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Abstract

We describe a mechanically verified proof of correctness of the
floating point multiplication, division, and square root instructions
of the AMD-K7 microprocessor. The instructions are implemented
in hardware and represented here by register-transfer level specifica-
tions, the primitives of which are logical operations on bit vectors.
On the other hand, the statements of correctness, derived from IEEE
Standard 754, are arithmetic in nature and considerably more ab-
stract. Therefore, we begin by developing a theory of bit vectors and
their role in floating point representations and rounding. We then
present the hardware model and a rigorous proof of its correctness.
All of our definitions, lemmas and theorems have been formally
encoded in the ACL2 logic, and every step in the proof has been
mechanically checked with the ACL2 prover.

1. Introduction

One of the challenges of formal hardware verification is the “semantic gap” between a
stract behavioral specifications and concrete hardware models. Dealing effectively with tt
problem requires a formalism that is flexible enough to represent concepts at different lev
of abstraction. In particular, specifications of floating point operations are most naturally e
pressed in numerical terms, while their hardware implementations are commonly model
at the level of registers and bit vectors.

Conventional mathematical analysis may be usefully applied to numerical algorithm
but generally fails to provide any assurance regarding the correctness of hardware img
mentations. On the other hand, automatic finite-state techniques, which have been u
to verify low-level specifications of arithmetic circuit8,[4], lack the expressive power
to represent high-level mathematical properties. General-purpose theorem provers offer
important alternative to finite-state tools, as they provide a framework for formal numeric:
analysis, as well as mechanical support for checking the properties of detailed low-lev
models.

In our previous work [8] and that of Mooret al. [6] on the AMD-K5 floating point
unit, the ACL2 theorem prove] was used to support the verification of the IEEE com-
pliance [5] of the AMD-KS5 floating point division and square root operations. The imple-
mentation of these instructions was based on microcode that accessed existing hardware
addition, subtraction, multiplication, and rounding. It was appropriate, therefore, to mod
the instructions in a language in which the primitive operations included the computatic
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of rounded products and sums, which were assumed to be implemented correctly. Con
quently, the analysis was conveniently limited to the familiar realm of floating point number
and rational arithmetic.

In contrast, the division and square root instructions of the AMD-K7 microprocessol
which were recently designed at AMD by Stuart Oberma &re implemented directly
in hardware. In order to gain confidence in their correctness, it is desirable to model the
instructions at the register-transfer level, where the basic operations are logical functio
of bit vectors. Verification then requires bridging the gap between these low-level data ai
operations and the abstract mathematical objects and functions that they represent.

The subject of this paper is a mechanically verified proof of correctness of the AMD-K’
floating point multiplication, division and square root instructions. The proof is based on
formal description of the hardware, derived from an executable model that was written
C and used for preliminary testing. The instructions are defined in terms of bitwise logic:
operations and integer addition and multiplication, which are treated as primitives.

The statements of correctness are based on IEEE standar8l] 7&hich stipulates that
each operation

... shall be performed as if it first produced an intermediate result correct to infi-
nite precision and with unbounded range, and then rounded that result according
to one of the [supported] modes ....

Thus, if rndx, rc, pc) denotes the result of rounding a numbesiccording to a specified
rounding mode rc and degree of precision pc, ansithe value computed for the product
of floating point numbers andb in the context of rc and pc, then

u = rnd(a - b, rc, pc). Q)

Similarly, if v andw are the values computed for the quotienuaindb, and the square
root of b, respectively, then

v = rnd(a/b, rc, pc) (2)
and
w = md(v/b, rc, pc). (3)

The decision to use ACL2, however, has influenced our formulation of this last spec
fication. As a subset of Common Lisp][ ACL2 includes the rational numbers as a data
type, but not the reals. Consequently, we are somewhat limited in our formalization. Tt
reader will notice that many of our lemmas are truths about real numbers but are presen
here as propositions of rational arithmetic. More critically, since the square root itself is ne
a rational function, we are unable to formalize Equatiadirectly. Instead, we prove the
following rational versionFor any nonnegative rational numbetsind#, if £2 < P < h?,
then

rnd(¢, rc, pc) < w < rnd(k, rc, pe). 4)

As shown in B], the equivalence of Equatio®sand4 is a simple consequence of (a) the
monotonicity of rounding, and (b) the observation that for fixed rc and pc, the funatibn
is constant in some neighborhood of any given irrational number.

Applied to the design of a device as complex as a floating point divider, mathemat
cal proof provides a level of confidence that cannot be achieved through testing alone.
the present case, initial proof attempts revealed two design flaws that had survived so
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80 million test vectors. The value of mechanical verification in this context is also cleal
comprehensive analysis of a commercial floating point design is difficult if not impossibl
without computer assistance; in any case, the level of investment in its correctness requi
a more efficient means of assurance than the conventional social process by which mat
matical results are usually confirmed. This is not an argument, however, for circumventir
the normal review process. The obligation to support a scientific claim cannot be satisfi
simply by announcing that its correctness has been affirmed by an arcane automated p!
system, the soundness of which itself is open to question. Moreover, the advantages ¢
coherent, surveyable proof extend beyond the issue of reliability: it is the only means |
which a theory or result may be fully understood, applied, generalized, and assimilated ir
the mathematical domain. Traditional mathematical notation is clearly a better choice
medium for such an exposition than any formal language.

Since machine-assisted proofs have inherent advantages as well as disadvantages
respectto more traditional methods, we endeavor to combine the benefits of both approacl
In the following sections, we present a detailed proof of correctness, based on element
mathematics and using only standard terminology and notation. In S&gtiom establish
a general theory of floating point numbers, which should be reusable in a wide variety
applications. This is an extension of the theory presented in [8], including some addition
properties of the rounding functions, but more significantly, a comprehensive treatment
bit vectors and their role in floating point representation. The specific hardware model
presented in Sectiorsand4, along with precise formulations and detailed proofs of the
above Equation, 2 and4.

For the most part, each step in the proof may be readily checked by hand, requiring
special background in either mathematics or computer hardware. The only exception occ
in Sectiond.2, where the accuracy of an approximation derived from a set of tables depen
on properties of the tables that can only be verified by extensive (although straightforwar
computation, involving approximately 2@able accesses and ®l@rithmetic operations.
The results of these calculations are stated without proof in Lerdniad.2, and4.3.

On the other hand, along with the table calculations, every step in the proof, includin
every theorem and lemma presented below, has been formally encoded in the ACL2 lof
and mechanically checked with the ACL2 prover, in the interest of eliminating the possibilit
of human error. The input to the prover, culminating in formal versions of our three mai
theorems, consisted of some 250 definitions and 3000 lemmas, in addition to the relev:
definitions and lemmas of the previously developed general th&pry¢r the interested
reader, the files containing this input are included\ppendix A, available to subscribers
to the journal athttp://www.Ims.ac.uk/jcm/1/lms98001/appendix-a/.

2. Floating point arithmetic

This section is a formalization of the floating point representation of rational number
and rounding. The sets of rational numbers, positive rationals, integers, positive intege
and natural numbers (nonnegative integers) will be denoted by the sy@b@is, Z, Z™,
andN, respectively. Ifn € Z,n € Z*, andm = nq + r, whereq € Z, r € N, andr < n,
then we shall write reftin, n) = r.

Forx € Q, [x] and[x] denote thdloor andceiling of x, respectively, defined to be the
unique integers satisfyingc | < x < |x] +1and[x] > x > [x] — 1. We shall assume
familiarity with the basic properties of these functions, including the following.
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1) fneZ thenlx +n] = |x] +n.
(2) IfneZt, then||x]|/n| = |x/n].
(3) Ifm eZandn € Z*, then|—(m + 1)/n]| = —|m/n] — 1.
2.1. Bitvectors
We shall exploit the natural correspondence between the bit vectors of lkeagththe
natural numbers in the rangeQx < 2", under which the vectdr,_1b,,_> - - - bibg, where

eachb; € {0, 1}, corresponds to = Y7—5 2b;. Thek™ bit of x, x[k] = by, is formally
defined as follows.

Definition 2.1. For allx, k € N, x[k] = rem(|x/2], 2).
We have the following alternate characterization g].

rem(x, 2) ifk=0

Lemma?2.1. Forall x,k e N, x[k] = { Lx/20lk — 1] ifk >0

Proof. Fork > 0, x[k] = rem(|x/2¢|, 2) = rem(||x/2]/2*"1],2) = |x/2][k —1]. O

Lemma?2.2. Forall x,n, k € N,
@)if x < 2", thenx[n] = 0;
(b)if k < nand2® — 2k < x < 2", thenx[k] = 1.

Proof. (a)x[n] = rem(|x/2" |, 2) = rem(0, 2) = 0.
(b) Since 2% — 1 < x/2k < 207F rem(|x/2F],2) = rem(2* % —1,2) = 1. O

Lemma?2.3. Forall x,m,n € N,
(@) (x 4+ 2")[n] # x[n],
(b) if m > n, thenrem(x, 2™)[n] = x[n].

Proof. For anym > n andg € N,
(x +2%g)[n] = rem(L(x +2"¢)/2"|,2) = rem(|x/2"| + 2" "q, 2).

If m =n,thenreng|x/2"| +2"7" 2) =rem(|x/2"] + 1,2) # rem(|x/2" |, 2) = x[n];
if m > n,then2'"gisevenandrertix/2" | +2""q,2) =rem(|x/2"],2) = x[n]. O

Theleft andright shift functions (shlandshr) take three arguments: a bit veciqrits
lengthn, and a value € {0, 1} to be shifted in.

Definition 2.2. Letx, n, s € Nwithx < 2" ands < 2.
(@) shlx, s, n) = rem(2x + s, 2);
(b) shix, s, n) = [x/2] + 2" Ls.

Concatenatior{cat) is also a function of three arguments: two bit vectorandy, and
the lengthn of y.

Definition 2.3. Forallx, y,n € N, cafx, y,n) = 2"x + y.
The following function extracts a field of bits.

Definition 2.4. Forallx,i, j € N, x[i : j]1= [rem(x, 2it1) /27 |.
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Lemma2.4. Forall x, y, i, j € N, if rem(x, 22t1) = rem(y, 20+1), thenx[i : j] =
yli:jl
Proof. x[i : j]= [rem(x, 2111 /27 | = [rem(y, 21t1) /27 | = y[i : j].

Lemma 2.5. Forall x,i, j, k, ¢ € N,
(@)ifi > kandj >k, thenx[i : j1= |x/2X|li —k: j —k;
(b)ifi > j +k, thenx[i : j1[k] = x[k + j];
(©)ifi > j+k, thenx[i : jllk: €] =x[k+j: €+ jl.
Proof. (a) Letx = 2't1g 4+ r, where 0< r < 2/*1, Then

/2] = 127 g /2 ) = 275 g 4 12

hence
rem(|x/2], 275 = /2"
and
Lx/2 )l —k = j =kl = Lr/2°)/2 7% ) = [r/2 | = [rem(x, 2Fh) /27 | = x[i : j].
(b) Using Lemma2.3,
x[i : jllk] = rem(| [rem(x, 21y /27 | /2% |, 2) = rem([rem(x, 2"+1)/2"+7 |, 2)
= rem(x, 2 Y[k + j] = x[k + j1.

(c) Using (a),
x[i s jllk: €= |x/2/ |[i — j:Ol[k : €] = rem(|x/2/ |, 27Tk : £]
= [rem(remy(|x/2/ |, 2/=/+1) 2k1y 2t | = [rem(|x/27 ], 281y /2¢)
= |x/2 [k : €] =x[k+j: €+ j].
O

We have two unary operations on bit vectasmplemenfcomp) andlecrementdec).

Definition 2.5. For allx,n € N, if x < 2", then
(@) compl(x,n)=2" — x —1;
(b) decl(x, n)=rem2" +x — 1,2").
We have three binary logical operatioasid,or, andexclusive or.

Definition 2.6. For allx, y € N,
0 ifx=0
@ x&y=1 2(|x/2] &|y/2]) +1 if x andy are both odd
2(|x/2] & |y/2]) otherwise.

y ifx=20
) x| y=1 2(lx/2]| Ly/2D) if x andy are both even
2(lx/2] | Lly/2])+1 otherwise.

y ifx=0
(©x" y=1 21x/2] " Ly/2]) if rem(x, 2) = rem(y, 2)
2(lx/2] " |y/2])+1 otherwise.
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The remainder of this subsection is a collection of properties of the binary logical ope
ations.

