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LEXICOGRAPHIC DIRECT SUMS OF ELEMENTARY 
C*-ALGEBRAS 

HORST BEHNCKE AND GEORGE A. ELLIOTT 

1. Introduction. Besides the simple ones, there are several other kinds of 
C*-algebras which it has proved interesting to try to classify. For instance, 
a large body of results relates to the extensions of one given C*-algebra, 
possibly simple, by another. Extrapolating in this direction, we have 
considered the class of C*-algebras which can be decomposed in the 
strongest possible nontrivial sense in terms of their simple subquotients, 
and such that these simple subquotients in turn are as uncomplicated as 
possible. 

We have found that the classification of these C*-algebras, namely, the 
lexicographic direct sums of elementary C*-algebras, is to a large degree 
tractable, and yet involves an interesting new invariant in the antiliminary 
case, which is the case of no minimal ideals. Even the postliminary case, 
which is the case that the ordered set of simple subquotients satisfies the 
decreasing chain condition, is not without interest as an extension of 
the case of finitely many simple subquotients, analysed in the earlier 
papers [1] and [2]. 

This new invariant, being a generalized integer (or a family of 
generalized integers), resembles in a striking way the invariant introduced 
by Glimm in [13] to classify uniformly hyperfinite C*-algebras, which are 
simple and apparently unrelated to lexicographic direct sums of elementa
ry C*-algebras. 

Lexicographic direct sums of elementary C*-algebras are, it is easy to 
show, approximately finite-dimensional. Their dimension groups, as 
defined in [9], turn out to be lexicographic direct sums of copies of Z 
(2.8). 

We recall that the lexicographic direct sum of an ordered family of 
ordered abelian groups (Gx)xŒP, which we shall denote by 

,ex©.ï6,G„ 

is the direct sum group ®xŒPGx, with a nonzero element positive if for 
each x e P maximal such that the coordinate at x is not zero, that co
ordinate is positive in Gx. By 3.10 of [10], the lexicographic direct sum of 
an ordered family of dimension groups is a dimension group. (We shall use 
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the definition of dimension group given in 3.10 of [10], namely, the 
ordered group direct limit of a net of finite ordered group direct sums of 
copies of Z.) 

In the case that the dimension group Gx is equal to Z for every x e P, 
we shall write Z ( P ) instead of © v e P Z , and Z(/>)lex instead of lcx©A.e/>Z. 
It is easily seen that the ideals of Z( ) ex are precisely the subgroups 
Z{ ) with R an ideal of P, and that this correspondence is an isomorphism 
of the ideal lattice of Z(/>)lex and the ideal lattice of P (cf. Section 5.2 of 
[10] ). 

We recall that an ideal of a dimension group is a positively generated 
subgroup such that if 0 ^ g ^ h and h is in the subgroup then g is, too. 
The quotient of a dimension group by an ideal, ordered by the image of 
the positive part, is again a dimension group. A dimension group is prime 
if it is nonzero and does not have two nonzero ideals with intersection 
zero. A prime ideal is an ideal with respect to which the quotient is prime. 
We shall use similar terminology for ordered sets: an ideal is a subset such 
that if x = y ând y belongs to the subset then x does, too; an ordered set is 
prime if it is nonempty and does not have two nonempty ideals with 
empty intersection; a prime ideal is an ideal with respect to which the 
quotient, i.e., the complement, is prime. Incidentally, we shall also use 
similar terminology for algebras, which is however completely standard, 
except that we shall say ideal instead of two-sided ideal. 

The prime ideal spectrum of an ordered set or of a dimension group will 
mean the space of prime ideals with the Jacobson (or hull-kernel) 
topology, with the proviso that for dimension groups the kernel of a 
collection of ideals is the ideal whose positive part is the intersection of the 
positive parts of the ideals in the collection. (The intersection of the ideals 
themselves may fail to be positively generated, as shown in [12].) We shall 
denote the prime ideal spectrum of a dimension group G by Spec G. 

While on the subject of ideals, we should like briefly to mention an error 
in [5]: in Theorem 6 the conditions given are insufficient for a topological 
space to be the primitive spectrum of a separable postliminary approxi
mately finite-dimensional C*-algebra; this was pointed out to the second 
author by B. Blackadar and L. Brown. Blackadar and Brown have proved 
sufficiency with the additional (necessary) condition that the space be 
almost Hausdorff. 

As shown in [9], the additional information which determines a 
separable approximately finite-dimensional C*-algebra, besides the 
dimension group, is the range of the dimension. This is an upward 
directed, generating subset of the positive part of the dimension group, 
such that if 0 ^ g ^ h and h is in the subset then g is, too. Follow
ing Handelman in [15], we shall refer to such a subset of a dimension 
group simply as an interval. By [9], at least in a countable dimen
sion group, every interval arises as the dimension range of an approxi-
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mately finite-dimensional C*-algebra. The image of an interval in a 
quotient of a dimension group is an interval. 

Our main results are as follows. We shall show that an interval in Z(/>) ex 

is determined by knowing when its image in a prime quotient has a largest 
element, and also what that element is (3.5). We shall summarize this 
latter information by means of a function from P to Z U {+00}, the 
defector of the interval, much as in the case of finite P considered in [1] 
and [2] (3.5). 

We shall show that the dimension range of a lexicographic direct sum of 
elementary C*-algebras is an interval with positive defector (a positive 
defector is one with positive values), with a largest element in any prime 
quotient where this is permitted by the defector (2.8, 3.6). 

Conversely, we shall show that every such interval is the dimension 
range of a lexicographic direct sum of elementary C*-algebras. Further
more, we shall do this by a construction which is functorial, from the 
category of such intervals in lexicographic direct sums of copies of Z, with 
isomorphisms, to the category of C*-algebras, with isomorphisms (2.6, 
2.9). By 4.3 of [9], it follows that every separable lexicographic direct sum 
of elementary C*-algebras is isomorphic to one of the algebras given by 
this construction. This leads to a characterization of postliminary 
C*-algebras in this class (5.5). 

Finally, we shall introduce a divisor invariant of the defector of an 
interval, which is a function from certain prime ideals of the ordered set to 
generalized integers (4.12). We shall show that for intervals in Z(~ ) ex 

with defector equal to 1 at 0, this invariant, a single generalized integer, is 
complete (4.13). 

2. Lexicographic direct sum C*-algebras. 

2.1. Definition. Let P be an ordered set, and let (Bx)xŒP be a family of 
nonzero simple C*-algebras. Let A be a C*-algebra. We shall say that A is 
a lexicographic direct sum (or an external lexicographic direct sum) of the 
ordered family of simple C*-algebras (Bx)xŒP if there exists a linearly 
independent family (Ax)xGP of sub-C*-algebras of A, with Ax isomorphic 
to Bx for each x e P, with the following properties: 

(i) If x, y e P are not comparable, then AxAy = 0. 
(ii) If JC, y e P and x < y then AXAV Q Ax and Ax is the unique nonzero 

proper closed ideal of Ax + Ay. 
(iii) 2 v G / ^4 x is dense in A. 

In these circumstances we shall also say that A is the internal lexicographic 
direct sum of the ordered family of simple sub-C*-algebras (AX)X(EP. (We 
use the indefinite article in referring to an external lexicographic direct 
sum because this in general is not unique.) 

2.2. THEOREM. Let A be a C*-algebra, let P be an ordered set, and suppose 
that A is the internal lexicographic direct sum of the ordered family oj simple 
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sub-C*-algebras (Ax)xŒP. It follows that the lattice of closed ideals of A is 
isomorphic to the lattice of ideals of P. More precisely, if R is an ideal of P 
then the closure of^xŒRAx is an ideal of A, and the map 

from the lattice of ideals of P to the lattice of closed ideals of A is an order 
isomorphism. Furthermore, if R is an ideal of P, then the restriction of the 
quotient map 

A^A/CZX(,RAX)-

to the sub-C*-algebra Ç2dx^P\RAx)~ is an isomorphism. 

Proof. Note first that by (i) and (ii), for any x, y e P, AxAy is contained 
either in Ax or in Ay. Thus, ^X^QAX is a subalgebra of A for any 
Q <= P. 

Let R be an ideal of P. Fix x e R andjy e P\R. Then either x and j ; are 
not comparable, or x < y (if y ^ JC then j ; e R). In the first case, by (i), 
AXA = 0. In the second case, by (ii), AXA Q Ax. Thus, in either 
case, AxAy Q Ax. It follows that ^xŒRAx is an ideal of ^y^PAy. Hence 
(2 x e ^^4 x ) is an ideal of C£yŒPAy)~, which by (hi) is equal to A. 

Let R\ and R2 be ideals of P. Clearly, if R] Q R2, then 

(2xeRAxy Q (2xeRAxy. 

Suppose that 

(2X*RAX)- Q (2xeRAxy. 

To show that R] Q R2, let us first show that the quotient map 

A ^> A/(2xeRAxr 

is isometric on 2ve/>\»-<4v. This will also establish the last statement 
of the theorem. It is sufficient to show that for each a e 2V < E />\B ^4V and 
b e 2v e«A> 

IWI s Ik» + *ll. 

Passing to a finite subset Q of A such that both a and b belong to 2 Y G ^ V 4 V , 

to show that ||a|| = \\a 4- b\\ we may suppose that P is finite. In this case, 
as we shall show below, ^X(£RAX and 2 ï G p \ ^ Y are closed. Since the 
quotient map 

A ~* A/2JX^R2AX 

with respect to the closed ideal 2x G /? Ax is, by independence, injective on 
the sub-C*-algebra ^xŒP\RAx, by 1.8.3 of [7] it is isometric there. 

https://doi.org/10.4153/CJM-1987-012-3 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1987-012-3


E L E M E N T A R Y C*-ALGEBRAS 261 

Hence 

IMI = \\a + 5U«AH § \\a + b\\. 
It follows that 

(2X*P\RAX) n (2xeRAxr = 0 
(whether P is finite or not). Hence, as 

/?, c fl2 (;c G /?,VR2 would imply Ax = 0). 
In what precedes we stated that certain finite sums of Axs are closed. 

We shall in fact prove that any finite sum of Ax's is closed (whether P is 
finite or not). Let g be a finite subset of P. Choose y maximal in Q. 
By induction, we may suppose that 2 x G n w v \ ^ Y is closed. It is then a 
closed ideal of the C*-algebra C2X<=QAX)~. By 1.8.4 of [7], the sum of 
the closed ideal 2xG@\ / v}^x a n d the sub-C*-algebra Ay is closed. Thus we 
see that ^X^QAX is closed. 

