝

⎞
⎠. (13)

Using the method of next-generation matrix, the fundamental
reproduction number, R0 is the spectral radius of FV−1 or the
dominant eigenvalue of FV−1 and thus, the fundamental repro-
duction number R0 is given by:

R0 = c

s+ r
. (14)

Table 1. Parameters of the model

Parameter Description

b Recruitment rate

ψ Effective contact rate

σ The recovery rate

ω The rate of susceptibility of recovered individuals

ρ Natural death rate
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Endemic critical point

Disease endemic critical point, E1, is said to be steady state if
the disease continues in the population. If E1 = (J*, K*, L*) is
disease equilibrium point, it satisfies the following algebraic
equations:

b− cJ∗K∗

N∗ + vL∗−rJ∗= 0,

cJ∗K∗

N∗ − (s+ r)K∗= 0,

sK∗−(v+ r)L∗= 0.

(15)

In the system (15) of the second equation, we obtain:

J∗= b
rR0

. (16)

Similarly, in system (15) of the third equation, we get:

L∗= s

v+ r
K∗. (17)

Substituting equations (16) and (17) in system (15) of
the first equation, we have:

K∗= b(v+ r)(R0 − 1)
rR0(v+ s+ r)

. (18)

Then, after substituting equation (18) in equation (17), we obtain:

R∗= sb(R0 − 1)
rR0(v+ s+ r)

. (19)

Local stability of the disease-free equilibrium point

The linearised form of the system of equation (1) at the steady
state can be used to discuss the local stability of the disease-free
equilibrium.

Theorem 3: If R0 < 1, the equilibrium solution of the non-linear
system (1) is locally asymptotically stable.

Proof: At the point of equilibrium without disease, the
Jacobian matrix of system given in (1) is:

J(E0) = J(J0, K0, L0) = J
b
r
, 0, 0

( )

=
−r −c v

0 c− s+ r
( )

0

0 s − v+ r
( )

⎛
⎜⎝

⎞
⎟⎠.

(20)

The characteristic equation of (20) at disease-free equilibrium
point E0 is

|J(E0)− lI3| =
−r− l −c v

0 (c− (s+ r))− l 0
0 s −(v+ r)− l

∣∣∣∣∣∣
∣∣∣∣∣∣

= 0,

(−m− l)((c− (s+ r))− l)(−(v+ c)− l) = 0. (21)

Consequently,

l1 = −r , 0, l2 = −(v+ r) , 0, (22)

l3 = c− (s+ r) = (s+ r)
c

s+ r
− 1

( )

= (s+ r)(R0 − 1). (23)

Here, λ3 = (σ + ρ)(R0− 1) < 0 if R0 < 1 implying that all the
eigenvalues are negative. Thus, disease-free equilibrium point E0
is locally asymptotically stable.

Global stability of the disease-free equilibrium point

Theorem 4: Suppose that R0 < 1, then the disease-free equilibrium
point E0 is globally asymptotically stable.

Proof: To prove the global stability of the disease-free equilib-
rium point E0, we need to construct the following Lyapunov
function:

G(J , K , L) = 1
2
((J − J0)+ (K − K0))2. (24)

Clearly, (G(J, K, L)) ≥ 0 at disease-free equilibrium point and
equal to zero at J = J0 and K = K0. Then, the derivative of equation
(24) with respect to time t becomes:

d
dt

(G(J , K , L)) = (J − J0 + K − K0)
dJ
dt

+ dJ
dt

( )
. (25)

Substituting the values of (dJ/dt) and (dK/dt) from the system
of equation (1), we have

d
dt

(G(J, K, L)) = (J − J0 + K − K0)(b+ vL− rJ − (s+ r)K),

= − (J − J0 + K − K0)(D− E).
(26)

Clearly, (d/dt)(G(J, K, L)) ≤ 0 if and only if D > E, where D =
ρJ + (σ + ρ)K and E = b + ωL. Furthermore, (d/dt)(G(J, K, L)) = 0 if
and only if J = J0 and K = K0. Thus, by the invariance principle of
LaSalle [22], the disease-free equilibrium point E0 is globally
asymptotically stable.

Local stability of the endemic equilibrium point

Here, to illustrate the local stability of the endemic disease equi-
librium state, the Jacobian stability method is used.

Theorem 5: The system of (1) has locally asymptotically stable
equilibrium solution E1, when R0 > 1.
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The Jacobian matrix of the system given in (1), at the disease
endemic equilibrium point, is:

J(E1) =
− cK∗

N
+ r

( )
−cJ∗

N
v

cK∗

N
− s+ r− cJ∗

N

( )
0

0 s −(v+ r)

⎛
⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎠.

(27)

The characteristic equation of (27) at disease endemic equilib-
rium point E1

|J(E1)
− lI3|

=
− cK∗

N
+ r

( )
− l −cJ∗

N
v

cK∗

N
− s+ r− cJ∗

N

( )
− l 0

0 s −(v+ r) − l

∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣
.