Lemma2.6. Forall x, y € N,
@x &y =2(lx/2] & y/2]) + (rem(x, 2) & rem(y, 2));
O)x| y=2(1x/2] | Ly/2) + (rem(x,2) | rem(y, 2)).

Proof. The equivalences are easily checked for all possible values ¢tt&¥rand renty, 2).
O

Lemma2.7. Forall x, y,z € N,
(8)x &0 = 0;
(b)x| 0=x;
©x&y=y&x;
x| y=yl x;
@) (x&y)&z=x8&(y &2);
Ol nlz=x| &l 2;
@x] G&)=Cx] y) &x]| 2);
Mx&G| =&y | (x&2).

Proof. First note that Lemma.6implies
Ll(x &y)/2] = [x/2] & |y/2] and renfx & y, 2) = rem(x, 2) & rem(y, 2)
and
L& | »/2] = [x/2] | Ly/2] andrentx | y,2) =rem(x,2) | rem(y, 2).
We shall prove (h); the other proofs are similar.
It is easily verified that the statement holds for argumen{9,i}. Thus,
remx & (y | z),2) =rem(x,2) &rem(y | z,2)
=rem(x, 2) & (rem(y, 2) | rem(z, 2))
= (rem(x, 2) &rem(y, 2)) | (rem(x, 2) & rem(z, 2))
=remx &y, 2)| (rem(x &z,?2)
=rem((x &y)| (x &z2), 2).
Now, by inductive hypothesis,

[x &y | 2)/2] = x/2] & (v | 2)/2]
= x/2] &(Ly/2] | z/2])
= &y)/2]) | (L(x &2)/2))
=(x/21 & ly/2]) | (lx/2] & |z/2])
=[((x &y) | (x &2))/2].
Therefore,
x& (| 2)=L1lx &y 2)/2] +remx &(y | z2),2)

=[((x &y)| (x &2)/2] +rem((x &y) | (x &2),2)
=x&y)| (x&2).

https://doi.org/10.1112/51461157000000176 Published online by CAdrfBdge University Press


https://doi.org/10.1112/S1461157000000176

Proof of IEEE Compliance of the AMD-K¥ Processor

Lemma 2.8. Letx, y,n € N.
(@)ifx <2"andy < 2", thenx | y < 2%
(b)if y < 27, then(2'x) | y = 2"x + y;
©@x)| @y)=2"x] y)
(d)remx | y,2") =rem(x,2") | rem(y,2").
Proof. (a) Forn > 0, |x/2] < 2" tand|y/2] < 21, which implies|x/2] | |y/2] <
2"—1: hence
x| y<20x/2)| ly/2h+1<22 - +1<2n
(b) Forn > 0, sincely/2] < 2"~1,
@'x) | y=2(12"x/2] | ly/2])+rem2'x,2) | rem(y,2)
=22 | Ly/2)+0]| rem(y,2
= 22" Yx + [y/2)) + rem(y, 2)
=2"x +2|y/2] +rem(y, 2)
=2"x +y.
(c) Forn > 0,
2'x) | 2"y)=2(12"x/2] | |2'x/2]) +rem(2"x,2) | rem(2"y,2)
=22 271 +0] 0=22"" (x| y)+0
=2"(x| y).
(d) Letx = 2"g1 + rp andy = 2"g2 + rp, where 0< r1 < 2" and 0< 2 < 2. Then
x| y=@2q+r0)| @q2+r2)=2"q1| rv)| 2'q2| r2)
=2'q1] 2'q2) | (1] r2)=(2"@q1| q2)) | (1| r2)
=2"(q1| q2) + (r1| r2).
Butry| r2 < 2" hencerenx | y,2") =r1| r2 =rem(x,2") | rem(y, 2"). O

Lemma2.9. Letx, y,n € N.
(@x&y<x;
(b) 2'x &y = 2"(x & [y/2"]);
(c)remx &y, 2") =rem(x, 2") & y;
(d)if x < 2", thenx & y = x &rem(y, 2").

Proof. (a) If x =0, thenx & y = 0 < x, and forx > O,
x &y =2(x/2] &|y/2]) + (rem(x, 2) &rem(y, 2)) < 2|x/2] + rem(x, 2)
= X.
(b) Forn > 0,
2'x &y =2(12"x/2] & |y/2]) +rem(2"x, 2) & rem(y, 2)

= 22" 1x & |y/2]) + 0 & rem(y, 2)
= 22" x & [Ly/2)/2" D) +0
=2"(x & |y/2")).
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(c)Letx =2"¢g+r,0<r <2".ThenO< r &y <r < 2"and
x&y=2"q+r)&y=(2"q| r) &y
=2'q&y)| r&y)=2"@q&y/2"D]| (r&y)
=(2'(q & y/2"]) + (r &Y).

Therefore, renx & y, 2") =r & y =rem(x, 2") & y.
(d)Sincex &y <x < 2", x &y =remix &y, 2") = x &rem(y, 2"). O

Lemma 2.10. Letx, y,n € N.
(@) (x & y)[n] = x[n] & y[n];
(b) (x| Yl =x[n]] ylnl.

Proof. The proofs are similar; we present the proof of (a), which proceeds by inductior
Forn =0,

(x &y)[0] =rem(x &y, 2) = rem(x, 2) &rem(y, 2) = x[0] & y[O];
forn > 0,

(x & y)[n] = L(x &y)/2][n — 1] = (lx/2] & |y/2])[n — 1]
= x/2][n — 1] & Ly/2][n — 1] = x[n] & y[n].

Lemma 2.11. Letx,n, k € N, k < n.
(@) x &2F = 2*x[k];
(b)x | 28 =x + 251 — x[k]);
(€)x & (2" — 2¢) = 2X(x[n — 1: k)).

Proof. (a) In the casé& = 0, we have
x &1=2(x/2] &0) +rem(x, 2) = rem(x, 2) = x[0],

and fork > 0, by Lemma2.1,

x &2 = 2(|x/2) & 21 = 22" Y x /2] [k — 1]) = 2*x[k).

(b) Fork = 0, we have
x| 1=2(1x/2] ] 0)4+1=2[x/2] +1=x+1—rem(x,2) = x + 1 — x[0],

and fork > 0,

x| 28 =2{x/2] | 2 +remx, 2)

—2 { Lx/2) + 2511 — |x/2][k — 1])} + rem(x, 2)

= 2|x/2] +rem(x, 2) + 2¢(1 — |x/2][k — 1])
= x + 2(1 — x[k]).

(c) It suffices to prove the identity under the assumptiorc 2", because then, by
Lemmas2.9and2.4, we have for arbitrary:

x & 2" =2 =rem(x, 2") & (2" — 25) = rem(x, 2")[n : k] = x[n : k].
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Fork = 0, we show by induction that & (2" — 1) = x. The case: = 0 is trivial, and
forn > 0, since[ (2" — 1)/2] = 2*~1 — 1, we have
x&((2"—1)=2(|x/2] & (2""* — 1)) + rem(x, 2)
=2|x/2] +rem(x, 2) = x.
Now, fork > 0,
x& 2" =2 =2(x/2) & 2"t =2y =2. 25 L x/2)n — 2 k — 1]
= 2" [rem(|x/2], 2" H /24 = 24 |x/2) /27
=2x/2% ] = 2X(x[n — 1: k).

O
Lemma 2.12. Letn, k, £ € N, £ < k < n. Then
21 -2 ife=k
n_ ol n_ oky _
@' -2-D&a@ 2)_{ n—2  ifg <k.
Proof. Applying Lemma2.11(c), we have
@2 =2t —n&E@-2H=2k@" -2 —Dn—-1:k =2 (2" - 2" —1)/2"]
=22 | —(2" + 1)/2]
=" _ Zk(l_zf—kj + 1)
]

2.2. Floating point representations
Floating point representation is based on the observation that every nonzero ratiol
numberx admits a unique factorization,

x =sg r(x)sig(x)pro(x),

where sgiix) € {1, -1} (the signof x), 1 < sig(x) < 2 (the significandof x), and
expo(x) € Z (theexponendf x).

Definition 2.7. Letx € Q. If x £ 0, then
(@) sgrx) = x/|x|;
(b) expo(x)is the unique integer that satisfie¥2°)  |x| < 28XPO)+1
(C) sig(x) = |x|27&XPOW),

A floating point representation afconsists of three bit vectors, corresponding ta(sgn
sig(x), and expo(x). A format is defined by the number of bits allocated toc signd
expo(x).

Definition 2.8. Let¢ = (u, €) € Z* xZT. Theng is afloating point format. A&-encoding
isatriple(s,m,e¢) €e Nx Nx Nsuchthat < 2,m < 2*,ande < 2°.If z = (s, m, e), then
s = get-signz), m = get-marz), ande = get-expo(z). Ifm > 2*~1, then z is anormal
¢-encoding.
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The formats that are supported by the AMD-K?7 floating point operations in¢R4|&),
(53,10), and(64, 15), which correspond teingle,double, angxtendegbrecision as spec-
ified by IEEE, as well as a larger formda§8,18). In addition, in order to allow for the
rounding error incurred by our iterative division and square root algorithms, which are re
quired to produce results that are correctly rounded to 68 bits, the multiplier must suppor
somewhat more precise internal format. One of the objectives of our analysis is to determi
the minimum required size of this format, and hence the minimum width of the multiplier
Thus, we introduce an integer parameterwhich represents the multiplier width and de-
termines the internal formad, 18). We assume thaf > 75, for as we shall see in Section
4, our proofs of correctness for division and square root will depend on this constraint.

In our formulation of the algorithms, the floating point formats are encoded as symbol

Definition 2.9. A precision control specifieis any of the symbols
PC-32, PC-64, PC-80, PC-87, and PC-*,
which correspond to the floating point formats
(24, 7),(53,10), (64, 15),(68,18), and(M, 18),

respectively. The first four of these symbols are cadiei@rnalprecision control specifiers.
If 7 is any precision control specifier agd= (u, €) is the corresponding format, then
mbits(w) = W.

The numbew represented by a norm@k, €)-encoding(s, m, e) is given by sgiix) =
(—1), sig(x) = 2*~Im, and expo(x)= ¢ — (2~ — 1). Thus, the exponent is biased in
order to provide for an exponent range-2¢~1 < expo(x) < 271,

Definition 2.10. Let z = (s, m, e) be a¢-encoding, whereé = (u, €) is a floating point
format. Then decode, ¢) = (—1)° - m - 22=2"=#+2_|n the casep = (M, 18), we shall
designater simply as arencoding, andlecode(x, (M 18)) will be denoted as.

Our characterization of the rational numbers that are represented by normal encodir
is based on the following definition.

Definition 2.11. Letx € Q andn € Z*. Thenx is n-exactiff sig(x)2" ! € Z.
The following basic property of-exact numbers is proved in [8].

Lemma 2.13.1f x € QF, n € Z*, andx is n-exact, then the least-exact number that is
greater thanx is x + 28XPo(0)+1-n

We shall also require this trivial characterizatiomeéxact bit vectors.

Lemma 2.14. Letx, n, k € Z*+, 2"~ < x < 2" andk < n. The following are equivalent.
(a) Z dividesx;
(b) x is (n — k)-exact;
(©)x[n —1:k] =x/2;
(d)x[k—1:0]=0.

Definition 2.12. Let x € Q and let¢p = (u, €) be a floating point format. Then x i5-
representabléff x is p-exact and-2¢"1 4+ 1 < expo(x)< 2671, If ¢ = (M, 18), then we
shall say that x isepresentable.
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The inverse of decode is given below.

Definition 2.13. Let ¢ = (u, €) be a floating point format and let be ¢-representable,
x # 0. Then encode, ¢) = (s, m, e¢), where

(a) if sgn(x) = 1, thens = 0, and if sgrix) = —1, thens = 1;

(b)m = sig(x)2*~;

(c) e = expo(x)+2¢~1 — 1.

Lemma 2.15. Let ¢ = (u, €) be a floating point format, let = (s, m, ¢) be a normal
¢-encoding, and let = decodéz, ¢).