Finally, let / be an arbitrary closed ideal of A, and let us show that 

^ = (2UX^RAX) 

for some ideal R of P. As A is the direct limit of the net of 
sub-C*-algebras 

(2JX^Q^X)QQP, Q finite 

by the proof of 1.4 of [8] (see also 3.1 of [4] ) we have 

^ = ( U ^ ç p , Q finitê  n 2JX*=QAX) ' 

From this we see that it is sufficient to show, for each finite subset Q of P, 
that / Pi ^X^QAX is equal to 

2JX^R(Q)AX 

for some ideal R(Q) of Q. (Then R(Q}) Q R(Q2) whenever Qx c Q^ so 
UQR(Q) is an ideal of P\ clearly 

1 = (2JXG\JQR(Q)^X) ') 

Thus, it suffices to consider the case that P is finite. Then the ordered set P 
has a finite composition series of ideals 

0 = P0 Q Px Q .. . Q P„ = P 

with each subquotient (i.e., difference) Pl + x\Pt a single point. Hence the 
sequence of ideals 

is a composition series for A, with subquotients isomorphic to 
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^ p . W AP2\PS • ' ^APn\P„-i 

and therefore simple. It follows that the primitive spectrum of A is fi
nite and in particular every proper closed ideal of A is contained in a 
maximal (proper) closed ideal. If / = A, then 

^ = 2ux^PAx-

Assume that I ¥= A. We shall show that / is contained in 1LX(=QAX for some 
proper subset Q of P; the desired conclusion then holds by induction on 
the number of elements of P. For this purpose we may replace / by a 
maximal closed ideal of A containing / (that such exists was shown above). 
Choose y maximal in P. Then 

2JX^P\{V}AX 

is a maximal closed ideal of A (the quotient is isomorphic to the simple 
nonzero C*-algebra Ay). Either the two maximal closed ideals / and 
2 Y G / > W v v 4 x are equal, or their intersection is a maximal closed ideal of 
each of them. In the first case we are finished. In the second case, by 
induction there exists a maximal element z of P \ { ^ } such that 

1 n 2jX<=P\{y}Ax = Z.VGP\{F,z}4-

Hence we may pass to the quotient of A by the closed ideal 

modulo which Ay and Az are independent and satisfy conditions (i), (ii), 
and (iii) of 2.1 with {y, z} in place of P. If y and z are incomparable, then 
AyAz = 0, so the only nonzero proper closed ideals of A (now equal 
to Ay + Az) a r e^ v and^4z. If y and z are comparable, then z < y (since y is 
maximal in P, and z <= P\{>>} ); hence in this case, by (ii), Az is the 
unique nonzero proper closed ideal of A. 

2.3. Remark. In Definition 2.1, independence of the family (AX)X^P 

together with properties (i) and (ii) could be replaced by the following two 
properties: 

(iv) For any subset Q of P and any ideal R of Q, ^XŒQAX is a subalgebra 
of A and ^xŒRAx is an ideal of ^XGQAX. 

(v) For any subset Q of P, the map 

from the lattice of ideals of Q to the lattice of closed ideals of ( 2 v e n ^ v ) 
is a bijection. 

That (iv) follows from 2.1 is immediate; that (v) follows from 2.1 is part 
of 2.2. Conversely, bearing in mind that Ax and A are simple, x, y G P, we 
see that (i) of 2.1 is just a reformulation of (iv) and (v) with Q = {x, y}, x 
ând y not comparable, and that (ii) of 2.1 is a reformulation of (iv) and (v) 
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with Q = {x, y), x < y. It remains only to show that (iv) and (v) imply 
independence of the family (Ax)xŒP. Let Q be a finite subset of P and let j^ 
be maximal in Q. Then Q and R = Q\{y] are distinct ideals of Q, so by 
injectivity in (v), Ay is not contained in the ideal CLXŒRAX)~~ °f 
CZX(=QAX)~. Since AY is simple and (2,X^RAX)~ is closed (actually, 
^lxŒRAx is itself closed), it follows that 

Ay n (2xGRAxy = o, 

and in particular 

Ay n *2xeRAx = 0. 

If we assume inductively that (Ax)xGR is independent, it then follows that 
(Ax)xç=Q is independent. 

It is clear from the proof that it is sufficient to have properties (iv) and 
(v) for finite subsets Q of P. 

2.4. Remark. If A is the internal lexicographic direct sum of the ordered 
family of simple sub-C*-algebras (AX)X^P then for any pair Qv Q2 of 
disjoint subsets of P, 

(2xeQAxr n (2Uc?A->~ = °-

To see this, set 

R = {x G Qx\ x < y for some y e Q2). 

Then R is an ideal of Qx and of gj U Q2, and £>2 *
s a n ideal °f ( ( ? i \ ^ ) u 

Q2. Hence, by three applications of the last statement of 2.2, 

(ZJX^QXUQAX) = (2J.X(=RAX) 

= (2xeQAxr + axeQAxr. 
2.5. Remark. As is well known, a lexicographic direct sum of the ordered 

family of simple C*-algebras (Bx)xŒP is not necessarily unique. (Consider 
the case P = {x, y] with x < y, Bx infinite elementary, i.e., isomorphic to 
the algebra of compact operators on a Hilbert space of infinite dimension, 
and B = C. See also [1].) Furthermore, there may not even exist such a 
sum. (Consider P as before with Bx = C, By = C.) 

If each Bx is an infinite elementary C*-algebra, of order 

cx = S 0 c a r d { j G P;y ^ x}9 

then the construction which follows shows that there does exist a lexico
graphic direct sum of the ordered family (Bx)x^p; in fact, a canonical one. 
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If for each x e P the set {y e P,y ^ x} is countable, i.e., c\ = S(), then 
it seems reasonable to expect that a lexicographic direct sum of the family 
(#v)vG/> is unique. 

If P itself is countable, then, as follows from 2.8 below, together with 
4.3 of [9], uniqueness holds. (In 2.8, if each Ax is infinite, necessarily 
d(P) = { +oo}.) Uniqueness in the case that P is finite is a consequence of 
Theorem 3 of [2]. In the case that P is countable and every subset of P has 
at least one minimal element, and at most finitely many, uniqueness was 
shown in 5.2 of [10]. 

2.6. THEOREM. There exists a functor P M> AP, from the category oj 
ordered sets and injections which are order isomorphisms onto their images, 
to the category of C*-algebras and injective morphisms, such that for each 
ordered set P, Ap is a lexicographic direct sum of elementary C* -algebras oj 
order 

cx = S() card{>> e P\ y ^ x} , x e P. 

Proof We remark that for the category of totally ordered sets this was 
proved in [3]. (See 4.7.17 of [7] for the case P = N.) Denote by Z(P) the set 
of finitely nonzero functions from P into Z. (We shall ignore for the time 
being the group structure of this direct sum group.) For each fixed x e P, 
define a C*-algebra Ax on the Hilbert space /^(Z( *) as follows. 

For each g <E Z( * denote also by g the vector in / (Z( *) which is 1 at g 
and 0 elsewhere. For each pair g, g' e Z ( P ) denote by g* ® g' the partial 
isometry of rank one £ I—> (£|g)g' on l2(Z(P)). Denote by &Y the set of pairs 
(g, g') in Z( ) with the following three properties: 

g(y) = 0 = g\y) unless x and ^ are comparable; 

g(x) * 0, g'(x) * 0; 

£(>') = g'(y) for all y < x. 

Say that (g, gf) and (/z, h') are equivalent in Sx if (g, g') e Sv, (A, A') e Sv, 
and g(>) = //(>'), g'O') = h'(y) for all^ i^ x. For each pair (g, g') <E SV, 
the orthogonal sum 

2{/2* ® /*'; (A, A') is equivalent to (g, g') in Sx) 

is a partial isometry on /2(Z(/>)); denote it by (g, g')v. If ( / , / ' ) ^ 5*v and 
(g, g') e Sv then from 

( / * ® / ' ) ( g * ® # ' ) = s A / * ® g ' 

it follows that the product (ff')x(g, g')v is equal to (/, /z')Y if there exists 
(h, W) equivalent to (g, g') in SY with h = f\ and otherwise is equal to 0. 
Furthermore, if (g, g') e SY then 

(g, g')* = (£', g).Y. 
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This shows that the closure in norm of the linear span of the set of 
operators 

{ (g, g'),; (g, g') G Sx} 

is a C*-algebra. We shall denote this C*-algebra of operators on /~(Z( '*) 
by Ax. Clearly Ax is isomorphic to the C*-algebra of compact operators on 
the Hilbert space 

/ 2 ( Z ( { r G P ; r = v } ) ) , 

of dimension 

cx = S0 card{ v ^ P; y ^ x}. 

Fix I J E P with x > y, and let us show that AxAy Q Ax. Let ( / / ' ) be 
in Sv, and (g, g') be in Sy. If 

then there exist (A, A') equivalent to (/, f) in Sv and (/c, /c') equivalent to 
(g, g') in 5'v. such that A' = /c. Since the support of A' contains x, and the 
support of k is comparable with >>, this requires that x be comparable with 
V, which means, as i > y, that JC = y. It follows that (A, A:') e S'v. 
Furthermore, 

(/ , / ' )*(& g% = (A, *')*(*> *'),. = (A, *')*• 

This shows that AxAy Q Ax (whenever x > 7). 
It follows that property 2.3 (iv) holds. Let us next verify property 2.3 

(v). First fix x and y in P with x < y, and fix g e Z ( / ) with (g, g) e £ r 

Then (g, g)v, is a projection in ^v , 

(g, g)Afe g)v - 4 ' 
and, moreover, the family of finite sums of projections in the infinite 
orthogonal set 

{ (A, h)x\ (A, A) e Sx n Sy and (A, A),, = (g, g)v} 

is an approximate unit for the C*-algebra (g, g)yAx(g, g)v. To see this, note 
that if (A, A) <= Sx and (A, A)x.(g, g)v, # 0, then (A, A) e S\„ (A, A) is 
equivalent to (g, g) in S and hence 

(A, A)v(g, g)v = (A, A)X(A, A)v = (A, A)v. 

As pointed out at the end of 2.3, to verify 2.3 (v) it suffices to do so in 
the case of a finite subset of P. We remark that, as shown before, it follows 
from 2.3 (iv) (by 1.8.4 of [7] ) that ^LX^QAX is closed in A for any finite 
subset Q of P. Let us show first that if Q is a finite subset of P, and Rx and 
R2 are ideals of Q such that 
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then R} Q R2. For this we must show that if R is an ideal of Q and 
y <E Q\R then 

To show this it is sufficient to show that for fixed g e Z( ' * with (g, g) e 
Sv, and for fixed a e 2 Y ^ # V 4 X , there exists a nonzero projection p ^ 
(g, g)v such that ||/?<z|| is arbitrarily small. Choose z maximal in R; then 
/?\{z} is also an ideal of Q. Write 

a = 2 Y e / ? a \ where ax e Ax. 

Suppose first that z < y. By the preceding paragraph, there exists h ^ Z{ ] 

such that 

(A, A) G S, (h,h)z G (g, g)y4z(g, g)v, 

and || (/z, h)zaz\\ ( = || (A, A)z(g, g)v«zll ) is arbitrarily small. By induction on 
the number of elements in R, we may suppose that there exists a nonzero 
projection q ^ (h, h)z such that 

is arbitrarily small. Since also \\qaz\\ ( = | |#(/Ï, h)zaz\\ ) is arbitrarily small, 

and 

(A, A)2 ^ (g, g)v, 

we have g ^ (g, g)v and ||ga|| is arbitrarily small. 
Suppose next that z and y are not comparable. Then 

(g, g)va2 = 0. 

By induction on the number of elements in R, we may suppose that there 
exists a nonzero projection 

q = (g, g)v 

such that IkS^eflw^tfJI is arbitrarily small. Since 

qaz = q(gy g)yaz = 0, 

\\qa\\ is arbitrarily small. 
To finish verifying 2.3 (v), we must show that if Q is a finite subset of P 

and / is a closed ideal of 2 x G n ^ 5 then 

for some ideal 7? of Q. It is sufficient to consider the case that / is the 
closed ideal of ^LXŒQAX generated by a single element 

where ax e Ax. Note that the decomposition a = 2 x G o a v is unique, 
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as independence of the family (AX)X^P follows (as shown in 2.3) from 
2.3 (iv) and injectivity in 2.3 (v), which we have already established. We 
shall prove in this case the slightly sharper fact that 

where R is the ideal of Q generated by 

support(tf) — {x G Q; ax ^ 0}. 