That is

− cK∗

N
+ r

( )
− l

( )
− s+ r− cJ∗

N

( )
− l

( )
(−(v+ r)− l)

+ cJ∗

N

( )
cK∗

N

( )
(−(v+ c)− l)+ vs

cK∗

N

( )
= 0.

(28)

Now, equation (28) can be simplified as

l3 + a1l
2 + a2l+ a3 = 0, (29)

where

a1 = 3r+ s+ v+ c

R0

(v+ c)(R0 − 1)
v+ s+ r

− 1

( )
,

a2 = c(v+ c)(2m+ s+ v)(R0 − 1)
R0(v+ s+ r) + r(v+ r),

a3 = rc

R0
(v+ r)(R0 − 1).

Thus, by Routh–Hurwitz criterion, the system of equation (1)
is locally asymptotically stable if a1 > 0, a2 > 0 and a3 > 0. Hence,
E1 is locally asymptotically stable if R0 > 1.

Global stability of disease endemic equilibrium point

For examining the global asymptotic stability of the disease
endemic equilibrium point E1, the following model is used.

b = cJ∗K∗

N
− vL∗+rJ∗,

cJ∗K∗

N
= (s+ r)K∗,

sK∗=(v+ r)L∗.

(30)

Theorem 6: If R0 > 1, then the model given in (1) is globally
asymptotically stable at E1 when ω = 0.

Proof: Using the method proposed by [23], we define the sub-
sequent Lyapunov function for equation (1):

V(t) = J − J∗−J∗ ln
J
J∗

+ K − K∗−K∗ ln
K
K∗

+ cJ∗

sN
L− L∗−L∗ ln

L
L∗

( )
. (31)

After differentiating equation (31) with respect to time t, we
have

dV
dt

= 1− J∗

J

( )
dJ
dt

+ 1− K∗

K

( )
dK
dt

+ cK∗

sN
1− L∗

L

( )
dL
dt

. (32)

Now,

1− J∗

J

( )
dJ
dt

= 1− J∗

J

( )
b− cJK

N
+ vL− cJ

[ ]
,

= 1− J∗

J

( )
cJ∗K∗

N
− vL∗ + rJ∗ − cJK

N
+ vL− rJ

[ ]
,

= 1− J∗

J

( )
cJ∗K∗

N
1− JK

J∗K∗

( )
− vL∗ 1− L

L∗

( )
− rJ 1− J∗

J

( )[ ]
,

≤ cJ∗K∗

N
1− JK

J∗K∗

( )
1− J∗

J

( )
− vL∗ 1− L

L∗

( )
1− J∗

J

( )[ ]
,

= cJ∗K∗

N
1− J∗

J
− JK

J∗K∗ +
K
K∗

[ ]
.

(33)

1− K∗

K

( )
dK
dt

= 1− K∗

K

( )
cJK
N

− (s+ r)K
[ ]

,

= 1− K∗

K

( )
cJK
N

− cJ∗K
N

[ ]
,

= cJ∗K∗

N
1+ JK

J∗K∗ −
J
J∗

− K
K∗

[ ]
.

(34)

cJ∗

sN
1− L∗

L

( )
dL
dt

= cJ∗

sN
1− L∗

L

( )
[sK − (v+ r)C],

= cJ∗

sN
1− L∗

L

( )
sK − sK∗ L

L∗

[ ]
,

= cJ∗K∗

N
1+ K

K∗ −
L
L∗

− KL∗

K∗L

[ ]
.

(35)

When the outcomes of equations (33)–(35) are substituted to
equation (32), we obtain

dV
dt

= −vL∗ 1− L
L∗

( )
1− J∗

J

( )

+ cJ∗K∗

N
3− J∗

J
− J

J∗
− K

K∗
L
L∗

− 1

( )
− L

L∗

[ ]
.

(36)

Epidemiology and Infection 5

https://doi.org/10.1017/S0950268822001807 Published online by Cambridge University Press

https://doi.org/10.1017/S0950268822001807


Here, (dV/dt)≤ 0 if [3− (J*/J )− (J/J*)− (K/K*)((L/L*)− 1)−
(L/L*)]≤ 0. Therefore, using [22], E1 is globally asymptotically
stable whenever R0 > 1.

Sensitivity analysis of model parameters

Sensitivity analysis is commonly used for verifying and identify-
ing parameters that can influence the basic reproduction number,
R0, which determines the robustness of model forecasts. It indi-
cates the importance of each parameter for the transmission of
disease. According to [24], sensitivity indices authorise us to
quantify how much a variable varies when a parameter is chan-
ged. When the variable is a differentiable function of parameters,

partial derivatives can also be used for constructing the sensitivity
index.