(@) sgnx) = (-1)%;

(b) sig(x) = m/2+7 1,

(d) x is ¢-representable;

(c) expo(x)=e —2¢71 4+ 1;

(e) encodéx, ¢) = z.

Proof. Let¢ = (u, €). Then
x = (—1ym2e @Dt o gy (2l @D,

But 271 < m < 2* yields 1 < m2'=* < 2, which implies (a), (b), and (c). Now (d)
follows from the relation < e < 2¢, and (e) from Definitior2.13. O

2.3. Rounding

A rounding modés a functionM that computes am-exact numbes (x, n) correspond-
ing to an arbitrary rationat and a degree of precisione Z*. We define five rounding
modes.

Definition 2.14. A rounding modas any of the functionsrunc, away,near,inf, andminf,
where, forx € Q andn € ZT,

(@) trunc(x, n)= sgn(x) [ 2"~ Lsig(x) | ZXPo)—n+1

(b) away(x, n) = sgn(x)[2"Lsig(x)]Z*Po)—n+L

(c) if z = |2 1sig(x) | and f = 2"~ 1sig(x) — z, then

trunc(x,n) if f <1/2
away(x,n) if f>1/2
trunc(x,n) if f =1/2 andz is even
away(x,n) if f =1/2andzis odd;

neaKx, n) =

away(x,n) ifx >0
trunc(x,n) if x <O0;
trunc(x,n) ifx>0
away(x,n) ifx <O.

(d) inf(x,n) = {
(e) minf(x, n) = {

Only four of these modes are supported by the IEEE standard. In our representation
the algorithms, they will be encoded as symbols.
Definition 2.15. A rounding control specifieis any of the symbols
RC-CHOPRC-POS,RC-NEG, andRC-NEAR,
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which correspond to the rounding modes
trunc, inf, minf, and near,

respectively. Lep be a rounding control specifier corresponding to the rounding mode
let = be a precision control specifier, and et Q. Then

rnd(x, p, 7) = M(x, mbits()).

Some of the basic properties of the rounding modes, which are prov&y ar¢ listed
in the following eight lemmas.

Lemma 2.16. If x € Q, M is a rounding mode, and € Z™", then
() sgrM(x, n)) = sgnix);

(b) if M € {trunc,away, neat, thenM(—x, n) = —M(x, n).
Lemma2.17.1fx,y € Q, x < y, M is a rounding mode, and € Z*, then
M(x,n) < M(y,n).

Lemma 2.18. If x € Q, M is a rounding mode, and € Z™, then
(&) M(x,n) is n-exact;
(b) if x is n-exact, them = M (x, n).

Lemma 2.19. If x € Q, M is a rounding mode other thamear,m,n € Z*, andm < n,
then
M(M(x,n), m) = M(x, m).

Lemma 2.20. If x e Q andn € Z™, then

x| — 28P0) =+ trunc(x, n)| < |x| < |away(x, n)| < |x| + 28XPO)—n+L

Lemma 2.21.If x e Qandn € Z™, then
(a) expo(trunc(x, n))= expo(x);
(b) expo(awayx, n)) = expo(x)unlessaway(x, n)| = 28PN +1

Lemma 2.22.If x,a € Q,n € Z*, and a is n-exact, then
(@)if a < |x|, thena < [trunc(x, n)|;
(b)if a > |x|, thena > |away(x, n)|.

Lemma 2.23. Letx, y € Q andn € Z*. If y is n-exact, thefx — y| > |x — neaix, n)|.

We shall require a number of properties in addition to the above. The nextlemma provid
an implementation of truncation of bit vectors.

Lemma 2.24. Letx, m,.n,k e N.If0 <k <n <mand2"1 < x < 2%, then

trunc(x, k)= x & (2" — 2"7%).
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Proof. By Lemma2.11,
trunc(x, k) = sz—l—expo(x)xJ2expo(x)+l—k= Lx/zn—k_lzn—k
=2 xn—1:n—k]) =x & 2" —2"7"),
But by Lemma2.9,
x & (2" =27y = x &rem(2" — 277K, 2"y = x & (2" — 2"7K),
O

LemmaZ2.24is also the basis for our implementations of the other rounding modes
which therefore must be characterized in terms of truncation.

Lemma 2.25. Letx € QT, m € Z*, andn € ZT. If x is m-exact andn > n, then
away(x, n) = trunc(x+ 28XPeW+ o= _ o=my 1y
Proof. Leta = trunc(x+ 28%Po)+1lo—n _ 2=m) ;) Since
a< x4+ 2expo(x)+lfn< awa;(x, n) + 2expo(awaj1x,n))+lfn’

a < away(x, n) by Lemma2.13.
If x is n-exact, theru > trunc(x, n) = x = away(x, n), and hencer = away(x, n).
Thus, we may assumeis notr-exact. But then since > trunc(x, n)andx is m-exact,

x > trunc(x, n)+ 28XPOX)+1-m
and hence
x + 28RO+ = _ o=y > trunc(x, n)+ 29PON T — away(x, n),
which impliesa > away(x, n). o

The remainder of this section addresses the propertigsasfrounding, concluding with
its characterization as a truncated sum.

Lemma 2.26. If x € Q andn € Z*, then|x — neaKx, n)| < 28XPOX)—7,

Proof. By Lemma2.16, we may assume > 0. Leta = trunc(x, n)+ 28Po)+1-n By
Lemmas2.18and2.23, if the statement fails, then

trunc(x, n) < x— 29POW=1 _ 4 PBXPON) =" _ qway(x, n);

hencea < away(x, n). Then by Lemmag.13and2.22(a), we have < x, contradicting
Lemma2.22(b). O

Lemma 2.27. Letx € Qandn € Z*. If x is (n + 1)-exact but nok-exact, then
(@) trunc(x, n)= x — sgn(x)28XPo)—n.
(b) away(x, n) = x + sgn(x)28XPot)—n,

Proof. Again we may assume > 0. Leta = x — 28P0M) =" gndp = x 4 28XPON)—n
Sincex > 28XPOW) y > 28Xpo(x) 4 2expo(n)+1-nphy | emma2.13; hencer > 28%P°) and
expo(a)= expo(x).

By hypothesisy2" P s odd. Letr2"~®P°™) = 2k 4 1. Then

azn—l—expo(a)z ()C _ 2expo(x)—n)2n—l—expo(x)= (Zk + 1)/2_ 1/2 —keZ.
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Thus,a is n-exact, and by Lemma.13, so is af 28P°@+1=2— , Now by Lemma2.22,
a < trunc(x, n), but ifa < trunc(x, n), then Lemma&.13would imply » < trunc(x, n),
contradictinge < b. This establishes (a), and the proof of (b) is similar. O

Lemma 2.28. Letx,a € QF, andn € Z™. If ais n-exact, then
(@)if x > a + 28XP0(@—n thennealx, n) > a 4 28XPO@+1-n
(b)if x < a 4 28P°@~" thennealx, n) < «;

(€)if x > a — 2P0~ thenneal(x, n) > a.

Proof. (a)Leth = a+29P°@+1-" |fnearx, n) < b,then Lemma.13yields neafx, n) <
a; hencelneai(x, n) — x| > |neaKx, n) — b|, contradicting Lemm&.23.
(b) If neanx, n) > a, then neatx, n) > b, and a contradiction may be derived as in (a).
(c) By Lemma2.17, we may assume< a. Letc = g — 28%P00+1-2 Thene < x < a.
Sincea > x > 28XPOW) 4 > 2€Xpo(x) 4 2expo(x)+1-n and hence > ¢ > 28%P°() which
implies expo(c)= expo(x). But expo(c)X expo(a)and therefore

czn—l—expo(c)z azn—l—expo(c)_ 1le Z,

i.e.,c isn-exact. Now since > a — 28XP0) =7 — ¢ 4 28XPO(©)— (g) implies neatx, n) >
c+ 2expo(c)+1—n= a. O

Lemma 2.29.Letn € Z,n > 1, andx € Q. If x is (n + 1)-exact but noz-exact, then
nealx, n) is (n — 1)-exact.

Proof. Again we may assume> 0. Letz = [2"1sig(x)|and f = 2"~ 1sig(x)—z. Since
2" 1sig(x) ¢ Z,0 < f < 1. But Z'sig(x) = 2z + 2f € Z;hence ¥ € Zand f = 1.
If zis even, then

neaxx, n) = trunc(x, n) = z28Po)+1-n
and by Lemm&.21,
2n—2—expo(nea(rx,n))nea(x’ n) = 2n—2—expo(x)zzexp0(x)+1—n: Z/2 c 7.
If zis odd, then
nearx, n) = away(x, n) = (z 4 1)22XPe()+1-n

We may assume away, n) # 28XP°W+L hence by Lemma&.21,

2n—2—exp0(nea¢x,n))neal(x’ n) = 2n—2—expo(x)(Z + 1)2exp0(x)+1—n= (z + 1)/2 c 7.

O

Lemma 2.30. Letn € Z,n > 1, andx € Q% If x 4 28XP0)—n > 28Xpo()+1 then

neaix, n) = 28POW+1 _ trunc(x 4 28XPOW -1 1)

Proof. Suppose nedr, n) # 28P°M+1 Then Lemma&.21limplies neatx, n) < 28*XPo)+1
and by Lemmag.13and2.26,
2expo(x)+l > neal(x, n) + 2expo(x)+l—n >x— Zexpo(x)—;z+ 2expo(x)+1—n
=x+ Zexpo(x)—n > Zexpo(x)-kl'
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Itfollows thaty = 28XPo(n)+1_2expo(x)—nig (4 1)-exact but not-exact, while neat, n) =
28xpo)+1_ gexpo)+1-njg ;_exact but notn — 1)-exact, contradicting Lemn29.

Now supposeZPe)+1 £ trunc(x+28P0W) =" p), Since 2XPC+Hlisp-exact, 2XPO()+1
< trunc(x 4 28PoM)—" 1) by Lemma2.22. But then by Lemma.13,

trunc(x + 2expo(x)7n’ n) > 2expo(x)+l+ 2expo(x)+}n > x4+ 2expo(x)7n'

Lemma2.31.Ifn € Z,n > 1, andx € Q*, then

trunc(x 4 28%Po—n 1) if x is (n + 1)-exact but not-exact

neax, n) = { trunc(x + 28XPo)—n 4 otherwise.

Proof. If x 4 28XPo()—n > 2expo)+1 then by Lemmag.19and2.30,
nearx, n) = 28PPW+1 — trunc(x 4 28POO " 1y — trunc(x + 2P ; — 1),

Thus, we may assume + 28Po)—n . 2expo)+1 and it follows from Lemmag.21
and2.26that

expo(neafx, n)) = expo(x+ 2POW =" — expo(x).

Case lx isn-exact
By Lemma2.22, trunc(x+ 2P0 —" ») > x. But since

trunc(x+ Zexpo(x)—n’ n) <x+ 2expo(x)—n < x4 2exp0(x)+1—n’
Lemma2.13yields trunc(x+ 28P°0)—" ) < x; hence
trunc(x 4 28P°M= )y — x = nealx, n).

Case 2x is not(n + 1)-exact
We have nedx, n) > x — 28XPo)—" for otherwise we would have ndat n) = x —
28%Po()—n hy | emma2.26, and since neer, n) is (n + 1)-exact, so would be

neal(x, n) + Zexpo(nea(rx,n))—n - x — 2expo(x)—n+ zexpo(neatx,n))—n = x.

Since neafx, n) < x + 2P =" neax, n) < trunc(x+ 2P 1) by Lemma2.22.
But since
trunc(x 4 2P0 =1 1y « x4 2BXPOW) = _ negyy ) 4 2BPOO+1-n

trunc(x 4 28%P°W -1 »y < neaxx, n).
Case 3x is (n + 1)-exact but not-exact

First suppose near,n) > x. Since neafx, n) is (n + 1)-exact, neawr,n) > x +
28%Po()—7 hence nedi, n) = x + 28P°) =" and by Lemma.29,

trunc(x+ 28P°M ;1) = trunc(neafx, n), n — 1) = neaxx, n).