We shall argue by induction on card(support(tf ) ). We must show that 
Ay Q I for all y in R. Note that 2.1 (i) follows from 2.3 (iv) and injectiv
ity in 2.3 (v), which we have already established. Recall that, as shown 
above, x < y implies A^v ¥= 0. It follows that it is sufficient to show that 
AY Q I for all y maximal in R, i.e., for all y maximal in support(a). Fix j 
maximal in support^). In order to show that Ay Q /, replacing a by aa*, 
and ax by axa* for each x e Q, we may suppose that ay ^ 0, and that 
ax = 0 unless x ^ y. (By 2.1 (i), injectivity in 2.3 (v), and simplicity of 
Ax for x e (), we have AxAy = 0 if x and y are not comparable.) Since 
0 ^ ay ¥= 0 in Av, there exists g e Z (P ) such that 

(g, g) e Sy and (g, g)yay(g, g)y * 0. 

Since (g, g) is a minimal projection in the elementary C*-algebra Ay, 
we may replace a by a scalar multiple of (g, g)v«(g, g)y and suppose that 
a

v
 = (&» £%> anc*> f u r t n e r > t n a t 

(g, g ) / * ^ , g)v = ax for each * G Q 

(recall that either ax = 0 o n = y)- If support^) = {y}, then, as ylr 

is simple, / = A . If support(tf) =£ {y} then, as now support(a) = y, we 
may choose z e support^ ) maximal such that z < y. As before, there 
exists /z G Z(/>) such that (/z, /z) <= Sz, (/z, /z)z ^ (g, g)v, and 
|| (/z, h)zaz\\ is arbitrarily small. By the inductive hypothesis, since 
support( (/z, h)za) is contained in support(a) and omits y, the closed ideal 
of ^XŒQAX generated by (/z, h)za is equal to ^X^R Ax for some ideal R} of 
Q. Since _y is the only element of support^ ) greater than z, and ay = 
(g, g)v, we have 

((/z, /z)ztf)2 - (/z, h)z(ay + az) = (/z, h\ + (/z, /z)zaz. 

Choosing h so that 

|| (/z, A ) A | | < 1, 

we have 

((/z, h\a\ * 0. 

By independence (see above), it follows that z e R V It follows that yL is 
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contained in the closed ideal of ^XŒQAX generated by (/z, h),a, and hence 
in that generated by a, namely, /. In particular, az and 

2 . v e0 , .v*A = a - az 

belong to /. Since az i^ 0, by the inductive hypothesis the closed ideal of 
2Y(E£>4V generated by ^X^QX^MX contains Ay. Hence /, the closed ideal 
of 2 Y G ^ ^ Y generated by az and a — az, contains Ay. 

Denote by AP the C*-algebra generated by ^X^PAX. We have shown 
that 2.3 (iv) and 2.3 (v) hold, and it follows by 2.3 that AP is the internal 
direct sum of the ordered family of simple sub-C*-algebras (AX)X&P. As we 
have remarked, Ax is elementary of order 

cx = S0 card{y e P; y ^ x). 

Finally, let Px and P2 be ordered sets, and let (fy.P^ —» P2 be an injec
tion which is an order isomorphism onto its image. If g e Z( ]\ define 
<f>(g) G Z{pi] by 

<Kg)\<KP\) = g<t>~\ 

<Kg) |P2\<Î>(P1) = 0. 

This map (f> from Z(P]) into Z(/>2) clearly has the property that if i e P, and 
(g,h) <= Sv, then 

(<Kg),<Kh)) e S ^ . 

Hence there is an isomorphism <J> from Ax onto a hereditary sub-
C*-algebra of A^x) such that for each pair (g, h) e SX, 

<K(g,/*),) = ( # g ) , # A ) W 
Extension of <J> to 2vG/>v4Y by linearity is easily seen to be an injective 
*-algebra morphism. Since each finite sum ^XŒQAX is a C*-algebra, by 
1.8.3 of [7] (j> is isometric on finite sums and hence extends to an isometric 
morphism from AP into AP. This correspondence from §:PX —> P2

 t o 

>̂:̂ /> —* /lp clearly takes trie identity map into the identity map, and 
compositions into compositions. In other words, it is a functor. 

2.7. Definition. Let P be an ordered set, and let J be a function from P to 
Z U {+00} with the following two properties: 

(i) If d(x) = 0 then d(y) > 0 for some y > x. 
(ii) U d(x) < -f 00 then d(y) < +00 for all y > x and d(>>) = 0 for all 

except finitely many y > x. 
We shall say that d is a positive defector on P. 
Set 

£>(/>, </) = {g G Z(/>)lex; 0 ^ g ^ J } 

where g = d means that if g(x) > d(x) then g(j>) < ^(jO for somej^ > x. 

https://doi.org/10.4153/CJM-1987-012-3 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1987-012-3


E L E M E N T A R Y C*-ALGEBRAS 269 

For each finite subset Q of P such that d(Q) Q Z , denote by dg the 
function on P defined by 

A ( _ )d(x) ïï x = y f° r some >> e Q, 
Q\X) ~ | Q otherwise 

Then by (ii), dQ(P) Q Z + and dQ e Z(/>). It follows that 

rfg €= (Z(P)leX) + . 

It is immediate from the definition of ^ that dp = d. Hence 

dQ €= D(P, d). 

Furthermore, g e DCP, d) if and only if for some such Q Q P, 
0 ^ g ^ dQ. (Given g <E D(P, d), take Q to be the set {x G ,P; 
g(x) * 0, </(*) < +œ} . ) 

It follows that D(P, d) is an interval in Z(P)lex. (If Q, Q Q2 are subsets 
as above then it is immediate that dp = dU ; this shows that D(P, d) is 
upward directed. D(P, d) generates the group Z (P ) by (i).) 

2.8. THEOREM. Let A be a C*-algebra, let P be an ordered set, and suppose 
that A is the internal lexicographic direct sum of the ordered family of 
elementary sub-C*-algebras (Ax)x^p. It follows that A is approximately 
finite-dimensional, and that the ordered group K0(A) is isomorphic to 
the lexicographic direct sum Z • ' e x . In fact, K0(A ) is equal to the internal 
lexicographic direct sum of the ordered family of sub ordered groups 
(K0(AX))X^P. With respect to this identification of K0(A) as Z ( P ) e x , the 
dimension range of A is equal to the interval D(P, d) in (Z( } ex) for some 
positive defector d. 

Proof To prove that A is approximately finite-dimensional it is 
sufficient to consider the case that P is finite. In this case the assertion was 
proved in 5.2 of [10]. 

Again, to prove that K0(A ) is the internal lexicographic direct sum of 
the ordered family of sub ordered groups (K0(AX) )ve/>, it is sufficient to 
consider the case that P is finite, and in this case the assertion was proved 
in 5.2 of [10]. 

To compute the dimension range, D(A), of A, let us first prove that 
every element of D(A) is majorized by an element of D(A) which, as an 
element of Z (P), has only positive coordinates. Clearly, to prove this it is 
sufficient to consider the case that P is finite. If no subalgebra Ax with x 
maximal in P has a unit, then for each x maximal in P there exist elements 
of D(A) with arbitrarily large coordinate at x, and it follows that D(A) is 
all of (Z ( P ) l e x)+ ; in particular, in this case, the assertion to be verified 
holds. Suppose that, for some jy maximal in P, Ay has a unit, e. Denote by 
P' the set of je Œ P such that 

(1 - e)Ax * 0. 
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Since y is maximal in P, 

eAx Q Ax for every x e P, 

and it follows that 

(1 — e)Ax(\ — e) Q Ax for every x e F. 

Hence (1 — e)A(\ — e) is the internal lexicographic direct sum of the 
ordered family of elementary sub-C*-algebras 

((1 - e)Ax(\ - e))xeP. 

(Recall that by 1.6 of [17], the lattice of closed ideals of a hereditary 
sub-C*-algebra is naturally identified with that of the closed ideal it 
generates.) Since P ' is a proper subset of P, we may assume, inductively, 
that the assertion to be proved holds for (1 — e)A(\ — e). Since D(A) is 
upward directed, if g e D(A) then there exists h e D(A) with h = g and 
h = [e]. Then 

h - [e] e D((\ - e)A(\ - e)\ 

so there exists t e i ) ( ( l - e)A(\ — e) ) such that /c = /z — [e] and /c has 
only positive coordinates in Z( ) ex. Hence 

g ^ A ^ H M 

in D(A), and /c + [̂ ] has only positive coordinates in 7} \ 
Define a positive defector d on P as follows. Fix x e P, and denote the 

ideal {>> e P; _y ^ JC} of P by PY. If the image of D(A) in the quotient 
z(P\Rx)\ex o f z(P)icx d o e s n Q t h a v e a l a r g e s t element, set d(x) = + oo. If 

this image of D(A) has a largest element, say dx, set d(.x) = JY(x). It is 
immediate that d defined in this way satisfies 2.7 (i) and 2.7 (ii). 
Furthermore, by the result of the preceding paragraph, we have 

d(P) ç Z + U {+oo}. 

Therefore d is a positive defector on P. 
Let us show that D(A) = D(P, d). Fix g G (Z(/>)lex) + . It is immediate 

from the definition of P>(P, J ) in 2.7 that g (= P>(P, d) if and only if g ^ </ 
in any quotient Z( ^ v )cx with d(x) < -foo, where as above 

Rx = {y e P-y^ x). 

By the definition of d in the preceding paragraph, d(x) < +oo if and only 
if the image of D(A) in the quotient z(P^Rx) has a largest element. It 
follows that g e D(P, J ) if and only if g e £)(/*) in any quotient 
z(P\Rx)\cx i n w h j j c h £)(,4) has a largest element. Clearly, if g <= Z)(^() then 
g <= D(A ) in any quotient of Z(/>)lex. It remains to show that if g G D(A ) 
in any quotient Z( \R*)ex in which P>(/1) has a largest element, then 
g G P>(/4). Denote by Q the set 
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{x G P; d(x) < 4-oo and g(x) ¥= 0}, 

and set 

Since D(A ) has a largest element in the quotient z{P^Rx)lcx for each x e (9, 
and g e Z)(v4 ) in each such quotient, it follows, as Q is finite and D(A ) is 
upward directed, that D(A) has an element h such that h ^ g in each such 
quotient Z( ^ x ) e x , and hence, by the definition of lexicographical direct 
sum order, such that h ^ g in z ( / > v ? ) l c \ By 3.1 below, if d(x) = +oo 
then 

1Y + D{A) c i ) (^ ) , 

where lv denotes the element of Z(/>) equal to 1 at x and 0 elsewhere. 
Hence, changing h at each JC e P such that /z(x) ^ gOO, that is, at finitely 
many x e P such that J(JC) = -f-oo, we have /z = g in Z(/>)lex, whence 
g e D(^) . 

2.9. THEOREM. There exists a functor (P, d)i—> A (P, d)from the category 
of ordered sets with positive defectors, and arrows (P, d) —» (P', </) consist
ing of maps <f>:P —•> P' swc/z //ztf/4 </> w Â? 6>rĴ r isomorphism onto its image and 
the function <j>(d) on Pf which is equal to dip on <j>(P) and to 0 on Pf\cj>(P) 
satisfies §{d) = d, in the sense that if<j>(d)(x) > d(x) then <p(d)(y) < d(y) 
for some y > x, to the category of C* -algebras and injective morphisms, such 
that A(P, d) is a lexicographic direct sum of elementary C*-algebras of 
order 

cx = S0 card{^ ^ P; y = x], x not maximal in P, 

d(x), x maximal in P, 

and, moreover, D(A(P, d) ) = D(P, d). 