Definition: The normalised forward sensitivity index of
an R0, which depends differentially on a parameter, xi, is
given as:

PR0
xi = ∂R0

∂xi
.
xi
R0

, (37)

Table 2. Sensitivity indices of the model’s parameters

Parameter symbol Sensitivity indices

ψ +ve

σ −ve

ρ −ve

Table 3. Parameter values of the model

Parameter Value Source

b ρ N To be computed

ψ 0.067 [7]

σ 0.007 Assumed

ω 0.00021 Assumed

ρ 0.012 Assumed

Fig. 4. Time series plot of state variables for R0 = 0.8603 < 1.
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where xi represents all the basic parameters and R0 = (ψ/σ + ρ).

PR0
c = ∂R0

∂c
.
c

R0
= 1 . 0,

PR0
s = ∂R0

∂s
.
s

R0
= − s

s+ r
, 0,

PR0
r = ∂R0

∂r
.
r

R0
= − r

s+ r
, 0.

(38)

Interpretation of sensitivity indices

The sensitivity indices of R0 with respect to the key parameters are
shown on Table 2. The positive indices ψ show that it has a sig-
nificant impact on the spread of the disease with increasing
values. Since as their values rise, the basic reproduction number
increases, and hence the average number of secondary cases of
infection rises as well. In addition, those parameters with negative
sensitivity indices σ and ρ have the effect of reducing illness pain
when their values increase while the others unchanged.

Furthermore, as their values increase, the basic reproduction
number decreases, which results in the reduction of the disease’s
endemic areas.

Numerical simulation

The numerical results for the system of (1) for various parameter
values are presented. The simulation is done by using Matlab
ODE45. The values of parameters are given in Table 3. We assumed
that the total population and recruitment rate are related by b =ψN.
The initial conditions given below serve as the foundation for the
simulations and analyses: J(0) = 10 000, K(0) = 500 and L(0) = 2000.

From Figure 4, we observe that susceptible and recovered indi-
viduals asymptotically increase to the disease-free equilibrium
point, while the infected individuals decrease asymptotically to
the disease-free equilibrium point. Such conditions exist due to
the fact that R0 = 0.8603 < 1. This supports that the stability of
the disease-free equilibrium point exists when R0 < 1, which
means if R0 < 1, for the duration of the disease period, a single
infected individual on average produces less than one newly
infected individual.

Fig. 5. Time series plot of state variables for R0 = 2.0492 > 1.
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From Figure 5, we observe that susceptible and recovered
individuals are decreased due to the influence of infected indi-
viduals, then they become infected; as a result, the infected

individuals are increased. Therefore, infected individuals are
increased and the disease endemic equilibrium point exists
and stable. The existence of this condition is due to the fact

Fig. 6. Variations of susceptible population J(t) and infected population K(t) w.r.t. time t for different values of ψ.

Fig. 7. Variations of infected population K(t) and recovered population L(t) w.r.t. time t for different values of σ.

Fig. 8. Variations of susceptible population J(t) and recovered population K(t) w.r.t. time t for different values of ω.
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that R0 = 2.0492 which is greater than one. This supports the
theorem that the stability of disease endemic equilibrium
point exists when R0 > 1, this means that when R0 > 1, on aver-
age, each infected person creates more than one other contami-
nated person, then infected individuals will be able to spread in
the given society.

Figure 6 shows that as effective contact rate, ψ grows, the num-
ber of infected people rises while the number of susceptible people
falls as a result of the influence of infected people.

Furthermore from Figure 7, we observe that as the recovery
rate σ increases, infected individuals decrease while the recovered
individuals are increased.

Also from Figure 8, we see that as the rate of susceptibility of
recovered individuals decreases, recovered individuals are
increased while the susceptible individuals are decreased.

Conclusion

A non-linear deterministic mathematical model for skin sores
transmission dynamics was constructed in this work. We first
established that the model is well-posed epidemiologically and
mathematically. The basic reproduction number (R0), as well as
endemic and the disease-free critical points are determined. The
value of (R0) is used to assess whether equilibrium points are stable
or not. When R0 < 1, the disease-free critical point (E0) will be both
globally and locally asymptotically stable. That is, on average, one
infected individual produces less than one newly infected individ-
ual over the course of its disease period. As a result, the infected
people are gradually removed from the society. Also, the disease
endemic critical point (E1) is globally and locally asymptotically
stable if R0 is greater than 1. That is, each infected individual pro-
duces on average more than one new infected individual, then
infected individuals will be able to spread in the given society.
Consequently, the disease persists in the society. The computational
simulations and analyses demonstrate that when the effective con-
tact rate declines and as the recovery rate increases, infected indivi-
duals decrease from the society. The model we adapted did not
provide optimal control and cost-effectiveness of various interven-
tion strategies that can be explored in the future to find out which
strategy is the top in controlling skin sores.

Data availability statement

The data used to support the finding of this study are included in
the article. Actually, we used data from other papers for the simu-
lation. The papers are properly cited.
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