Now suppose neér, n) < x. Then neagx, n) < x + 28P°®)~"implies neafx, n) <
trunc(x+ 28XPeW—n , _ 1) But since

trUﬂC(X—I— 2expo(x)—n’ n— 1) <x+ 2expo(x)—n =x — Zexpo(x)—n_l_ 26Xp0(x)+1—n
< neaxx, n) + 28Po)+2n

we have trunc(xr 28XP0)—n 5 _ 1) < nealx, n). O
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3. Multiplication

3.1. The program FPU-MUL

The multiplication algorithm is represented by the progmaRU-MUL, as listed in
Figuresl and2. The program is coded in a simple language, consisting of assignmen
and conditional branches. The primitive operations are logical operations on bit vectors a
integer addition and multiplication, the implementation of which is not addressed here.

The algorithm is intended to be implemented with three distinct (integer) multipliers
which operate on the same twié-bit factors, yielding identical products of eitheb2or
2M — 1 bits. The output of the first multiplier is manipulated under the assumption tha
overflowoccurs, i.e., the product hagfbits. In parallel, the output of the second multiplier
is similarly manipulated under the opposite assumption. Meanwhile, the most significa
bit produced by the third multiplier is examined to determine which of the first two result:
will actually be used, while the other is discarded.

The inputs to this program include two encodinggndy, of the numbers to be mul-
tiplied, as well as two specifiers, rc and pc, which control the rounding of the produc
Irrespective of this rounding, the result is returned inhe 18) format. Thus, the output
z is expected to satisfy

Z = rmd(xy, rc, pc).

As a notational convenience, the following function gives the position détst significant
bit of a 2M -bit integer that has been rounded to a given degree of precision.

Definition 3.1. For any precision control specifiet, Isb() = 2M — mbits(x).

Inaddition to computing products, the multiplication hardware performs several auxiliar
functions in support of the divide and square root operations. These are specified by f
input op, the value of which may be any of the symb@®-MUL,OP-DIV, OP-SQRT,
OP-LAST, andOP-BACK.

Basic floating point multiplication is performed in the case-e®@P-MUL: the inputs
andy are simply multiplied and rounded according to the specifiers pc and rc, and the IEE
compliant result is returned as the outpuas described by Theorel The same holds for
op = OP-DIV and op= OP-SQRT, but an additional outpuiis returned in these cases:
for OP-DIV, r is an approximation of 2- xy; for OP-SQRT,” is an approximation of
(3— xy)/2. The errors of these approximations are given by LerirBa

WhenFPU-MUL is called by division or square root, pc is alway€-*, indicating
the internal format M, 18). However, on the final iteration of either of these operations,
signaled byOP-LAST, the product is rounded to a lower precision, as determined by the
inputl/astpc. This behavior is described formally by Lema.

Finally, the symbolDP-BACKindicates éack multiplicatiorto determine whether the
product previously computed BP-LAST is an overestimate or an underestimate of the
exact value sought. The value given by the ingig subtracted from the product efand
y. In the case of divisiony is the denominatory is the approximate quotient, ands the
numerator; in the square root case, botAndy are the approximate square root ahis
the radicand. In both cases, the results of the comparison are given by the quapalts
inexact, as stated in Lemma.8.

Thus, our analysis will be based on an execution of

FPU-MUL(op,pc,lastpc,rc,x,y,z,r,d,inexact),
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Program FPU-MUL(op,pc,lastpc,rc,x,y,z,r,d,inexact):

sign < get-signix) =~ get-signy);
man-unrounded— get-marix) - get-mairgy);
overflow <— man-unroundg@M — 1];
if man-unroundeflsb(pc)—3:0] =0
then sticky-no-overflowk— 0
else sticky-no-overflow— 1;
sticky-with-overflow < sticky-no-overflon] man-unroundedsb(pc)— 2J;
inexact-no-overflowk— sticky-with-overflow;
inexact-with-overflow<— inexact-no-overflowf man-unroundefdsb(pc)— 1];
if op = OP-BACK
then if overflow= 1
then inexact— inexact-with-overflow
else inexack— inexact-no-overflow;
if op = OP-BACHKhen
rconst-with-overflow<— comp1 (2! get-marid), 2M)
else if op= OP-LASTthen
rconst-with-overflow«— 2'sb(lastpe)—2
else if rc= RC-NEARhen
rconst-with-overflow<— 2'sb®c)—1
else if(sign= 1 A rc = RC-NEGY (sigh= 0 A rc = RC-POS}hen
rconst-with-overflows«— 21sb®e) _ 1
else rconst-with-overflow— 0;
rconst-no-overflowk— shr(rconst-with-overflow0, 2M);
if op = OP-BACK
then{add-with-overflow<« (man-unrounded- rconst-with-overflow4- 1)[2M : O];
add-no-overflonk— (man-unrounded- rconst-no-overflowt+ 1)[2M — 1 : 0]}
else{add-with-overflow<— (man-unrounded- rconst-with-overflow{2M : O];
add-no-overflowk— (man-unrounded- rconst-no-overflopf2M — 1: 0]};
round-carryout-no-overflow— add-no-overflojf2M — 1];
round-carryout-with-overflow— add-with-overflo2M1;
if op = OP-LAST
then{trunc-with-overflow« 224 _ plsb(lastpc)—1
trunc-no-overflow« 224 _ pisb(lastpc)—3
elsef{trunc-with-overflow< 22M _ 2isb(pc).
trunc-no-overflow<— 22M _ 2Isb(pe)—4

Figure 1:FPU-MUL
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if rc = RC-NEAR sticky-no-overflown= 0 A add-no-overflofisb(pc)— 2] = 0
then man-rounded-no-overflow
<« (22M—2rgund-carryout-no-overfloy add-no-overflow
& ((22M _ 1 — 2sb(PO)~1 @ trunc-no-overflowy
else man-rounded-no-overflow
<« (22M—2rgund-carryout-no-overfloy add-no-overflow
& trunc-no-overflow;
if c = RC-NEAR sticky-with-overflow= 0 A add-with-overfloylsb(pc)— 1] =0
then man-rounded-with-overflow
<« (22M=1round-carryout-with-overfloy add-with-overflovy
& ((22M _ 1 — 2!sb(PC)) & trunc-with-overflow;
else man-rounded-with-overflow
<« (22M=1round-carryout-with-overfloy add-with-overflovy
& trunc-with-overflow;
exp-unrounded— (get-expo(x )+ get-expo(yH 27 + 1)[17: O];
exp-rounded-with-overflow
<« (exp-unrounded- round-carryout-with-overflow+ 1)[17: O];
exp-rounded-no-overflow— (exp-unrounded- round-carryout-no-overfloyl7 : Of;
if get-man(x) = 0 then
z < (sign, 0, get-expo(x))
else if get-mary) = 0 then
7 < (sign 0, get-expo(y))
else if overflow= 1 then
z < (sign man-rounded-with-overflof2M — 1 : M], exp-rounded-with-overfloyw
elsez <« (sign man-rounded-no-overflg@M — 2 : M — 1], exp-rounded-no-overflow
if op = OP-DIVthen
if overflow = 1 then
r < (0, compl(man-unrounde@M)[2M — 2 : M — 1],217 — 2)
else if round-carryout-no-overflow 0 then
r < (0, compl(man-unrounde@M)[2M — 1: M], 217 — 1)
elser < (0,2M — 1,217 _ )
else if op= OP-SQRThen
if overflow = 1 then
r < (0, (compl(man-unrounde@M) | 22M-N[2m —1: M], 217 — 2)
else if round-carryout-no-overflowt 0 then
r < (0, shricompl(man-unrounde@M)[2M — 2: 0], 1,2M)[2M —1: M], 21" — 1)
elser < (0,2M — 1,217 _2)

Figure 2:FPU-MUL (continued)
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under the following assumptions regarding the inputs.
(@) ope {OP-MUL,OP-DIV, OP-SQRTOP-LAST, OP-BACK};
(b) pcis a precision control specifier;
(c) if op = OP-LAST, then lastpc is an external precision control specifier;
(d) rcis arounding control specifier;
(e) x andy are normal encodings;
(f) if op = OP-BACK, thenl is a normal encoding.

3.2. Basic results
For convenience, we introduce several auxiliary variables. First, we define

sticky — sticky-with-overflow if overflow =1
y= sticky-no-over flow if overflow = 0.

Each of the variablesconst, add, round-carryout, trunc, man-rounded, andexpo-
rounded is defined in the analogous manner. We also define

P 2M if overflow = 1
| 2M -1 if overflow= 0,
u = mbits(pc),
and
; ;] trunc, ifrc # RC-NEARr sticky=1oradd?P —u—1]=1
TUIC =1 trunc& (22M — 1 — 2P—1). otherwise.
Lemma 3.1.

(a) sig(marunrounded = sig(t)sig(y),/20verflow:
(b) expo(marunroundedl = P — 1;
(c) sigxy) = sig(manunrounded;
(d) expoy) = expok) + expo() + overflow.
Proof. Sincex andy are normal encodings,
2°M=2 < man-unroundee: get-marix) - get-marty) < 2°M,

and (b) follows from Lemma.2.
By Lemmaz2.15,

man-unroundee= 2" ~1sig)2M ~1sig(y)
= sig(x)sig 6,)2—0verf|ow22M—2+overﬂow

— Sig(ﬁ)sig 6})2—overfI0W2expo(maﬁunrounde()i

which implies (a).
To derive (¢) and (d), we need only observe that

5 = sgn(d)sig () 22P°Osgn(§)sig §) 2XP°0
= sgnxy) [sig(ﬁ)sig@)/zoverﬂow] 2€XPpO)+expo)-+overflow
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Lemma 3.2.
(a) sticky= 0iff manunroundeds (u + 1)-exact;
(b) inexact= 0 iff manunroundeds p-exact.

Proof. We have sticky-no-overflows 0 < 2!St(P9-2divides man-unrounded, and

sticky-with-overflow= 0
& 21b(PO-2djvides man-unrounded and man-unrounded[Isb¢p2) = 0
& 216092 djvides man-unrounded and 2 divides man-unroupigé®fPc)—2
& 2Isb(P9)-1djvides man-unrounded.

Thus, sticky= 0 iff 27 ~+D divides man-unrounded, and (a) follows from Lemgna4.
Similarly, it may be shown that inexaet 0 iff 2°~* divides man-unrounded, which
implies (b). O

Lemma 3.3.
(a) manrounded= (2°~round-carryoud | (add& trunc);
(b) manroundedP — 1] = 1,
(c) expo(marrounded < expo(add = P — 1+ round-carryout
(d) manroundeds divisible by2”—M
Proof. (a) In all cases,
man-rounded= (2 ~*round-carryou{ add & trund
and trun¢{P — 1] = 1. Thus, by Lemma8.7and2.11,
man-rounded= (2° ~tround-carryou® trunc) | (add& trund)
= 2”~Yround-carryou{ (add& trunc)
(b) By Lemma2.10, we may assume round-carryet) and hence
man-roundeflP — 1] = add P — 1].
Note that

add— rem(man-unrounded- rconst+ 1, 2° 1) if op = OP-BACK
~ | rem(man-unrounded- rconst 27+1) otherwise,

and that since
man-unroundee- rconst+ 1 < (2° — 1) + 2F — 1) + 1 < 2P+,
we have
2P~ < man-unroundeel add < 2+,

But since round-carryout add P] = 0, Lemma2.2implies add< 2 and hence ad@ —
1] =1.
(c) If round-carryout= 0, then

man-rounded= add& trund < add < 27,
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by Lemma2.9, and man-roundé# — 1] = 1 implies man-roundegt 2?~1; hence
expo(man-rounded= expo(add = P — 1.

On the other hand, if round-carryout add P] = 1, then exptadd = P, while
man-roundeck 2°*1 by Lemma2.8; hence expo(man-rounded P.
(d) Since Z—M divides trunc, the result follows from Lemmas® and2.8. O

Lemma 3.4. z is a normal encoding and
(a) sgnz) = sgn(xy);
(b) sig¢) = rem(manrounded2?)/2°-1;
(c) rem(expog), 218) = rem(expo ) + round-carryout 218,

Proof. First, observe that
z = (sign, man-roundegP — 1: P — M], exp-rounded
Let p = rem(man-rounded2”). By Lemma2.3,
p[P — 1] = man-rounde® — 1] = 1;

hence expo(p)= P — 1. Since man-rounded is divisible by’2", so isp. Thus, by
Lemmas2.4and2.14,

get-mariz) = man-roundeflP —1: P — M| =p[P —1: P — M| = p/2F—M.
It follows that
expo(get-mafx)) = expo(p)— (P —-M)=(P-1)—(P—-—M)=M — 1.
Since
get-expo(z)= exp-rounded= rem(exp-unrounded- round-carryout+ overflow, 218),

0 < get-expo(z) <28 and hence is a normal encoding. The proof is completed by
applying Lemma2.15.