Proof. We shall construct A(P, d) as a hereditary sub-C*-algebra of the 
C*-algebra Ap constructed in 2.6. If d(P) = {+oo}, take A(P, d) = AP. 
Suppose that d(P) Q Z + . For each x e P and each n e Z + \ { 0 ) , denote 
by nx the function on P equal to n at x and 0 elsewhere, so that 

nx G Z(/>> c l \ t p \ 

and note that, in the notation of the construction of 2.6, (nx, nx) e S ,̂ so 

that (nx, nx)x is a projection in Ax. (Here Ax is as in 2.6.) For each x e P 

consider the projection 

and note that if x ¥= y then exey = 0. For each finite subset Q Q P 
consider the projection 
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Denote by A(P, d) the closure of the union of the upward directed 
collection of hereditary sub-C*-algebras {eqAPeQ\ Q Q P, Q finite}. 

If, now, d is an arbitrary positive defector on P, then the set 

R = {x Œ P; d(x) = +00} 

is an ideal of the ordered set P, and the restriction of d to P\R is a positive 
defector with values in Z + . Denote by A(P, d) the inverse image in AP 

under the quotient map 

AP -» AP\R 

of the hereditary sub-C*-algebra A(P\R, d\(P\R)) defined as in the 
preceding paragraph. 

This construction is easily seen to be functorial in the specified sense. 
Let us show that A (P, d) is a lexicographic direct sum of elementary 

C*-algebras. We shall show that A(P, d) is the internal lexicographic 
direct sum of a family of hereditary sub-C*-algebras of the family 
(^v)vep- I n t n e c a s e d(P) Q Z + , this follows from the algebraic identity, 
for each finite Q Q P, 

( 2 v G Qey ) ( 2 x G pAx ) ( 2 , G Qez ) 

= 2 J . Y £ P(2JV G Q,y^xey M Y ( 2 J Z G ^,z ^ A ^ Z )• 

Thus, if, in this case, for each JC e P we denote by CY the closure of the 
union of the collection of hereditary sub-C*-algebras 

{egA^Q, Q Q P,Q finite, Q ^ x} 

of Ax, then A(P, d) is the internal lexicographic direct sum of the family 
( C v ) v e P . (Independence and properties 2.1 (i) and 2.1 (iii) are verified 
immediately, as is the first part of property 2.1 (ii); the second part of 2.1 
(ii) follows from the same property of the family (Ax)xŒP by 1.6 of [17].) It 
follows that the assertion holds in the case that d is an arbitrary positive 
defector: use that the quotient map 

Ap —» AP\R 

with R as defined above is injective on Q£xŒp\pAx) (by 2.2) to define a 
hereditary sub-C*-algebra Cx of Ax for each x e P\R such that 2.1 (i) and 
2.1 (ii) are verified for Cx and C with x and^ in P \ P , and take Cx = Ax 

for each x e R. (A second application of 1.6 of [17] verifies the second 
part of 2.1 (ii) for Cx and Cv with x G R and y e P \ P . ) 

If x G P, then Cx = 4̂Y and so Cx has order 

cx = S() card{>' e P ; ^ ^ i } . 

Ifx e P \ P then Cx contains the nonzero hereditary subalgebra e]Axey for 
any y ^ x in P. Since 4̂X has order cv and e AxeY is infinite if j ; > JC, it 
follows that if JC e P \ P and JC is not maximal in P then Cx has order cx 
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also. If x is maximal in P it is clear that Cx has order d(x). 
Finally, let us show that 

D(A(P,d)) = D(P,d). 

By 2.8, D(A(P, d)) = D(P, d') for some positive defector d' on P. 
Consider first the case d(P) = {+00}. Then for each x maximal in P, 
as Cx has order d(x) = +00, it follows that d\x) = +00. Hence 
d\P) = { +00}. (If d\x) < + 00, then by 2.7 (i) and 2.7 (ii), d\y) < + 00 
for some y = x with y maximal in P.) Thus, in this case, d' = d. Now 
consider the general case. If d(x) < +00 then, by 2.7 (ii), 

d\ (P\RX) e Z{P^R*\ 

where 

Rx = {y <= P;y%x), 

and by construction d\ (P\RX) is the largest element of the image of 
D(A(P, d) ) in z(/>XjR*)lex. If d(x) = +00, then, as v4(P, J ) is the preimage 
in AP of A(P\Ry d\ (P\R) ) where 

R = {x e P; rf(jc) = +00}, 

so that D(A(P, d) ) is the preimage in D(^P) of a subset of z(/>x*)lex, and 
since it was shown above that 

D(AP) = Z)(P, +00) = (Z(P)lex) + , 

we have 

lx + D(A(P, d) ) Q D(A(P9 d) ) 

where \x is the element of Z( /^ equal to 1 at x and 0 elsewhere. Thus, we 
have shown that the image of D(A(P, d)) in Z ( / > v^ ) l e x has a largest 
element if and only if d(x) < +00, and in this case the largest element is 
equal to d\ (P\RX). On the other hand, it is immediate from the definition 
of D(P, d') in 2.7 that the image of D(P, df) in z(PXjR-)lex has a largest 
element if and only if d\x) < +00, and in this case the largest element is 
equal to d'\ (P\RX). Since 

D(A(P, d)) = D(P, d'\ 

it follows from the preceding two sentences that d' = d, and so 

D(A(P, d)) = D(P, d). 

2.10. Remark. In case P is finite, a C*-algebra was constructed in 
Theorem 2 of [2], corresponding to a given positive defector d on P, which 
is a lexicographic direct sum of separable elementary C*-algebras indexed 
by P, and which can be shown to have dimension range equal to the 
interval D(P, d) in Z(/>)lex. (By 4.3 of [9], it is therefore isomorphic to 
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the algebra A (P, d) of 2.9.) This construction is not obviously functorial in 
the sense of 2.6 and 2.9 above, and does not obviously extend to the case 
that P is infinite. On the other hand, it is clear that the construction in 2.6 
and 2.9 above is a modification of the construction in [2]. 

2.11. Remark. The functorial nature of the constructions in 2.6 and 2.9 
implies that any automorphism of the ordered set P leads naturally to an 
automorphism of the C*-algebra AP, and that any automorphism of the 
ordered set P leaving invariant the positive defector d leads naturally to an 
automorphism of the C*-algebra A(P, d). 

It would appear to be interesting to consider the C*-algebra crossed 
product of AP by the group of automorphisms of P, considered as a 
discrete group. For instance, if P = Z, this crossed product is stably 
isomorphic to the C*-algebra O œ considered by Cuntz in [6]. If P is 
countable, if no proper nonempty ideal of P is invariant under all 
automorphisms, and if no nonempty ideal of P is fixed pointwise by any 
nontrivial automorphism of P, then by [11] the crossed product C*-algebra 
is simple. 

3. Description of the intervals. 

3.1. LEMMA. Let P be an ordered set and let D be an interval in the 
lexicographic direct sum 7J ' ex. For each x e P, the following two properties 
are equivalent. 

(i) The image of D in the quotient 7/ ' } G
 >-V=XJ > ex does not have a largest 

element. 
(ii) D + l , ç D. 

Proof (ii) => (i) is immediate. (Recall that 1A. denotes the function on P 
equal to 1 at x and 0 elsewhere.) 

(i) => (ii). We use an idea from the proof of Proposition 7.5 of [14]. 
Fix g <= D, and denote by I the ideal of Z (P) lex generated by {h <= Z); 

g + h G D}. It follows that g + I is the largest element of the image of D 
in the quotient by I: if k e D then w i t h / e D such that k ^ / a n d g = / 
we h a v e / — g e / and so 

k + I^f+ I = g + /. 

Hence if (i) holds, the image of I in the quotient 

Z ( { } ' 6 / , ; . F ^ ' } ) 

is not zero. This says that 1Y G 7; this in turn is equivalent to (ii). 

3.2. THEOREM. Let P be an ordered set and let D be an interval in Z( ) ex. 
Denote by P\U the set of elements x e P such that the image of D in the 
quotient 
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z ( {.ye/>;.y^x})lex 

has a largest element. It follows that U is an ideal of P and D is determined 
by U together with the image of D in the quotient 7s ^ ' ex. 

Proof. It is the same to say that D is equal to the preimage in (Z( ) e x) + 

of the image of D in the quotient z( />x^) lex. To see that these statements 
are the same, note that this preimage is also an interval in Z ( P ) ex, has the 
same image as D in Z (P^c / ) ex, and has the same set of elements x e ? such 
that the image in 

z ( {.y<E/>;>^})lex 

has a largest element (this uses only the trivial part of 3.1). 
That D is equal to the preimage in (Z^ ^ e x ) + of the image of D in 

the quotient Z ( />xt / ) lex follows from 3.1. (Let g G (Z( />)lex)+ be such that 
g = h + k with h G D and k G 7{U). Write k = k+ - k~ where £ + , k~ 
belong to Z ( t / ) and have positive coordinates. By 3.1, h + /c+ G D. 
Since 

0^g = h + k+-k~^h + k + 

and D is hereditary, g G Z).) 

3.3. LEMMA. L^/ P be an ordered set, and let D be an interval in Z( ) ex. 
D is determined by the family of its images in prime quotients of T^ ) ex. 

Proof. It is sufficient to show that if g is an element of Z^P) such that g 
belongs to D modulo each prime ideal of Z (P) lex, then g belongs to D. 

Suppose that g G Z^P) and g £ D. By Zorn's lemma, choose an ideal I 
of Z( ) such that g £ D modulo I, and such that I is maximal with this 
property. Then I is prime. Otherwise, passing to the quotient by I, we 
would have two ideals Jx and J2 with Jx P\ J2 = 0, but neither Jx = 0 nor 
72 = 0. Hence, by maximality of /, g G D modulo ^ and g ^ D mod
ulo /2- Thus, as D is upward directed, there exists h G D such that 

0 ^ g ^ /z modulo J/5 i = 1,2. 

Since J7 = Z{Ri) where # , , # 2 are ideals of P with i?, n A2 = 0, it follows 
that 0 ^ g ^ /z. Since D is hereditary, g e D . This contradicts the choice 
of 7 such that g £ D modulo I. (Note that I is now assumed to be 0.) This 
proves the implication of the preceding paragraph (or, rather, its 
contrapositive). 

3.4. THEOREM. Let P be an ordered set, and let D be an interval in Z (P) lex. 
Let g G (7s ' ex) . It follows that g belongs to D if and only if in each prime 
quotient of 7} ' ex in which the image of D has a least upper bound, the image 
of g is majorized by this least upper bound, and majorized strictly if this least 
upper bound does not belong to the image of D. 
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Proof. Necessity of the condition is clear. 
By 3.2, to prove the theorem we may pass to the quotient, z^p^U)]cx. We 

may therefore suppose that for each x G P the image of D in the 
quotient 

z ( { .yeP ;v^x} ) l ex 

has a largest element. It follows that there is a function d from P into Z 
such that for each x G P the restriction of d to {y G P; y â x} belongs 
to 

z({.ye/>;yi=x})lex 

and is the largest element of the image of D in this quotient. (For each 
x G P take d(x) to be the coordinate at x of the largest element of the 
image of D in the corresponding quotient.) 