(@) sgnz) = (—1)519" hence sg(t) = 1 < sign= 0 < get-sigrix) = get-signy) <
Sgn(x) = sgn(y) < sgnixy) = 1.

(b) sige) = get-martz)/2¥ 1 = (p/2F M) 2M~1 = p /2P -1,

(c) expo) = get-expo(z)— (217 — 1), where

get-expo(z)

= rem(exp-unrounded- round-carryout overflow, 218)

= rem(get-expo(x H+ get-expo(yH+ 217 + 1 + round-carryout+ overflow, 218)

= rem(expo@) + expo) + 218 — 2 4 217 4 1 + round-carryoutt overflow, 218)

= rem(expo@) + expo@) + overflow+ 217 — 1 4 round-carryout218)

= rem(expo@$) + 217 — 1 + round-carryout2'8). O

3.3. The operation®©P-MUL,OP-DIV, and OP-SQRT
This is our statement of IEEE compliance for multiplication.

Theorem 1. Assume thabp € {OP-MUL,OP-DIV, OP-SQRT},rc is a rounding con-
trol specifier,pc is a precision control specifier, and x and y are normal encodings. If
rnd(xy, rc, pc) is representable, theh= rnd(x y, rc, pc).
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Proof. Let

RC-NEG ifrc = RC-POS
r¢ =1 RC-POS ifrc = RC-NEG
rc otherwise.

Then rnd—xy, rc, pc) = —rnd(xy, rc, pc). Also, by inspection of the code that defines
FPU-MUL, it is easy to see that replacing either “gesign(x)” or “get — sign(y)” by its
complement and rc by tbas the effect of negatirgg It follows that it suffices to prove the
theorem under the assumptiohs- 0 andy > 0, which imply that sign= 0.

Note that (under these assumptions)

2P—1=1 " jfrc = RC-NEAR
rconst={ 2°~* —1 ifrc = RC-POS
0 otherwise.

In all cases, rconst 2°. Since man-unrounded 2° as well,
add= rem(man-unrounded- rconst 2°+1) = man-unrounded- rconst
If rc = RC-NEARand sticky= add P — u — 1] = 0, then by Lemma&.12,
trund = (2°M — 2P~y & (2°M — 1 — 2P~ 1y = (2°M _ pP—ntly
and otherwise
trund = (2°M — 2P—1y,
We shall show that
rem(man-rounded2’) = rnd(man-unroundegc, pc)2-"oundcaryout

by considering the following cases.
Case 1lround-carryout= 0

Since man-roundeé 2° by Lemma3.3, we must show
man-rounded= rnd(man-unroundedtc, pc).

Subcase 1.kc = RC-NEAR
First suppose sticky= add P — 1 — 1] = 0. Then Lemma&.3implies

man-unroundegd® — u — 1] = 1,

and by Lemmas.2and2.14, man-unrounded igt + 1)-exact but noj.-exact. Thus, by
Lemmas3.3,2.24, and2.31,

man-rounded= (man-unroundeg- 2°~#1) & (22M — 2P—nt1)
= trunc(man-unroundegt 2°7#~1 ;1 — 1)
= nealman-unroundedu)
= rnd(man-unroundedtc, pc).

In the remaining case, man-unrounded is eifirexact or no{ i + 1)-exact, and the same
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three lemmas yield
man-rounded= (man-unrounded- 2°~#1) & (22M _ 2P~
= trunc(man-unroundeg 21, 1)
= neafman-unroundedu)
= rnd(man-unroundedtc, pc).
Subcase 1.2c = RC-POS
By Lemmas2.24and?2.25,
man-rounded= (man-unroundee- 2°~# — 1) & (2°M — 2P~ 1)
= trunc(man-unroundedt 2°~* — 1, u)
= away(man-unroundedu)
= rnd(man-unroundedc, pc).
Subcase 1.3¢ = RC-CHOPRor rc = RC-NEG
By Lemma2.24,
man-rounded= man-unrounded (2°M — 2P~
= trunc(man-unrounded)
= rnd(man-unroundedtc, pc).

Case 2round-carryout= 1
In this case,

2P < ‘add= man-unroundeé- rconst< 2 + rconst
which implies
0 < rem(add 2°) < rconst< 2P+,
By Lemmas3.3,2.9, and2.8,

rem(man-rounded2”) = rem2” 1| (add&trund), 2¥)
=2P=1| (remadd 2°) &trunc)
=2P~1| (remadd 2°) & rem(trunc, 2°#))
=2P"1| (remadd 2”) & 0)
— 2P*l.

Thus, it suffices to show that raghan-unroundedc, pc) = 2°.
Subcase 2.7c = RC-NEAR
Since

man-unrounded- 2°~1=#* = man-unrounded- rconst> 2°,
nea(man-unroundedu) = 2° by Lemma2.30.
Subcase 2.2c = RC-POS
Leta = 2P — 2P~ Then
man-unrounded: 2 — rconst= 2" —2P"* + 1> q,
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and sincex is u-exact,
away(man-unroundedu) > g + 28PO@+1-n— 4 4 oP—1 — 2P

which implies awayman-unroundedu) = 2°.

Subcase 2.3¢c = RC-CHOPor rc = RC-NEG
This case is precluded by our earlier observation thatr@onst.
The proof is completed by applying Lemmagland3.1, which yield

sgnz) = sgnxy) = 1,
sig(?) = rnd(man-unroundegrc, pc)2-roundearyout-P+1
= rd(sig® $), rc, pc)2-round-carryout
and for somé € 7Z,
expo€) = expo@ ) + round-carryout 218.
Thus,
5 = md(sig®$), rc, po) 2PENH2% — (25, rc, pe) 2%,

But since rndxy, rc, pc) is representable, i.e., 4 2~ < expo(rndxy, rc, pc)) < 217,
and the same is true 6f

28| = |expo€) — expo(mdi$, rc, pe))| < 2'8,
and hencé& = 0. O
In the OP-DIV andOP-SQRTcases, an additional value is returned.

Lemma 3.5. Letop € {OP-DIV, OP-SQRT}pc = PC-*, and rc = RC-NEAR. Assume
that x and y are normal encoding3/2 < sig()sig(y) < 3, and|1 — xy| < 1/8. Then
(a)ris a normal encoding;
b)yr<1lsz>1;
(c)if op= OP-DIV, then2 — 25 — 21" M <7 < 2 — %3,
(d) if op= OP-SQRT, then3 — £9)/2 — 21" < 7 < (3— x§)/2.

Proof. First note that the hypothesis implies that e¢pp is either 0 or—1, and it follows
from Lemma3.4 that

expog) = expoky) + round-carryout

We consider the following cases.
Case loverflow= 1
In this case, expo(man-unrounded 2M — 1, but by LemmaB.1,

man-unroundee: sig$)22Y 1 = sig(®)sig($)2°M—? < 3. 2212
and hence
add= man-unrounded- 2" ~1 < 3.22M=2 | pM-1 _ p2M
and round-carryout 0. We have expd) = expo¢y) = 0, for otherwise
Xy =sigly)/2 = sig)sigy)/4 < 3/4,
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contradictingl — xy| < 1/8. Thus,
£9 = sig®) = sig(man-unrounded= man-unrounde® 1,
Also note that
compl(man-unrounde@M) = 2°M _ man-unrounded- 1
< 22M _ M1 _ g _ p2M-1
Subcase 1.Jop = OP-DIV
get-marir) = compl(man-unrounde@m)[(2M —2: M — 1]
= [(2°" — man-unrounded- 1)/2" 1|
= 2M+1 4 | _(man-unrounded- 1)/2 1]
= 2M+1 _ | man-unrounde®@ 1| — 1.

But
|man-unrounde®¥ 1| < man-unrounde®@¥ 1 = 2¥ 35
and
man-unrounde®” 1| > man-unrounde —1=2M3y —1;
hence

M1 MHL _oMz5 1 L get-marir) < 2MF1 — oMz < oM
andr is normal. Since expéj =2/ —2 - (217 - 1)= —1,7 <1< zand
2—xy—2M < =2"Mget-martr) < 2 — %3.

Subcase 1.2p = OP-SQRT
By Lemmas2.2and2.11,

compl(man-unrounde@Mm) | 22Y~1 = compl(man-unrounde@m) + 221
= 22M | 22M=1 _ man-unrounded- 1

- M.
hence
get-marir) = (compl(man-unrounde@M) | 2°Y~Yy2m — 1: M)
= (22M 4+ 22M-1 _ man-unrounded- 1)[2M — 1: M]
= (22" 4+ 2°M~1 _ man-unrounded- 1)/2¥ |
=2M 4 2M=1 4 | —(man-unroundeg- 1)/2¥ |
=3.2M-1 _ |man-unrounde®™ | — 1.
But
[man-unrounde®” | < man-unrounde® = 2M—135
and
|man-unrounde®¥ | > man-unroundet® — 1 =2""135 — 1,
implying

M1 < 2M-1(3_ 2§) — 1 < get-martr) < 2¥~1(3— %) < 2¥;
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hencer is normal. Again, exp@) = —1 and? < 1 < z. Thus
B—19)/2—2M <} =get-marir)/2" < 83— i§)/2.

Case 2overflow= 0

In this case, expo(man-unrounded 2M — 2, and exp@ty) = —1, for otherwise
1y =sigy) = sig)sigy) > 3/2,
contradictingl — xy| < 1/8. Thus
£9 = sig&$)/2 = sig(man-unrounded2 = man-unrounde®?M 1.

Subcase 2.Tound-carryout= 0

Since expaR) = expo¢y) = -1,z < 1.
Subcase 2.1.p = OP-DIV

get-marir) = (22 — man-unrounded- 1)[2M — 1: M]
= [(2°" — man-unrounded- 1)/2" |
=2 4 | —(man-unrounded- 1)/2" |
=2M _ |man-unrounde® | — 1.

In this case,
2M=1%5 — 1 < |man-unrounde®¥ | < 2M~135
and
oM=L _ 1 < oM _oM=135 1 < get-manr) < 2M —2M 135 < oM,
Since expat) = 21/ —1)— 21" -1)=0,7 > 1> 2, and
2— %y —2'"M < = get-manir)/2M 1 < 2 — £5.

Subcase 2.1.2p = OP-SQRT
Note that

— 22M 22M _ 22M—1 — 22M—1’

compl(man-unrounde@M) — man-unrounded- 1 >

while comp1(man-unroundedM) < 2°M: hence

rem(compl(man-unrounde@?), 2241,
= compl(man-unrounde@Mm) — 22" -1
= 2°=1 _ man-unroundeé- 1.

https://doi.org/10.1112/51461157000000176 Published online by CAmtBdge University Press


https://doi.org/10.1112/S1461157000000176

Proof of IEEE Compliance of the AMD-K¥ Processor

Therefore, applying Lemma 11, we have
get-marir) = shrlcompl(man-unrounde@M)[2M — 2: 0], 1,2M)[2M — 1: M]
= shr(rem(compl(man-unrounde@M), 2°M~1) 1, 2m)[2M — 1: M)
= shr2®” -1 — man-unrounded- 1,1, 2M)[2M — 1 : M]
= 2°M-1 4 |(2°M~1 _ man-unrounded- 1)/2))[2M — 1 : M]
= [(2°M~1 4 |(2°M~1 — man-unrounded- 1)/2])/2M |
=2M=1 4 || (2°"~1 _ man-unrounded- 1)/2])/2¥ |
=2M=1 4 | (2°-1 _ man-unrounded- 1)/2¥+1
=2M=14 oM=2 L | _(man-unrounded- 1)/2M*1|)
=3.2Y=2 _ |man-unrounde®@”+1| — 1.
But
2¥=235 — 1 < [man-unrounde®@ 1| < 2M—23$;
hence
M= _ 1 < 2M=2(3_ }$) — 1 < get-marir) < 2¥ 23— i§) < 2M.
Again, expar) = 0,7 > 1> z, and
(38— 19)/2— 22" M <7 = get-martr) /2"t < (3 - £§)/2.

Subcase 2.2ound-carryout= 1
In this case, get-man) = 2™ —1 and? = 1—- 2" < 1, while expdz) = expo@y) +
1 =0, so? > 1. Since adé= man-unrounded- 2M-2 > 22M-1 \ye have

22M=1 _ oM=2 < man-unroundedk 221 -1

and hence

which implies
2—fy—@ My I Mygprc2—3y—2M
and
B=3%p)/2—@M42727 My <p < (B3=%p)/2—27M,
O

The following corollary of Lemma.5 allows the outputs oFPU-MUL to be used as
inputs on the next iteration &fPU-DIV-SQRT.

Lemma 3.6. Letop € {OP-DIV, OP-SQRT}pc = PC-*, and rc = RC-NEAR. Assume
that x and y are normal encoding3/2 < sig(x)sig(y) < 3, and|1 — xy| < 1/8. Then
(a)if op = OP-DIV, then 3/2 < sigZ)sigF) < 3;
(b) if op= OP-SQRT, therB/2 < sig()sig(neati?, M)) < 3.

Proof. Note first that by Theoremi, |1 — z| < 1/8. Now suppose that < 1. Then
7/8<z < l.Ifop=OP-DIV,then1< 7 <2—xy < 9/8; hence siff)sig#) = 2z and
3/2 < 7/4 < 23F < 9/4 < 3. For the case op- OP-SQRT, letw = near#2, M). Since
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1< 7 < (@-1%9)/2 <17/16, 1< #? < 289/256< 3/2, which implies 1< w < 3/2.
Thus, sigg)sig(w) = 2zw and 3/2< 7/4 < 2Zw < 3.

Ontheotherhand, & > 1,then 1< z < 9/8. Ifop= OP-DIV,thenl> 7 > 2—xy—
21-M > 7,8 21-M - 3/4 and again si§)sig#) = 227, where 3/2< 227 < 9/4 < 3.
If op = OP-SQRT, then 1> 7 > (3 — xy)/2—2V"M > 15/16— 21-M ~ 7/8 and
1> 72 > 49/64, which implies > w > 49/64> 3/4. Thus, si¢?)sig(w) = 22w and
3/2<2zw < 9/4 < 3. O

3.4. The operatiorOP-LAST
In the OP-LAST case, the product is rounded to midistpc)+ 1 bits, essentially by
nearrounding.

Lemma 3.7. If op= OP-LAST, pc = PC-*, rc = RC-NEAR mbits(lastpc)= A, xand y
are normal encodings, and
_217

2727227 <85 < 22— 277D,

then
(@) zis (A + 1)-exact;

(b) expog $) < expog);
(€) |2 — £5] < 290D =41,

Proof. Note that
add= man-unroundegd- 27 —*—2
and by Lemm&.12,

22M _ oP==1 _ rynd.

trunc=
Let p = rem(man-rounded2”). We shall show that
| p2round-caryout _ man_ynrounded< 2842
and that
1 — 217 < expo(@$) + round-carryout< 217,

by considering the following two cases.
Case 1round-carryout= 0
By Lemma3.3, expo(adi= expo(man-rounded= P — 1; hence

o = man-rounded= add& (2°" — 2P=*=1) = trunc(add » + 1)
by Lemma2.24. Thus, by Lemma.20,
p < add= man-unroundeg- 2 ~*~2
and
p > add— 2(P~D-0+D+1 — man-unrounded 27 *—2.
If expo$) = 2717, then 2727 (2 — 27=1) < |#§] < 2-2"+1; hence
man-unroundee: 2° ~sigy) > 2P 12— 2721 = 2P — 2P —2,

contradicting add< 2. Thus, 1- 217 < expo@y) < 217.
Case 2round-carryout= 1
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In this case,
2" < add= man-unrounded- 2742 < 2F 4 2P=*=2,
which implies
|27 — man-unroundeld< 2°~*-2
as well as
rem(add 2°) < 2P -2,
Thus, by Lemma8$.3,2.9,2.8, and2.7,

p =rem2’1| (add&trund), 2y =271 | (rem(add 27) & trunc)
=2P71| (remadd 2°) & remtrunc, 2°*72)) = 21| (rem(add 2") & 0)
— 2P—l
and therefore
|2p — man-unrounded= [2° — man-unroundeid< 27 %2,
If expo@$) = 27, then 2 < 35| < 22" (2 — 2*~1); hence
man-unroundee: 27 “sigy) < 2P 12— 2771 = 2F — 242,

contradicting add> 2°. Thus, 1— 217 < expo&y) + 1 < 217,
Note that in both caseg,is (1 + 1)-exact; hence so & since sigf) = p2!~*. Since

1 — 217 < expo@$) + round-carryout< 217,
and expog) must lie in the same interval,
expog) = expo@y) + round-carryout
Thus,
13 — 35| = |p2L—F2expoG)+round-carmyout _ gjq ¢ ) 2expo)|

_ 2expoc€57)+1fP|p2rounotcarryout_ man-unrounded
< 2exp0(£_€))+l—P2P—A—2

— 2expo(£§)—x—l

3.5. The operatiorOP-BACK
In the OP-BACKcase, the product is compared, by way of subtraction, to the mput
The results of the comparison are given by the outpatsdinexact.

Lemma 3.8. If op= OP-BACKpc = PC-*, rc = RC-CHOP, X and y are normal encod-
ings, and£§ — d| < 22P°=3, then
(@) %3] < |d| < getmanz)[M — 2] = 1;
(b) Xy = d & getmanz)[M — 2 : 0] = inexact= 0.
Proof. (a) Since
rconst-with-overflow= compl(ﬁ/’ get-marid), 2M)
= 22" _ 2Mget-marid) — 1
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and
rconst-no-overflow= shr(rconst-with-overflow0, 2M)
= [ (2*M — 2Mget-marid) — 1)/2]
= 22M-1 _ oM-lget-marid) — 1,
we have
rconst= 2" — 2P~Mget-marid) — 1,
and thus

add= rem2” + man-unrounded- 2~ get-marid), 2° 1)
=rem(2” + 2P 1sigG ) — 2° ~Lsigd), 28+
= rem2° 712 + sig®) — sigd)), 27+
= 2P712 +sig$) — sigd)).
Note also that truric= trunc= 22M — 2P—M
By Lemmas2.4,2.5,2.11, and3.3,
get-mariz)[M — 2 : 0] = (man-roundeflP —1: P — M])[M — 2: Q]
= man-roundeflP — 2: P — M|
= (add&trund)[P —2: P — M]
=2 Madd2M —1: P — M))[P —2: P — M]
=add2M —1: P — M][M —2: 0]
=addP —-2: P — M]
=p[P—-2:P— M],
wherep = rem(add 27-1). In particular, by Lemm&.5,
get-mariz)[M — 2] = get-mariz)[M — 2: 0][M — 2]
=p[P—2:P—M][M—-2]=p[P-2].
We must show
plP =21 =14 [£3] < |d|.
Since
185 — d| = (27PN -expodsig ¢ 5) — sig(d) (2P0 < 22XPOd)-3,
we have
|22xPot)—expoldisig ¢ §) — sigd)| < 272,

which implies|expo®y) —Aexpoé)| < 1. Thus, we have three cases to consider.
Case 1expoiy) = expod) .
In this case|sig(ty) — sig@)| < 273, R
Suppose first thgk y| < |d|. Then sig¢y) < sigd) and
2P > add= 27712 + sigy) — sigd)) > 2" 12— 278 > 2P-1 4 2P 2,
Thus,
2P=2 <« p < 2P,
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andp[P — 2] =1by LemmaZ.ZA. A
On the other hand, ifcy| > |d|, then sigy) > sig) and
2P <add< 2P712+278) < 2F 4 2P—2,

hencep < 2°~2 andp[P — 2] = 0.
Case 2expoiy) =expod) +1
Here,|xy| > |d| and

0 < 2sig%9) — sigd) < 273
Thus,
U S _ _
sigE ) < Es,|g(d) +274<14+274
and
sigd) > 2sigp) —23>2—273
It follows that
add< 2P7Y24+1+4+2%—24273% < 2P 14 2P2
But add> 27712+ 1—2) = 2"~} hencep < 2’2 andp[P — 2] = 0.
Case 3expoiy) = expod) — 1
In this case|xy| < |d| and
P 3
0 < sigd) — E&g(xy) < 27°.
Thus, sigd) < 1+ 273, sig$) > 2— 22, and
add> 2P1242-22_-1-29) > 3.2P" 1 _2P-2_p. pP-1, pP-2
But
add<2’"'2+2-1)=3.2" "L

hencep > 22 andp[P — 2] = 1. )

(b) Note that by Lemma3.1and3.2, inexact= 0iff Xy is M-exact. Thus, iky = d, then
inexact= 0 and add= 2”, which impliesp = 0, and hence get-ma&n[M — 2: 0] = 0.

Conversely, suppose

get-mariz)[M —2:0] = p[P —2: P — M] = inexact= 0.
Thensigg ) is M-exact, i.e., ¥~ 1sigy) € Z, hence Z~1sig(t3) is divisible by 2.
Similarly, 2°~1sig(@) is divisible by 22~ and hence, so are add andThus,
p=(p/2"M2PM = | pj2P =M 2P M = p[Pp —2: P — M]2""M =0

Sincety = —d is impossible, we need only shoW§| = |d|. In view of (a), we may
assumexy| > |d|. Thus, tpere are two cases to consider.
Case 1expoiy) = expod) .
In this case, sig(y) > sig@), which implies
p = 2P (sig#3) — sigd)) = 0,
hence sigt$) = sig) and|$| = |d|.
Case 2expo@y) = expod) + 1
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If this were to occur, then we would have
p =211 + sig$) — sigd)) = 0,
implying sigd) = 1+ sig(&$) > 2, which is impossible. O

4. Division and square root

4.1. The program FPU-DIV-SQRT
The hardware for division and square rootis represented by the prédtaaDIV-SQRT,
shown in Figure§ and4. Our analysis will be based on an execution of

FPU-DIV-SQRT(op,pc,rc,a,b,z),

with inputs as follows.

(a) ope {OP-DIV, OP-SQRT};

(b) pcis an external precision control specifier;

(c) rcis arounding control specifier;

(d) a andb are normal encodings.
In the case op= OP-DIV, the outputz represents an appropriately rounded approximation
of the quotienti/b; when op= OP-SQRT a is ignored and an approximation ofb is
returned.

Both operations are based on Goldschmidt’s Algorithm [1], a variant of Newton-Raphsc

approximatiop. Our analysis of division will involve a sequeBgget, &2, £3 of approxi-

mations to ¥b, where&g is derived from a table and the othgrare computed by three
successive Newton-Raphson iterations. The square root involves a similar sequence of

proximations to lx/g.

Although the algorithm does not explicitly compute #ador i > 0, a sequence of calls
to FPU-MUL produces an encodingof eitheraé; orl?é;i , modulo rounding error, according
to whether op= OP-DIV or op= OP-SQRT, where (a)= 1 if pc = PC-32, (b) i =2
if pc = PC-64, and (c)i = 3 if pc = PC-80 or pc= PC-87. Lemmas4.9and4.13give
estimates of the erroig — a/b| and|§ — \/Z|_ Note that the constrainZ > 75 on the
multiplier width is required in the proofs of these lemmas.

The approximatiog is compared to the exact value by means of a final c&Rd-MUL
with op = OP-BACK. Using the results of this comparisgrs then adjusted to produce
the correctly rounded resut The correctness of this result is guaranteed by TheoBems
and3.