Let us show that if d G Z (P) lex, i.e., if d(x) = 0 for all except finitely 
many x G P, then d is the least upper bound of D in Z( ) ex. Suppose that 
J G Z (P) lex. Then d ^ P> (if g G D and d(x) < g(x), then by definition of 
d, d(y) > g ( j ) for some y > x). Furthermore, if h £ t Z(^)lex and/z ^ D, 
then /z ^ d (if /z(x) < d(x) then, as the images Z), A, and d in the 
quotient 

z({.v€EP;.vi=A-})lex 

satisfy d ^ D ^ h, there exists y > x in P with /Z(JO > d{y)). This shows 
that J is the least upper bound of D. 

Now let us prove sufficiency of the condition. Suppose that the 
condition holds, and assume that g <£ D. Set 

R = {x G P; 3y ^ x with d(y) > g(y) }. 

P is an ideal of P. Let x <£ R. Then d(x) ^ g(*). With D and g the images 
of D and g in the prime quotient Z( b'e/>;>'=*} )? 

J = d| {^ G P; j ; g x} 

is the largest element of D. Hence by the condition on g, g ~ d. Thus, if 
d(x) < g(x) then there exists y > x in P such that J ( ^ ) > g(_y). This 
conclusion contradicts x & R. Therefore, if x & R, d(x) = g(x). 

Next, let us show that g £ D holds also after passing to the quotient 
z(P\R)\ex o f z(P)lex D e n o t e b y S the largest ideal of P on which g is zero. 
Then 

P\S = { j G P; j ^ x for some x with g(x) ^ 0}. 

Since g(x) ^ 0 for only finitely many x G P, and since D is upward 
directed, it follows from the definition of d that there exists h G D with 

h\ (P\S) = d\ (P\S). 
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Furthermore, we may suppose that h majorizes any given element of D. 
Recalling that g\ (P\R) = d\ (P\R), we have 

h — g = kx + k2 + k3 

where 

^1 = 2jxç=sn(P\R)h(x)lx> 

k2 = 2xesnRWx)lx, 

h = 2 x 6 ( ? \ S ) n / ? ( ^ ) ~ g(x))\x. 

(Here 1Y e Z (P ) is the function equal to 1 at x and 0 elsewhere.) Note that 
kx, k2/k3 G Z (P) lex, and k3 ^ 0. Denote by T the largest ideal of P on 
which both g and h are zero. We have T Q S. As above, with now T in 
place of S, choose h' e D with 

A'| (P\T) = d\ (P\T). 

We may choose h' so that W ^ /z. 
Let us show that 

h' - h + k2 + k3 ^ 0. 

Denote the element h! — h -f k2 + A:3 by A:. Suppose that /c(x) < 0. We 
must find y > x with A:(7) > 0. Since T Q S, 

(h' - h)(P\S) = (d - d)(P\S) = 0. 

Also, k2(P\S) = 0. Therefore, if x e P \ S then A;3(JC) < 0; in particular, 
x e R. By definition of 7? there exists j ; ^ x in R with J( j ) > g(y). Since 
also ^ e P \ S , we have 

/c(j) = </(>,) - g(j,) > 0. 

If, on the other hand, x Œ S, then either 

(W - h)(x) < 0 or (h' - h)(x) è 0. 

Assume first that (W — h)(x) = 0. This combined with k(x) < 0 gives 
k2(x) < 0. We shall show that whenever k2(x) ¥= 0, i.e., x <E S n R and 
/z(x) ^ 0, then k(y) > 0 for some y ^ JC. By the definition of 7?, there 
exists j ; ^ x in R with d(>>) > g(>0- If y e P \ S , then /c3(j) < 0, and as 
shown above there exists y' > y ^ JC such that £(>>') > 0. If y e S, then 
g(>>) = 0, so d(y) > 0. As h(x) ¥= 0, we have x <E P \ r and therefore 
y <= P \ r , so h'{y) = d(y). Thus, if y <E S, A'(j>) > 0, and hence 

*(>>) = (hf - h)(y) + h(y) = h\y) > 0. 

Now assume that (W — h)(x) < 0. Then, as 

W - h ^ 0 and (A' - h)(P\S) = 0, 
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there existsyx > x in S such that (W — h)(yx) > 0. If k(yx) > 0, we may 
take y = yx. If k(yx) ^ 0, then necessarily k2(y\) < 0. By what precedes, 
this implies that k(y) > 0 for some^ ^ J i 

lt follows that kx $ 0. Otherwise, 

h' - g = W - h + h - g = W - h + kx + k2 + k3 ^ 0, 

s o g e D ; this contradicts our assumption g £ D. Since kx is the image of 
h — g in the quotient £ ( / ^ ) l e x , w e deduce that the image of h — g in 
2(P\/?)lex -s n o t pOSitive. Since, as remarked above, h may be chosen 
greater than or equal to any given element of D, it follows that the image 
of g in z(pNv/?)lex does not belong to the image of D. This is the conclusion 
announced above. 

On the other hand, as shown earlier, the image of g in the quotient 
J{P\R)\QX JS e q u a i t o fae image of d, i.e., to d\ (P\R). Hence, as shown 
above, the least upper bound of the image of D in z^p^R)lex exists and is 
equal to the image of d, and to the image of g. Furthermore, the same 
argument shows that this holds also in any prime quotient of z^p^R)cx. 
Hence by the condition of the theorem, the image of g in any prime 
quotient of z ( P ^ ) l e x belongs to the image of D. Hence by 3.3, or rather the 
first sentence of the proof of 3.3 (applied to the images of g and D in 
z(P\R)\cx^ t h e i m a g e o f g j n z(P\R)\cx b e l o n g s t o t h e i m a g e o f D T h i s i s 

in direct contradiction with the conclusion of the preceding paragraph. 
Since that conclusion is based on the assumption g £ D, it follows that 
g e D. 

3.5. COROLLARY. Let P be an ordered set, and let D be an interval in 
Z (P) lex. Define a function d:P -> Z U { + 00} as follows. Fix x e P. If the 
image of D in the quotient 

z({>'G/>;V^x})lex 

has a largest element, set the coordinate of this element at x equal to d(x). 
Otherwise, set + 00 = d(x). We shall refer to d as the defector of D. 

D is determined by its defector, together with the set of prime ideals of 
Z(/>)lex, not of the form z( ^y^Pj^x^\ modulo which D has a largest 
element. 

Proof. This is immediate from the following modified form of 3.4 which 
is also established by the proof of 3.4. 

Let g e (Z(P)lex) + . It follows that g belongs to D if and only if for each 
prime ideal R of P such that d\ (P\R) e Z(P^R\ the images g, D, and d of 
g, D, and d in the prime quotient Z(/>^/?) ex satisfy the relations g = d and, 
moreover, g < d if d <£ D. 

(In fact, this is just a restatement of 3.4. The condition d e Z( J is 
equivalent to the condition that D have a least upper bound in Z( ) ex. 
(This also holds of course in any quotient Z (P^ \) To see this, note that 

https://doi.org/10.4153/CJM-1987-012-3 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1987-012-3


ELEMENTARY C*-ALC3EBRAS 279 

one implication is immediate. Let us prove the other, i.e., that if D has a 
least upper bound b in Z(P)lex, then d e Z (P). We prove b = J. First, let us 
show that £ ^ d, in the sense that if 6(x) < J(x) then b(y) > d(>>) 
for some y > JC. If J(x) < +00 this is clear from the definition of d. If 
d(x) = +00, then by 3.1, 1A. + D Q D, so b — lx is an upper bound of Z), 
an absurdity. (So always d(x) < +00.) Hence, if b ¥= d, then b(y) > d(y) 
for any j ; . If y is minimal in P then Z> — 1 = d = D, and if x < y then 
Z? — \x = d = D.\n either case we have an absurdity, so b = d.) 

3.6. Some obvious questions concerning defectors as defined in 3.5 are 
the following. 

What functions are defectors? Of course, a positive defector in the sense 
of 2.7 is a defector. (A positive defector d is the defector of the interval 
D(P, d\) 

Exactly when is a defector equivalent to a positive defector? If d is a 
defector, and if the set 

£>(/>, d) = {g e Z (P) lex; 0 ^ g ^ d) 

is an interval (i.e., if this set is upward directed), then is d equivalent to a 
positive defector? (By 2.7 this condition is necessary for d to be equivalent 
to a positive defector.) 

4. Classification of the intervals. 

4.1. Let P be an ordered set. By 5.6 of [9], two intervals in Z (P) lex are 
isomorphic as abstract abelian local semigroups if and only if they are 
conjugate by an automorphism of the ordered group Z (P ) ex. We shall 
express this by saying that the two intervals belong to the same orbit of the 
action of this automorphism group (on the set of intervals). 

Any automorphism of the ordered set P gives rise to an automorphism 
of the ordered group Z ( P ) e x by permuting the standard basis (1^)^^,. 
Accordingly, in classifying the intervals in Z ( P ) e x we shall consider 
only automorphisms of the ordered group Z( ^ ex which induce the identity 
automorphism of the ordered set P (considered as a sub ordered set of the 
prime ideal spectrum of Z ^ ex). In other words, we shall consider only 
the group of ideal-preserving automorphisms of Z( ) ex, and we are inter
ested in the orbit of an interval under this group. 

Let J be a function from P to Z U { + 00} with the property 2.7 (ii): If 
d(x) < -hoo then d(y) < +00 for all j> > x and d(y) = 0 for all except 
finitely many y > JC. Any defector as defined in 3.5 has this property. Let 
a be an ideal-preserving automorphism of Z ^ ex. Note that the matrix 
entry a (i.e., the coordinate at x of a\y) can be nonzero only if y > x. 
Hence we may define a function ad from P to Z U { +00} as follows: 

., , Ï2v>x«x,vd(y) Xd(x)< +00, ad(x) = \ 
V + 0 0 if d(x) = + 0 0 . 
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If d is the defector of the interval D, it follows easily that ad is the defector 
of the interval ad. We shall say that ad and d are equivalent defectors. 

4.2. Remark. The class of lexicographic direct sums of ordered families 
of elementary C*-algebras is not closed under passing to hereditary 
sub-C*-algebras. This is seen by using defectors as follows. 

Consider the ordered set P = — N, the positive defector d = (•••, 0, 0, 
1), and the interval D = [0, d[. By 2.9, there is a lexicographic direct sum 
of elementary C*-algebras A = A(Py d) with dimension range D(P, d). 
Clearly d e Z)(P, d), so 

D = [0, d[ Q D(P, d). 

It follows that there is a hereditary sub-C*-algebra B of A with dimension 
range D. Suppose that B is a lexicographic direct sum of elementary 
C*-algebras. By 2.8, the dimension range of B, i.e., D, is isomorphic to 
D(P, d) for some positive defector d'. It is easy to see that the defector of 
D = [0, d[ is equal to d. It is not difficult to check (using 3.1) that the 
defector of the interval D(P, d) is d'. (This holds for any positive defector 
in place of d\ see the proof of 4.7.) Hence, d' is equivalent to d, and, in 
particular, d' e Z ( P ) . By definition of D(P, d) it follows that 

£>(/>, d') = [0, d'\. 

Clearly, however, the intervals [0, d[ and [0, df\ are not isomorphic. (One 
has a largest element, and one not.) This contradict ion shows that the 
hereditary sub-C*-algebra B of A(P, d) is not a lexicographic direct sum 
of elementary C*-algebras. 