4.2. Initial approximation

The initial approximatiorng to the reciprocal ob, in the case op= OP-DIV, is derived
from a pair of tables, each consisting 8P®it vectors, which we represent by the functions
recip-rom-pandrecip-rom-n. If sigh) has the binary representatiobibsbs . . . , then the
bit vectors

b1by .. .bob1o = get-marnb)[M — 2: M — 11]
and
b1...bsb11...b15 = cat(get-marib)[M — 2 : M — 6], get-marih)[M — 12: M — 16],5)
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Program FPU-DIV-SQRT(op,pc,rc,a,b,z):

if op = OP-DIV then

{sign < get-signa) = get-signb);

p-value < recip-rom-pget-marnb)([M — 2 : M — 11]);

n-value < recip-rom-n(catget-manb)([M — 2 : M — 6],
get-marib)[M — 12: M — 16],
5));

estimate< (p-value+ n-value)[16: O];

xo < (get-sigrib),

2M—1Testimatg] 2M—1,

(218 — 2 + compl(get-expo(h)18) + estimat¢l6])[17: 0]);
FPU-MUL(OP-DIV, PC-*, NIL, RC-NEAR, b, », do, ro, NIL, NIL);
FPU-MUL(OP-MUL,PC-*, NIL, RC-NEAR, a, », no, NIL, NIL, NIL);
if pc = PC-32

then FPU-MU L(OP-LAST,PC-*, pc,RC-NEAR, m, ro, ¢, NIL, NIL, NIL)
else{FPU-MUL(OP-DIV, PC-*, NIL, RC-NEAR, g, ro, d1, r1, NIL, NIL);

FPU-MUL(OP-MUL,PC-*, NIL, RC-NEAR, m, ro, n1, NIL, NIL, NIL);

if pc = PC-64

then FPU-MU L(OP-LAST,PC-*, pc,RC-NEAR, n, r1, ¢, NIL, NIL, NIL)
else{FPU-MUL(OP-DIV, PC-*, NIL, RC-NEAR, d, r1, d2, r2, NIL, NIL);
FPU-MUL(OP-MUL,PC-*, NIL, RC-NEAR, 1, r1, n2, NIL, NIL, NIL);
FPU-MUL(OP-LAST,PC-*, pc,RC-NEAR, i, r2, ¢, NIL, NIL, NIL)}};
FPU-MUL(OP-BACK,PC-*, NIL, RC-CHOP, b, grem, NIL, a, inexac)}

else if op= OP-DIV-SQRT then
{sign < O;
p-value «<— sgrt-rom-pcat(get-expo(b)[0, get-marib)[M — 2 : M — 11],10));
n-value < sqrt-rom-n(catget-expo(b)[0,
cat(get-marnb)[M — 2 : M — 6],
get-marnb)[M — 12: M — 16],
S),
10));
estimate< (p-value+ n-value[16: 0];
xo < (get-signib),
2M-1estimatg 2M-1,
shr((218 4 217 — 3+ compl(get-expo(b)19) + estimat§l6])[18: 0], 0, 19)):
FPU-MUL(OP-MUL,PC-*, NIL, RC-NEAR, ¥, xo, o, NIL, NIL, NIL);
FPU-MUL(OP-MUL,PC-*, NIL, RC-NEAR, b, , do, NIL, NIL, NIL);
FPU-MUL(OP-SQRTPC-*, NIL, RC-NEAR, b, ¢, no, ro, NIL, NIL);

Figure 3:FPU-DIV-SQRT
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if pc = PC-32
thenFPU-MU L(OP-LAST,PC-*, pc,RC-NEAR, @, ro, ¢, NIL, NIL, NIL)
else{FPU-MUL(OP-MUL,PC-*, NIL, RC-NEAR, v, ro, 71, NIL, NIL, NIL);
FPU-MUL(OP-MUL,PC-*, NIL, RC-NEAR, @, ro, d1, NIL, NIL, NIL);
FPU-MUL(OP-SQRTPC-*, NIL, RC-NEAR, n, t1, n1, r1, NIL, NIL);
if pc = PC-64
thenFPU-MU L(OP-LAST,PC-*, pc,RC-NEAR, d, r1, g, NIL, NIL, NIL)
else{FPU-MUL(OP-MUL,PC-*, NIL, RC-NEAR, g, r1, 2, NIL, NIL, NIL);
FPU-MUL(OP-MUL,PC-*, NIL, RC-NEAR, d, r1, d2, NIL, NIL, NIL);
FPU-MUL(OP-SQRTPC-*, NIL, RC-NEAR, n, 12, n2, r2, NIL, NIL);
FPU-MUL(OP-LAST,PC-*, pc,RC-NEAR, g, r2, ¢, NIL, NIL, NIL)}};
FPU-MUL(OP-BACK,PC-*, NIL, RC-CHOP, ¢, grem NIL, b, inexac}};

if get-mar(rem)[M —2:0] =0
then rem-zera— compl(inexactl)
else rem-zera— 0;
rem-neg<« compl(get-mafrem)[M — 2], 1) &compl(rem-zerdl);
rem-pos<— get-marrem[M — 2];
g-Isb < get-marig)[M — mbits(pc)];
g-guard < get-marig)[M — mbits(pc)— 1];
if op = OP-DIV A get-marfa) = 0 then
7 < (sign 0, get-expo(a))
else if op= OP-SQRTA get-marib) = 0 then
z < (sign 0, get-expo(b))
else if ((rc = RC-POSA sigh= 1) v (rc = RC-NEGA sign= 0) v rc = RC-CHOP)
Ag-guard= 0 A rem-neg= 1 then
if get-manq) & (ZM _ 2M—mbits(pc)) —oM-1
thenz < (sign, 24 — 2M-mbits(pe) dec](get-expo(q)18))
elsez <« (sign
((get-mamq) & (2M _ 2M—mbits(pc))) + oM _ 2M—mbits(pc))[M —1:0],
get-expo(q))
else if ((rc = RC-POSA sigh= 0) v (rc = RC-NEGA sigh= 1))
A(g-guard= 1V rem-pos= 1))
v(rc = RC-NEARA g-guard= 1 A rem-pos= 1)
v(rc = RC-NEARA g-guard= 1 A rem-zero= 1 A g-Isb = 1) then
if get-mar(q) & (2M _ 2M—mbits(pc)) — oM _ 2M—mbits(pc)
thenz < (sign 2M~1, (get-expo(g+ 1)[17: 0])
elsez « (sign
((get-marig) & (2M _ 2M—mbits(pc))) + 2M—mbits(pc))[M —1:0],
get-expo(q)) |
elsez < (sign get-marig) & (21 — 2M-mbits(pc)) get-expo(q)).

Figure 4:FPU-DIV-SQRT (continued)
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are used as indices into these tables. The results are added and the 16-bit sum is appe
to a leading 1 and/ — 17 trailing O's to produce get-méary). For op = OP-SQRT, a
separate pair of tables, represented by the funcsqgrtsrom-pandsqrt-rom-n, is similarly
used to derive an initial approximation to the reciprocal of the square rdot of

The functionsRo, So, andS1, which are defined in terms of these functions, represent
the computation of get-méaxyp) in the three cases listed in Lemrial below.

Definition 4.1. Foralli € N,
(@) Ro(i) = 218 + recip-rom-p({14: 5]) + recip-rom-n(cati[14: 10], i[4 : 0], 5));
(b) So(i) = 216 + sqgrt-rom-p({14 : 5]) + sqrt-rom-n(cati[14 : 10], i[4 : 0], 5));
(c) S1(i) = 216 4+ sqrt-rom-p@10 + i[14: 5])
+sqrt-rom-n(2° + cat(i[14: 10], i[4 : 0], 5)).

While space does not allow a complete listing of the tables here, we list instead tt
following three lemmas, which contain all required relevant information, and which hav
all been verified by direct computation, using ACL2.

Lemma4.l. Forall i € N, ifi < 21° thenRo(i) € N, So(i) € N, $1(i) € N, and
expo(R(i)) = expo(H(i)) = expo(s(i)) = 16.

Lemma4.2. Foralli € N, ifi < 215 then
(@) 22 —3.216 < Ro()(2Y¥ + i) < Ro()(2V¥ +i +1) < 2824 3. 216,
(b) 2*8 — 3232 < §5(1)2(25 + i) < So()2(2P+i+ 1) < 284+ 3.2%%
(€) 2% —3.2%3 < 51()22¥ +i) < S1()2R¥ +i+1) < 22+ 3.2%,

Lemma4.3. Foralli e N, ifi < 215, thenSo(i)? < 222 < 51(i).
The relationship betweery andb may be described in terms &, So, andSs.

Lemma 4.4. Let] = getmanb)[M — 2 : M — 16]. Assume that p = OP-DIV, then
getexpo(b) < 218 — 3. Thenxg is normal and

.. | sgnb) if op= OP-DIV
(2) sgrixo) = { 1 if op = OP-SQRT:
2-16Ry(I) if op= OP-DIV
(b) sigtép) = { 2716S0(1) if op= OP-SQRTandgetexpo(h)[q = 0
2-165,(1) if op= OP-SQRTandgetexpo(h)[q = 1;
.. | —expob) -1 if op = OP-DIV
(c) expotio) = { —lexpo®)/2] —1 if op= OP-SQRT.
Proof. First consider the case ep OP-DIV. By Lemma2.5,
get-marib)[M —2: M — 11] = get-maip)[M — 2: M — 16][14: 5] = I[14: 5],
hencep-value= recip-rom-p (114 : 5]). Similarly,
n-value= recip-rom-n(cat/[14: 10], I[4: 0], 5)).
By Lemma4.1,
p-value+ n-value= Ro(I) — 216 < 217 — 216 = 216,
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hence
estimate= p-value+ n-value < 2'°
and by Lemma.8,
get-marixg) = 2¥estimate 2¥~1 = 2M~17(estimate 2')
= 2M-17(estimatet 216) = 2Y 17 Ry(1).
Since estimatd6] = 0 and get-expo(bx 218 — 3,
get-expo(y) = rem(2® — 2 + 218 _ get-expo(b)— 1, 2'8) = 218 _ 3 _ get-expo(h).
TheOP-DIV case now follows easily from Lemmadsl and2.15.

In the case op= OP-SQRT, we may similarly show that get-niag) = 2175, (1),
wherej = get-expo(b)[(. Now

(218 4+ 27 _ 3+ compl(get-expo(h)19) + estimatél6])[18: 0]
= (218 + 217 — 3+ compl(get-expo(H)19))[18: 0]

=rem(2*® + 217 — 34 compl(get-expo(h)19), 2%

= rem(2*8 + 217 — 3+ 21° _ get-expo(b)- 1,2'9)

=rem(2*8 + 217 — 34+ 2% _ (expod) + 2" — 1) — 1,29

= rem(2*8 — expop) — 3,219

=2 _ expof) — 3.

Thus,
get-expo(y) = shr(2*® — expod) — 3,0, 19)
= [(2'° — expob) — 3)/2)
=21 _ 14 |—(expob) +1)/2),
and

expolo) = |—(expob) + 1)/2] = —|expob)/2] — 1.
O

The error associated witty is characterized by the next two lemmas, which also establist
the bounds required by Lemn3ab.

Lemma 4.5. If op = OP-DIV andgetexpo(b)< 28 — 3, then
(@) |1 — %ob| < 3-2716;  (b) 3/2 < sig(¥o)sig®) < 3.

Proof. (a) By Lemma4.4,
YXob = sig(p)sig(h)22PO0+exP0b) _ gig(io)sigh) /2.
Let ] = get-manib)[M — 2: M — 16]. Since 2/~1 < get-marib) < 2M,
I = [rem(get-martb), 21 ~1)/2¥ 16| — | (get-martp) — 21 ~1) /2116
= |get-marib) /2" 716 — 213,
hence

get-marib) /2116 — 215 _ 1 < | < get-marib)/2" 16 — 215,
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which along with Lemm&.15, implies
2715215 1 1) <sigh) < 27182 + 1+ 1).
Thus, by Lemmad.4and4.2,
1-3.2718 < 2732R5(1) (2% 4 1) < ob < 2732Ro(1)(2Y + 1 +1) < 1+4+3.2716,
(b) This follows from (a) and the observation that si§6ig®) = 2xpb. O

Lemma 4.6. If op= OP-SQRT) > 0, andgetexpo(b)< 218 — 3, then
() |1 — Xo%b| < 3-2716;
(b) 3/2 < sig(¢?)sig?) < 3;
(c) X% is representable.