4.3. T H E O R E M . Let P be an ordered set, and let D be an interval in Z{P)lcx. 
The orbit of D {under the group of ideal-preserving automorphisms of 
7} 'ex) is determined by the orbit of the defector of D, together with the set 
of prime ideals ofTl ' ex, not of the form 

modulo which D has a largest element. 

Proof. This is immediate from 3.5. 

4.4. L E M M A . Let P be an ordered set satisfying the decreasing chain 
condition. Let a be an endomorphism of the ordered group Z( ) ex taking each 
ideal into itself and inducing the identity in each simple subquotient. It 

follows that a is an automorphism of the ordered group Z( ) ex taking each 
ideal onto itself. 

Proof. The decreasing chain condition, restated, says that every subset 
of P has a minimal element. It follows that P has a composition series with 
singleton relative differences, i.e., a well-ordered family of ideals 
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(7>y)o^y<Jg, where ft is some ordinal number, P0 = 0, Pp = P, Py Q P y + 1 , 
Py = Us<y^8 if Y is a limit ordinal and 

card(Py + 1 \Py) = 1. 

By transfinite induction, it suffices to establish the conclusion assuming 
that it holds with Py in place of P for all y < ft. Hence we may assume that 
ft = y + 1, and write P = Py U {x}. 

Thus, by inductive assumption the restriction of a to the ideal Z(/>^ ex is 
an ideal-preserving isomorphism of the ordered group Z^Py) ex. Since 

Z(P) = Z(PT) + Z l v a n d l x _ alx e 2}Py\ 

it follows immediately that a is injective and surjective, i.e., a is an 
automorphism of the group Z( \ 

It remains to show that a - 1 is an endomorphism of the ordered group 
Z ( P ) e x , taking each ideal into itself. Suppose that 

g G (z{P)]cy. 

Then g = g\ + g2 where 

g, G (Z(/Vlex) + and 

g2 = ax\x + ^v<xay\v 

with ax > 0 (this implies g2 = 0). To show a~~ g ^ 0 it is sufficient to 
show that a - 1 g 2 = 0, since a _ 1gi = 0 by the inductive assumption. By 
the hypotheses of the lemma, 

1Y - a\x e Z(/V, a\x ^ 0, 

and a\x belongs to the ideal generated by 1Y. Therefore, 

«l.v = lx + 2 V < A V 

Hence 

« " ' ! , = 1, - S ^ A a - ' l , . , 

and by the inductive assumption a - 1 l belongs to the ideal generated by 
lv for each j ; < x, so 

« " ' ! , = l.v + 2 , < A 1 r 

and, furthermore, 

This shows that a~ is positive. At the same time we see that a 1Y 

belongs to the ideal generated by 1Y. Since, as pointed out, by assumption 
a~ \y belongs to the ideal generated by lv, for every y e PT and since 
every ideal of Z(/>)lex is generated (as an ideal, and in fact as a subgroup) 
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by the set {lv; y G R} for some ideal R of P, it follows that a takes 
every ideal of Z(/>)lex into itself. 

4.5. Remark. The decreasing chain condition on P in 4.4 may not be 
dropped. (Consider the case P = — N, and define a by 

al_„ = 1_„ + 1_„_„ n = 0, 1,2 

a is not surjective as the sum of the coordinates of ag is even for any 

4.6. COROLLARY. Let P be an ordered set satisfying the decreasing chain 
condition. Let d and d' be functions from P to Z U {+00} such that 
d(x) < +00 if and only if d\x) < +00. Suppose that if d(x) < +00 
then d(y) < +00 for all y > x, and d(y) = Ofor all except finitely many 
y > x. Suppose that, furthermore, if x < -f 00 then 

d\x) = d(x) + 2 v > . A , / ( j ) , 

vv/zere A . G Z; //Ï/S swra, by the preceding hypothesis, is a finite one. 
Suppose that for each y e P, ax = 0/or a// except finitely many x. 

It follows that d is a defector if and only if d is a defector. In case d and dr 

are defectors, they are equivalent. (Of course, if d and d' are equivalent 
defectors, the hypotheses hold.) 

Proof. This is immediate from 4.1 and 4.4. 

4.7. LEMMA. Let P be an ordered set and let D be an interval in Ts ) ex. 
Suppose that the defector d of D is positive, and that for any prime ideal R of 
P not of the form {y G P; y ^ x}, the restriction d\ (P\R) does not belong 
to Z(P^R). It follows that D is equal to the interval D(P, d). 

Proof. As pointed out before, the defector of the interval D(P, d) is d. 
Let us prove this. We must show that, for each x G P, d(x) < -f 00 if and 
only if the image of D(P, d) in the quotient 

j{ {.re/V=A-})lex 

has a largest element, and that in this case the coordinate of this element 
at x is equal to d(x). If d(x) < +00, then by 2.7 (ii), the restriction 

d\ {y G P; y ^ JC} 

belongs to Z( 0,€E/>;.>'=*} ). By definition of D(P, d), the function on P equal 
to d on {y e P\ y ^ x} and equal to 0 elsewhere belongs to D(P, d), so 
d\ {y e P; y g x} belongs to the image of D in 

z ( {y^Pw^x} )lex 

The element d\ {y G P; y ^ x} is then clearly the largest element of this 
image of D, and of course has coordinate d(x) at x. If d(x) = +00, then 
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by definition of D(Py d), 

\x + D(P, d) ç D(P, d). 

Hence by 3.1, the image of D(P, d) in the quotient 

z ( {_ye/>;.v^*})lex 

does not have a largest element. 
Thus, the intervals D and D(P, d) have the same defector d. To show 

they are equal, by 3.5 it suffices to show that neither interval has a largest 
element modulo any prime ideal of Z (P) lex not of the form 

z({ .ve/ ) ;>^i}) 

If such a prime ideal is given, necessarily of the form Z( ) for some ideal R 
of P, by hypothesis 

d\ (P\R) £ Z(P^R). 

Suppose that the image of D in the quotient Z(/>^/?) ex has a largest element 
g. Then for any x e P\R, the image of g in the quotient 

ji {veP;v^A})lex 

must be the largest element of the image of D in this quotient, so 

g = d\(P\R), 

a contradiction. The same argument with D(P, d) in place of D shows that 
also the image of D(P, d) in the quotient j ^ p ^ R ^ t x cannot have a largest 
element. Therefore, by 3.5, D = D(P, d). 

4.8. THEOREM. Let P be an ordered set satisfying the decreasing chain 
condition. It follows that every interval in 7} ' ex is isomorphic to D(P, d)for 
some positive defector d. 

Proof By 4.7, it is sufficient to show that any interval in Z(/>)lex is 
isomorphic to an interval with positive defector. (By 4.7, as P satisfies the 
decreasing chain condition D(P, d) is the only interval with positive 
defector d.) Let D be an interval in Z(P)lex. 

By 3.2, we may suppose that the image of D in any quotient 

z({ye/ \v^x})lex 

has a largest element. Choose an increasing sequence (g0, gl5 g2, . . . ) in D 
with g0 = 0 such that 

U[0, g„] = D. 

For each x e Py the sequence of integers (gn(x) ) is eventually constant 
(and equal to d(x) where d is the defector of D). 

For each n = 0, 1, 2 , . . . define subsets X , Yn of P as follows: 
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X„ = (x e P; (gn + ] - gn)(x) < 0}, 

Y„ = {xe P; (gn + 1 - g„)(x) > 0}. 

For each x G XA7, choose w(x) G ^ with w(x) > * (recall that g,7 + 1 — 
gn = 0). This defines a map 

Note that w~ (y) is finite for each y G Y. Indeed, for each y G y, as 
(g,7(.y) ) converges,y can belong to Yn for only finitely many n. As, for each 
n, w~](Yn) Q Xn and Xn is finite, it follows that w~\y) is finite. 

For each x G X, as (g„(x) ) converges, 
inf(g„ + i ~ &,)(*) > - o o . 

Set 

Define an endomorphism a of the group Z(/>) as follows: 

(Recall that w_ 1(z) is finite for each z G P.) As x < w(x) for each x G A", 
it follows that a is an endomorphism of the ordered group Z ( P ) e x taking 
each ideal into itself. Clearly a induces the identity in each simple 
subquotient of Ẑ  ^ ex. Hence by 4.4, a is an automorphism of the ordered 
group Z (P) lex, taking each ideal onto itself. 

If x G X then 

«(S/i+l ~ &,)(*) = te/i + l - #«)(*) + l*(*)l(gw + l - gw)(w(x)). 

If x £ X then 

«(&,+i - &,)(*) = fe?+i ~ &,)(*)• 
Hence, by the definition of X, w, and h, for any je G P, 

oc(gw + i - g„)(*) ^ 0. 

Therefore the defector of aD is positive. 

4.9. Remark. 4.8 implies in particular that if P satisfies the decreasing 
chain condition then every defector is equivalent to a positive defector. 

This does not hold if P is an arbitrary ordered set. To see this consider 
the defector 
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where the numbers indicate the values of the function at the correspond
ing points of P, and the order among points of P decreases downwards 
along the connecting lines. It is not difficult to see that this function is 
indeed the defector of an interval (in fact, by 3.5 (cf. proof of 4.7), the 
defector of a unique interval). (Consider the finite sums of the element 

1 
- 1 - 1 

and its translates downwards.) It is obvious that this defector is not 
equivalent to a positive defector. (It does not even satisfy the equations of 
4.6 with a positive defector d and ax e Z as in 4.6, since the value 1 at 
the top would have to be added at infinitely many positions.) 

We note that this gives a second example showing that the class of 
lexicographic direct sums of elementary C*-algebras is not closed under 
passing to hereditary sub-C*-algebras. (Cf. 4.2.) (Use 2.6 and 2.8.) 

If a hereditary sub-C*-algebra of a separable lexicographic direct sum 
of elementary C*-algebras has a unit, it must again belong to this class. To 
see this, note that any defector which is equal to 0 at all except finitely 
many points is equivalent to a positive defector (see 4.6 and 4.10). Note 
also that if D is an interval in Ẑ  ^ex such that D has a largest element, and 
the defector d of D is positive, then d e Z(/>) and 

D = [0, d] = D(Py d) 

(cf. 4.2). Then use 2.9 and the isomorphism theorem 4.3 of [9]. 
Another condition which is sufficient for a defector to be equivalent to a 

positive defector is given in Theorem 4.11 which follows. 

4.10. LEMMA. Let P be an ordered set, and let (7*)/(E/ be a partition of P 
into subsets. For each i e 7, let at be an ideal-preserving automorphism of the 
ordered group 7^ ''ex. Define an endomorphism a of the group 7s ' by 

a\x = aj\x9 x G Pt. 

It follows that a is an ideal-preserving automorphism of the ordered group 
2} ) ex tf/e shall say that a is of block form. 

Proof It is immediate that a is an automorphism of the group Z (P). 
It follows from the definition of Z ^ ex that a is an endomorphism of the 

ordered group Z(/>)lex. Similarly, this holds for a - 1 . It follows from the fact 
that each ideal of Z(/>) ex is generated (as an ideal, and in fact as a 
subgroup) by a subset of {1^; x G P} that a takes each ideal of 7}P) ex into 
itself. Similarly, this holds for a - 1 . This shows that a is an ideal-
preserving automorphism of Z( ) ex. 

4.11. THEOREM. Let P be an ordered set, and let d be a defector on P. 
Denote by P' the subset {x e P; d(x) ¥= 0}, with the relative order. Suppose 
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that every x G P' covers only finitely many y G Pf with d(y) < 0. // 
follows that d is equivalent to a positive defector. 

Proof. By the definition of a defector, for each x G P' the set [y G P'; 
y ^ x} is finite. For each x G P', denote by length(x) the length of the set 
[y G P'; y ^ JC}, i.e., the length of the longest chain in this set. 

Partition P into the sets P\P' and 

P[ U />£, ^ U P i , . . . , 

where /^' denotes the set 

(x G P'; length(x) = n). 

Define an ideal-preserving automorphism a of z ( P ) l e x of block form as 
follows. On 7^p\p'\ a is the identity. On T^?1,\ a is the identity. For each 

a*x = ^x ^ 2jy<x,y(=F2nM(y)<0av,x*y 

where ay x G Z is such that 

ayxd{x) + d(y) â 0. 

By hypothesis, the sum is a finite one. Defined in this way, a is an 
ideal-preserving automorphism of each of the ordered groups 

Z(/V)lex a n d 

Z ( / ^ - ' u ^ ' ) l e x , n = 1 , 2 , . . . , 

and therefore by 4.10 is an ideal-preserving automorphism of Z* ) e x . 
Furthermore, 

ad(\JF2n) Q Z + , 

«^IU^„_, =ûf |UPL-i-
Note that J(P,') G Z + (in fact, d(P[) Q Z + \ { 0 } , as each x e />,' is 

maximal in P' and therefore also in P). Hence, partitioning P into the sets 
(P\P') U P\ and 

^ U ^ , P'A U f $ , . . . , 

we may in a similar way, using 4.10, define an ideal-preserving auto
morphism /? of Z* ) ex of block form (with respect to this second partition), 
such that 

Pa4\jr2n = cd\\jp{n, 

pad(\jr2n+l) Q z + . 

Here we use that for each x G P'lyv otd{y) < 0 for only finitely many 
y G P2u + \ with >> < x (recall that for such >>, ad(y) = d(y)). Since 

0Ld(\JFln) c Z + , 
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it follows that 

Pad(P) Q Z + , 

i.e., /Sad is a positive defector. 

4.12. Definition. Let P be an ordered set, and let d be a defector on P. 
Let ^ b e a prime ideal of P, not of the form {y e P; y ^ x), such that 
d(P\R) Q Z, and such that d(x) is nonzero for infinitely many x e P \ /? . 
Define a generalized integer 

« = 2"'3"25'Z37"4... (W/ = 0, 1, 2, . . . , +oo) 

as follows: m divides n if and only if m divides d(x) for all except finitely 
many x e P\R. We shall refer to n as the ultimate divisor of d at the prime 
ideal R. Clearly, any defector equivalent to d will have the same ultimate 
divisor at R. (If d! is equivalent to d and m divides d(x) for all except 
finitely many x e P\R, then for all except finitely many x e P\R, 

d'(x) = d(x) (mod m) 

(see (4.6) ), and hence for all except finitely many x e P\R, m divides 
d'(x).) 

In the case that P is the totally ordered set — N, the only prime ideal of 
P not of the form {y e P; y ^ x } i s the empty set. Thus, a finite-valued 
defector with infinite support has just one ultimate divisor. This, together 
with the additional information consisting of the orbit of the defector on 
each quotient of P of the form {y e N; y ^ JC}, is, as we shall now show, 
a complete invariant. 

4.13. THEOREM. Let d be a defector on the ordered set — N. If d(x) G 

Z\{0} for only finitely many x e — N, then there is a unique positive 
defector d' in the orbit of d such that, for each x e — N, d\x) either is equal 
to + oo or is strictly less than the greatest common divisor of the set 

{d(y)\ y > x and d(y) <E Z}. 

We shall call this the normalized form of d. 
Ifd(x) e Z \{0} for infinitely many x <= —N (in this case d( — N) Q Z), 

then the orbit of d is determined by the ultimate divisor of d (at the prime 
ideal 0), together with the normalized form of the top part of d, an invariant 
defined as follows. The top part of d is the finite sequence 

(d(-l),...,d(x)) 

where x G — N is such that the greatest common divisor of the set 

{d(y);y>x} 

is equal to the greatest common divisor of all ofd(-N), and, moreover, x is 
maximal such (x defined in this way is clearly invariant under equivalence, so 
the normalized form of the top part of d is an invariant). 
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Proof. The first statement follows immediately from 3.2, 4.6, and 4.10. 
Before proving the second statement, by 4.11 we may suppose that d is a 

positive defector. 
By 4.6 and 4.10, we may normalize the top part of d by acting on d with 

an (ideal-preserving) automorphism of 7}~ ) e x . Since the greatest 
common divisor of the top part of d divides all of d, we may divide by this 
and suppose it is equal to 1. We may then act on d by an automorphism 
(see 4.6 and 4.10) so that the first coefficient of d after the top part of d is 
equal to 1. 

In this way (by now neglecting the top part of d) the problem is reduced 
to the case that d(0) = 1. In this case we must show that the orbit of d 
is determined by the ultimate divisor of d. Choose a sequence 0 = x{) > 
xl > x2 > . . . in — N such that for each k = 0, 1, 2, . . . , the greatest 
common divisor of the set 

d({xk - l , . . . , x A + 1 + 1}) 

is equal to the greatest common divisor of the set 

d( {xk - \ , x k - 2 , . . . ) ) , 

say nk + x. Then by an application of 4.10 with the blocks 

{0}, { 1 , . . . , * , } , {*, + l,...,x2},..., 

we may act on d by an automorphism of Z( ~~ )lcx of block form in such a 
way as to replace d(xk) by nk for each k = 1 , 2 , . . . , keeping the other 
coefficients of d fixed. Hence by another application of 2.10, with the 
blocks 

{0, . . . , Xj — 1}, {xx, . . . , x2 — 1}, . . . , 

we may act on d by an automorphism of z (~N ) l e x of block form to obtain 
the equivalent defector 

(1, 0, . . . , 0 , «!, 0, . . . , 0 , «2, 0, . . . ) . 

Note that nk divides nk + x for each k = 1, 2, . . . , so the ultimate divisor of 
d, say n, is just the least common multiple of {^,, n2, • • • }, among 
generalized integers. 

We must show that if (n\, n2, . . . ) is a sequence of nonzero positive 
integers with rik dividing nk + ] for each ky such that also the least common 
multiple of {n\, ri2, . . . } is n, then d is equivalent to the defector 

(1, 0, . . . , 0 , «'„ 0, . . . , 0 , n'2, 0, . . . ) , 

where the blocks of zeros are of arbitrary length. 
Using 4.6 and 4.10, by an automorphism of block form we may 

transform any coinfinite subsequence of the nonzero coordinates of the 
defector 
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d = (1,0, . . . , 0 , w„ 0, . . . , 0 , «2, 0 , . . . ) 

to zero, and similarly for the defector 

<f = (1,0, . . . , 0 , /I'J, 0 , . . . , 0 , w£, 0, . . . ) . 

Note that we are not keeping track of how long the blocks of zeros are. 
Therefore we may replace (nx, n2, . . . ) and («|, «2, . . • ) by subsequences. 
We now do so, choosing subsequences such that, after changing notation, 
we have the divisibility relations 

«,!«', |w2|fl2| 

and, furthermore, the position of n'k in d! lies strictly between the positions 
of nk and nk + x in d, for each k = 1, 2, . . . . Then d and d are both 
subsequences of the intertwined defector 

( 1 , 0 , . . . , 0, «„ 0, . . . , 0, «',, 0, . . . , 0, w2, 0, . . . , 0, ri2, 0, . . . ). 

As the nonzero coefficients of this defector divide one another successive
ly, we see as before that d and d' are both equivalent to this defector, and 
are therefore equivalent to each other. This shows that the orbit of d (with 
d(0) = 1) depends only on the ultimate divisor n. 

4.14. Remarks. In 4.13 the case d(Q) = 1 is particularly simple; the 
normalized form of the top part of d is just the one-term sequence (1), so 
all information about the orbit of d is contained in the ultimate divisor 
did. 

The analysis in 4.13 is easily extended to any totally ordered set P. 
While P may have more than one prime ideal not of the form {y e P; 
y ^ x}, a defector can have an ultimate divisor at no more than one such 
prime ideal; this, together with the normalized top part defined in a 
similar way, is again a complete invariant. Of course, if P does not have 
a largest element, any defector is identically infinite. 

Let us consider an example similar to that of 4.13 but in which P is not 
totally ordered. For P consider the union of two copies of — N with 
intertwining relations as follows: 
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There are two prime ideals of P not of the form { y <= P ; y ^ x\, namely, 
0 and the right hand column, R. Let D be an interval in Z( ) lex, with 
defector d. If d is infinite somewhere, the classification is reduced by 3.2 to 
the case that either the left or the right column (or both) is cut off at a 
finite stage. This is the case that the ordered set is either — N or a finite 
perturbat ion of — N (or is finite), and is dealt with as in 4.13. Assume that 
d takes on only finite values. As in the totally ordered case (using 4.6, 4.10, 
and 4.11), we may suppose that d is positive with normalized top part . If d 
has infinite support on the left side then the ult imate divisors of d at 0 and 
at R are both defined. The second of these divides the first, but otherwise 
they are arbitrary. Together with the normalized top part of J, they 
determine the orbit of d under equivalence. (This is proved much as in 
4.13.) If d has finite support on the left side and infinite support on the 
right side, then only the ult imate divisor of d at 0 is defined, but this 
together with the normalized top part of d determines the orbit of d. If d 
has finite support on all of P then d can be normalized, and its orbit is 
determined by the normalized form. 

Finally, by 3.5, D is determined by d and the additional information 
whether D or the image of D in Z( \ ^ ) c x has a largest element. Such a 
largest element can exist if, and only if, the support of d is finite in the 
first case, and the support of d in P\R (the left column) is finite in 
the second case. 

5. The postliminary case. 

5.1. T H E O R E M . Let G be a dimension group. The following two statements 
are equivalent. 

(i) Each simple subquotient of G is isomorphic to Z, and a subset of the 
prime ideal spectrum Spec G is closed if it contains the closure of each of its 
points {that is, the Jacobson topology in Spec G is determined by the inclusion 
order relation). 

(ii) G is isomorphic to the lexicographic direct sum Z( ) ex where the 
ordered index set P satisfies the decreasing chain condition. 

Proof, (ii) => (i). This follows immediately from the description of the 
ideals of a lexicographic direct sum of ordered groups Z{P)CX which was 
given in the Introduction. 

(i) => (ii). First let us show that if the second condition of (i) holds then 
Spec (7, ordered by inclusion, satisfies the decreasing chain condition. Let 
/, i^ t2 = . . • be a decreasing chain of prime ideals of G. Then the ideal t 
of G with / = Pi/,7 is prime, and by definition the closures of the sets 
{/} and {/j, t2, • • • } in Spec G in the Jacobson topology are the same. By 
hypothesis, any union of closed subsets of Spec G is closed, and, in 
particular, the closure of the set {/j, /2, . . . } is equal to the union of the 
closures of the sets {/,}, {72}, . . . . I t follows that for some n = 1, 2, . . . , t 
is in the closure of the set {tn}, i.e., / = tn. Hence 
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This shows that the chain tx = t2 = . . . is finite. 
Now suppose that (i) holds. We shall prove that G is isomorphic to 

Z( ) ex where P = Spec G. By the preceding paragraph, this proves (ii). 
For each t e P = Spec G, choose a sub ordered group Gt of G 

isomorphic to Z as follows. Consider the ideals of G with spectra the open 
sets 

{s <E P; s â /} and {s G P; 5 < / } . 

The quotient of the first ideal by the second has spectrum {/}, so by 
hypothesis is isomorphic to Z. Choose Gt to be a lifting of this quotient, 
i.e., to be the subgroup generated by a positive element of the first ideal 
mapping onto the positive generator of the quotient. 

Let us now show that the family of subgroups (Gt)tGP is independent 
with sum G, and that the resulting direct sum decomposition G = ^Gf 

defines an isomorphism of G with the ordered group Z{P) cx. 
For this purpose we define a composition series (7p) ( )^p^a for G as 

follows: 70 = 0, and if 7p ^ G, 7p+1/7p is the sum of the minimal nonzero 
ideals of G/Ip. That G (or G/Ip) has a minimal nonzero ideal if it is not 
already zero is seen as follows. P has a minimal element by the chain 
condition. Any minimal point of P is in the complement of the closure of 
every other point of P, and hence (as by (i), any intersection of open sets is 
open) is isolated. This shows that P has an isolated point; this constitutes 
the spectrum of a minimal nonzero ideal of G. (The same argument is valid 
with a nonempty closed subspace of P in place of P, and shows that the 
quotient G/Ip has a minimal nonzero ideal if it is not zero.) 

Fix / e P, and denote by p the unique ordinal such that 

t e Spec 7 p + ] and t £ Spec 7 . 

Then {s e P; s = t) is contained in Spec 7 + 1 , but not in Spec 7. 
Furthermore, Spec 7p+1/7p is discrete, so {s e P; s < t} is contained in 
Spec 7 By definition, the sum of Gt and the ideal of G with spectrum 
[s e P; s < /} is the ideal with spectrum {s e P; 5 = / } . Hence G/ is 
contained in 7p+1 and the image of Gt in Ip+l/Ip is the minimal nonzero 
ideal with spectrum {/}. 

Since each 7p+1/7p is the sum of its minimal nonzero ideals, and by 
distributivity these are independent, it follows from the preceding 
paragraph that the family (Gf)tŒP is independent and 2 G / = G. 

By (i), the open subsets of P ( = Spec G) are the same as the ideals of P 
in the inclusion ordering. Let us show that the ideal of G = 2/€E/>G, which 
corresponds to the ideal S of P is just 2^GSG/- It is enough to consider the 
case that S is singly generated, i.e., for some s e P, 

S = {t e P; / ^ s). 
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Moreover, if p is such that 

s G Spec 7p+1 and s £ Spec / , 

we may assume inductively that the statement holds for any ideal of P 
contained in Spec I. As above, we have 

{/ G P\ t < s) c Spec /p, 

so the ideal of G with spectrum {/ G P; / < s} is by the inductive 
assumption equal to 2/<>sG>. Hence by definition of Gs, the ideal of G with 
spectrum {/ G ?; / ^ 5} is 

Now let us show that the order in G = 2 G , is the lexicographic order. 
This means that if g = 2 g , with g, G Gr then g is positive in G if and only 
if gt is positive in Gt for each / maximal in P such that gt i= 0. If g = 2g r is 
an element of G, denote by £ the ideal of P consisting of those elements 
strictly less than some / G P with gt i= 0, and denote by / the ideal 
^jt^sGt of G. If g â 0, then g -f / ^ 0, and since gr + / is zero unless t is 
minimal in P\S, in which case the ordered group Gt maps isomorphically 
onto a minimal nonzero ideal of G/I, we see that for each such /, gt + / = 
0 and hence g? ^ 0; in particular, gt i^ 0 for each r maximal with 
*, * o . 

Suppose, conversely, that gt = 0 for each t maximal with gf ^ 0, and let 
us prove that g = 0. The hypothesis may be restated as follows: 

8 ~ 2,esft = 0-
(Here S is as defined above.) The conclusion may be strengthened (in fact, 
just restated) as follows: 

g — h ^ 0 for any h G /. 

(Here / = 2 r G 5 G p as above.) Replacing g by g — 2,<=sg, does not change 
this statement of the conclusion, and it transforms the hypothesis into the 
more convenient form g = 0 (the original form of the conclusion). 

Suppose, then, that 

g = 2 s , ^ 0, 
and that 

(with S and / as above), and let us show that g — h = 0. Since / = 7 + — 
/ , we may suppose that h ^ 0. Then by what we proved above, /z is also 
positive in the lexicographic order. Denote by T the ideal of P consisting 
of those elements strictly less than some t G P with ht ^ 0, and denote by 
J the ideal of 2 / € E r G r of G; we have J Q I Q I. It is sufficient to show 
that g — / z + J ^ 0 i n G/J. For then, using this with 2/z in place of h, we 
have 
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g — 2h + k ^ 0 for some k <E J. 

Since then both h and k belong to / and h — k is positive in the 
lexicographic order (as h is, and k e 7), by the inductive assumption it 
follows that h — k ^ 0. Adding this to the inequality g — 2h + k ^ 0 
gives g — h = 0. 

To show that g — h = 0, then, we may suppose that J = 0. In this case 
each ht is a positive multiple of an atom of 7 + (i.e., of a minimal nonzero 
element of / ) and so h is a finite sum of atoms of 7 + , say 

h = hx + . . . + hn. 

Now consider the ideals of G containing g. Since every ideal of G is the 
sum of certain subgroups Gt (namely, those subgroups Gt for which / is in 
the spectrum of the ideal), and since the family (G{) is independent, any 
ideal containing g = 2g r must contain Gt for all / with gt ¥= 0. Hence 
any ideal of G containing g contains 

On the other hand, the set of all positive elements of G majorized by some 
positive multiple of g is the positive part of an ideal of G. This ideal 
contains g since g is positive, and therefore it contains /. In particular, as 
/Zj Œ I , we have hx ^ mg for some m = 1, 2, . . . . Hence by Riesz 
decomposition, 

h\ = g\ + • • • + gm
 w i t h 0 â gl• ̂  g. 

Since / is an ideal of G, each g, belongs to /. Since hx is an atom of / , hx is 
equal to some g,; in particular, g — hx = 0 . Replacing g by g — hx we 
obtain, in the same way, 

g - hx - h2 i= 0. 

Repeating this yields after « steps the desired inequality 

g - h = g - A, - . . . - A„ ^ 0. 

5.2. Remark. The decreasing chain condition on the ordered set P may 
be reformulated as follows: the complement of any prime ideal of P has a 
smallest element. In this way one sees that the decreasing chain condition 
on P is equivalent to the condition on the ordered group Z( ] ex that each 
prime quotient have an ideal isomorphic to Z. One also sees directly the 
fact established in the course of the proof of 5.1 that in this case the prime 
ideal spectrum of Z(/>) ex is equal to P. 

5.3. Remark. In 5.1 the proof of (i) => (ii) does not use that G is 
unperforated. Therefore this property is a consequence of (i) in an ordered 
abelian group with the Riesz decomposition property. 

5.4. Remark. The lexicographic direct sum Z(P)CX cannot in general be 
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characterized by its simple subquotients (all equal to Z) and its ideal 
lattice (the ideal lattice of P). (5.1 implies that it can when P satisfies the 
decreasing chain condition.) A counterexample is the case P = Z; see 4.8 
of [10]. 

5.5. C O R O L L A R Y . Let A be a separable C* -algebra. The following three 

statements are equivalent. 
(i) Each simple subquotient of A is elementary, and a subset of the 

primitive ideal spectrum Prim A is closed if it contains the closure of each oj 
its points. 

(ii) A is approximately finite-dimensional and the dimension group of A is 
isomorphic to the lexicographic direct sum Tl ' e x where P satisfies the 
decreasing chain condition. 

(iii) A is a lexicographic direct sum of a family of elementary C*-algebras 
( 5 v ) v E P where P satisfies the decreasing chain condition. 

Proof, (i) =̂> (ii). Suppose that (i) holds and let us show first that Prim A 
satisfies the decreasing chain condition. Let tx â t2 = . . . be a decreasing 
chain in Prim A. Then in particular each tn is a prime ideal, so the 
intersection t = Htn is also a prime closed two-sided ideal of A. Let us 
pass to the quotient and change notat ion so that t = 0, Prim / = 0. 
Suppose that no tn is equal to 0. Then, as A is prime, each Prim tn is dense 
in Prim A, whence by 3.4.13 of [7], O P r i m tn is dense in A. But by (i), 
n P r i m tn is open, so 

n P r i m tn = Prim t = 0. 

This contradiction shows that some tn is equal to 0, i.e., the decreasing 
chain tx = t2 = . • • is finite. 

As in the proof of (i) => (ii) of 5.1, it follows by further use of (i) that 
every nonempty closed subspace of Prim A has an isolated point and 
hence that A has a composition series with elementary subquotients. By 
7 of [5] combined with transfinite induction, it follows that A is 
approximately finite-dimensional. 

By 5.1 of [10] the lattice of closed ideals of A is isomorphic to the lattice 
of ideals of the dimension group K0(A). Since, by 3.9.1 of [7], every prime 
closed ideal of A is primitive, it follows that Prim A is homeomorphic to 
Spec K0(A). Hence K0(A) satisfies 5.1 (i), and therefore 5.1 (ii), from 
which condition (ii) of the corollary follows. 

(ii) => (iii). Suppose that (ii) holds. By 4.8, the dimension range of A, an 
interval in Z( ) ex, is isomorphic to D(P, d) for some positive defector d. 
By 2.10, there is a separable C*-algebra A(P, d) which is a lexicographic 
direct sum of a family of elementary C*-algebras ( J 9 X ) V G P , and which is 
therefore by 2.8 approximately finite-dimensional, such that the dimen
sion range of A is isomorphic to D(P, d). By 4.3 of [9], A is isomorphic to 
A(P,d). 
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(iii) =» (i). Suppose that (iii) holds. By 2.2, the lattice of closed ideals of 
A is naturally isomorphic to the lattice of ideals of P. In particular, it 
follows that every simple subquotient of A is elementary. By hypothesis, 
the complement of any prime ideal of P has a smallest element (see 5.2). 
Thus, the prime ideal spectrum of P is equal to P, and the open sets are the 
ideals of P. Since Prim A is homeomorphic to the prime ideal spectrum of 
P, i.e., to P with open sets the ideals of P, (i) follows. 

5.6. Remark. While the implication (iii) =̂> (i) in 5.5 does not need the 
assumption that A is separable, and the implications (i) => (ii) and also 
(ii) =̂> (i) are easily proved without this assumption (using 5.1), it is not 
clear how to prove the implication (ii) =^> (iii) without assuming that A is 
separable. 

5.7. Remark. The classification of separable postliminary lexicographic 
direct sums of elementary C*-algebras follows, in principle, from 4.6 and 
4.8. Thus, only the defector need be considered, and equivalence of 
defectors may be described in an explicit way. 

Of course, one might hope for a simple parametrization of the 
equivalence classes, which is after all possible in the case of the ordered set 
— N (see 4.13), in which case the dimension group is not postliminary. 

If a defector can be put in normalized form then this is a canonical label 
for the equivalence class. As follows from 3.2, 4.6, and 4.10 (cf. 4.13), this 
is possible for a defector with only finitely many nonzero finite 
coordinates (see also [1], [2] ). As shown recently by Jensen in [16], a 
defector can be put in normalized form if, more generally, every point at 
which it is finite and nonzero majorizes only finitely many other such 
points. 
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