Proof. LetI = get-manb)[M —2: M — 16]and expo@) =2r +s,where 0< s < 1.
Casels =0
(a) In this case, get-expo(b)[6= 1. By Lemmad.4,

¥o2b = sig(¥o)2sig(h)22eXPaio)+expob) _ gig(¢y)2sig ()22~ D+
= sig(¥o)?sig ) /4 = 27 3451(1)?sigb).
Thus, by Lemmat.2,
1-3.2716 c 279951 (1N22Y¥ + 1) < %%h < 27%951(1%(2® + 1 +1) <14 3-2716,

(b) By Lemmas4.4 and4.3, sigp)? = 273251(1)2 > 2, which implies sigip?) =
sig(¥0)2/2. Thus,

Xoh = sig(io)?sigb) /4 = sig(io?)sigb) /2.

The claim now follows from (a).
(c) By Lemmas4.1and4.4, xp is 17-exact, and it follows thafy? is M-exact. Since
expop) > 1— 2%,

expolo) < —[(1—-2)/2) —1=2° -1
and
expoo?) < 2expaxg) + 1< 217 — 1.
But since expd¥) = get-expo(b)— (217 — 1) < (218 —3) — (217 — 1) =217 — 2,
¥o? = sigeio?)sigB)/2b > sigb)/2b = 271-e000) > o1-2

hence expofy?) > 1 — 217.
Case2s =1
() In this case, get-expo(b)[6= 0. By Lemmad.4,

¥o2b = sig (o) 2sig(h)22SPa0)+expol) _ gig (y)2sig(h) 22— D+ +1
= sig(¥0)?sig () /2 = 2~ 3So(1)?sigb).
Thus, by Lemmat.2,
1-3.2716 - 27985y(1)2(215 1 1) < %p%h < 27%88o(1)2(2® + 1 +1) <1+ 3.2716,
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(b) By Lemmas4.4 and4.3, sigp)2 = 2732S9(1)2 < 2, which implies sigip?) =
sig(fo)2. Thus,
X0%h = sig(i)3sigb) /2 = sig(éo?)sig®) /2.

(c) Asin Case lxo is M-exact and exp@’o?) < 217 — 1. Since expth) < 217 —2 and
expob) is odd, expok) < 217 — 3; hence

expolo) > —|[ (27 - 3)/2] —1=1-2'°
and

expoip?) > 2expaxp) = 2 — 247

4.3. The operatiorOP-DIV
Given an initial approximatiofp of 1/b, the Newton-Raphson formula

& = &-1(2— b&i-1)
gives a converging sequence of approximati&ng,, . .. The relative error of; is
1/b — &
1/b

Thus, the following lemma (which is proved by simple arithmetic) shows that this sequenc
is quadratically convergent.

= |1 bg|.

Lemma4.7. Leth, x € Q and lety = x(2 — bx). Thenl — by = (1 — bx)?2.

Using Lemma4.7, we shall derive an error estimate foms an approximation af/b.
First, we prove the following technical lemma.

Lemma 4.8. Assumej is (u + 1)-exact, wherew > 1, andg # 0. Let¢ € Q satisfy
expo(¢) < expogq),
1§ — ¢] < 29P0mid
and
ja/b — ¢| < 2°XP0a/P =2,
Then
G — &/l;| < 2min(expo@),expo@/l§))—u.
Proof. First note thatg| > 4|§| > 16|a/b| hence expa)) > expo@/b) — 1. Since
1q —a/bl <1g — ¢l +1ajb — ¢| < 2PODTHTL 4 2EPOD U — PEPOD—H

we may assume exp/b) < expog). But|a/b| > |g|/2, hence exp@/b) = expo§)—1.
We may also assume expo(&)expog), for otherwise expo(¢ X expo@/b) and

G —a/b| < |G — ¢l +1a/b — ¢ < 29011 2expo/b)—u—1  gexpot/b)—.
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If |G| > 28%P°@) then|g| > 28XP0@) 4 28XPO@)—1 [y | emma2.13, and
1§ —a/bl > 14| — |a/b| > 25P0D 4 28XPO@ -1 _ 28XPO@/b)+1 _ 9expo@)—u_
Therefore)g| = 28P°@), which implies|¢| > || and
lg —a/b =141 — a/b| < |¢| — |a/bl < ¢ —a/b| < 22Po@/H=n,
O

We shall assume here thaandb are both positive; this assumption will be relieved as
in the proof of Theoreni .

Lemma 4.9. Assumeop = OP-DIV, & > 0,5 > 0, expob) < 217 — 2, 3.2727 ~
la/b| < 3- 221 andmbits(pc)= u. Theng is normal,g is (u + 1)-exact and
G —a/b| < omin(expog),expod/b))—u_

Proof. Leta =27M, 8 = 26xp0a/b)  ande = 3216, We define a sequence of approxima-
tionség; of a/b by

._ ) *Xo ifi=0
i = &-12— l;&_l) if i >0.

Sincea andb are positive, so are thg, as well as every product computed ByU- MUL

By Lemmast.5and4.7,|1— b§l| < €? foralli. Thus bg, <1+¢? and 2—b§, <1+¢€?
We also have

a& = @/by(be) < 281+ €2)
and
/b —agi| = @/b)1 - bgi| < @/b)e? < 2pe?.
By Theoreml, dp = nearbxy, M) = neaxbég, M); hence by Lemma.26,
(do — bio| < 25XPOC5)M < =M

Note that our bounds foiéi/5| ensure that the hypotheses of Theorkmre satisfied by
x =a andy = xg. Thus,

o — ago| < 2€XPOiso)—M < 2expoﬁ/5)+l—M — 2uf,
and by Lemma.5 (the hypotheses of which are ensured by Lendni3,
0<2-— bfg—Zoe o <2-— béo
Therefore,
rory < (ako + 20B)(2 — béo) = a1 + 20p(2 — bko) < a1+ 2aP(1+€)
< a&1+ 20B + 27 Bap,
Horg > (ako — 20)(2 — béo — 20) = 41 — 20 (2 — bo) — 20ako + 4’
> a&1 — 20B(1+€) — 2a2B(1 + €) > a&1 — 6apf — 2~ 2ap,
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and
lrioro — a/b| < lrioro — a1l + |agy — a/b| < Tap + 2Be?
< (7-27549.273Yg _ 2-27g
_ 2expo@/5)—27‘
Suppose pe= PC-32. Thenu = 24 and
rioFo — &/l;| < 2expo@/l§)—27 - 2exp0@/l§)—u—2_
By Lemma3.7,§ is (1 +1)-exact, expoforp) < expog), and|igrip—g| < 28¥Potioro)—u—1,

We may now invoke Lemmad.8with ¢ = nprp, which yields the desired inequality.
Thus, we may assume that gcPC-32. Now

doro < (b&o + o) (2 — bko) = b1 + «(2 — bko) < bé1 + o +27Ha,
doro > (bgo — @)(2 — bo — 2a) = b&1 — 2abko — a(2 — bko) + 20
> b& —20(1+€) —a(l+e€) > b&y — 3a — 2713,
and Lemma.26implies
\dy — doro| < 22XPODDM < g,
hence
d1 < dofo + a < 551 + 20 + 27y
and
di > dofo —a > 1351 — do — 2713y,
By Lemmas3.5and3.6,
A < 2—dofo < (2— 1351) + 30+ 27 1%
and
AL > 2—dofo — 2a > (2 — bg1) — 3w — 27 > 0.
Continuing in this manner, we have

iy — rigrp| < 22RO =M < a8,
11 < Hofo 4 20B < ag1 + daf + 2 3B,
1L > rgiy — 2aB > ag1 — 8af — 2 FuB,

WA < (GE1 + dap + 27 Bap) (2 — bEy) + 3a + 27 13)
< a2+ (dap + 27 BB (1 + €2) + 281 + €2) (B + 27 )
+(4aB + 27 Bap)(Ba + 27 Ba)
< a&r + 10ap + 27 ap,

i > (a&1 — 8apf — 27 2uB)((2 — b&r) — 3+ 27 M)
> 4&r — BaB + 27 Pap)(1+ €% — 2B(1 + ) (B + 2 )
> a&p — 1dap — 2 B,
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and
1A — a/bl < iy — ago| + |ag2 — a/b| < 15aB+ 27 ap + 28
<(15-277°481-2783p <275
_ 2expo@/l3)—56.
Suppose pe= PC-64, and thereforeu = 53. Then
li1FL — &/l;| < 2expo@/1§)756 < 2expo@/l3)7;¢72_
The remaining hypotheses of Lemnmia, with 171 substituted forz, again follow from

Lemma3.7, and the desired inequality follows.
Thus, we may assume pe PC-80 or pc= PC-87. Continuing, we have

dify < (bgy + 20 + 27 0) (2 - bE1) + 3 + 27 )
< bty + 2o + 27 Y) 1+ €d) + Ba+ 27 Ba)(1 + €2)
+o + 27 M) (B + 27 13)
< 1352 + 50 + 27 1%,

difL > (b&1 — 4o — 27 Ba) (2 — bE1) — 3o — 27 M)
> b&r — (4o + 27 Ba)(1+ €2) — (14 €2 (Ba + 2 1)
> [352 —Ta— 2712,
i <2—dify < (2— 1352) +7a+ 2 Y,
P> 2—diA — 20 > (22— 1352) —T7a—214 >0,
g — 1i1r1| < 22P0ED=M < oap
1y < 1AL+ 208 < aEr + 120B + 27 Map,
ny > n1f — 2aB > a&y — 16aB — 2_11aﬂ,

1ors < (682 + 1208 + 27 NaB) (2 — b&o) + Ta + 27 H2a)
<a&3+ 1208+ 27 M)A+ € + 281 + € (Ta + 27 a)
+(120B + 27 aB) (Ta + 271%a)
< &3+ 260+ 2 %8,
and
1iofy > (€2 — 160 — 27 ap) (2 — b&r) — Ta + 27 Ya)
> g3 — (16aB+ 2 HaB) (1 + €*) — 2B(1 + €4 (Ta2 + 27 %)
> a&3 — 30up — 2 %p.
Finally, sinceu < 68,
lrioFa — a/b| < |rizrs — as| + |aks — a/b| < 31ap+ 2Be®
<(30-2775481.27110g - >-70g
< 2expo@/13)—;4—2,
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and the lemma follows from Lemm&8, with¢ = /5. O

4.4. The operatiorOP-SQRT
The Newton-Raphson formula for approximatingﬁj;/is

£ = S’ ML 3—hE? ).

Since the relative error of this apprOX|mat|on is

“WVb| Ve 1) < e — 1 + 11 = 16— 11
1/f

convergence is established by the following lemma, which is proved in [8].

Lemma 4.10. Letb, x € Q with 0 < bx? < 4and lety = $(3 — bx?). Then
0<1—by? < (1—bxd2
We shall use Lemma.10to derive an error estimate fgrin the OP-SQRTcase.
Lemma 4.11. For all i € N, let&; be defined by

£ — X0 ifi=0
T ERA@E-bg? ) ifi>0,

and lete = 3/2'%. Assume thaj > 0andg is (u + 1)-exact, where > 24
Let¢,h € Qsuchthatd < ¢ < hand¢? < b < h?. Lets,n € QT andi € Zt such
that

expo(¢) < expogq),

g — ¢| < 28XP0O)—n=1

|bg; — ¢| < 2LexPo0)/2ly)

and
20+ 8% <27t
Then
h> q— 2min(expo@),expo(h))—u
and

{ < q _’_Zmin(expo@),expo(ﬁ))—u.
Proof. By Lemmast.6and4.10, 0< 1 — hg2 < 2, wheree = 3/218, and hence
(5§i)2 — E’(Bézz) -~ l;(l _ 621) -~ 2expo@)—l -~ (zLexpob)/ZJ—l)Z

andbg; > 21expo@)/2-1,
Since|g — ¢| < 22P°O~1"1< ¢ /4,4 > 3¢. Sincen < 2772,

bt — g1 < 21Pe02m1=2  fgomnl < gy /4,
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and hencg > 3¢ > f%b&;, which implies

81
2 —

It follows that expog) > lexpof) /2] — 1.
Sinceh? > b > b(béz) = (b&)?,

bEz g —(1g — ¢l +1b& — ¢
— (28XPO(O)—n— 14 2expog)—pi— 1) >4 — 28XPOg)— k.

Therefore, we may assume expo(h) expog). But |k| > |g|/2; hence expth) =
expo@) — 1. Also note that expo(hy [expod)/2], for otherwiseh < 2exPo0)/2] and

b < B2 < 22Lexpo(5)/2j < 2exp0¢3).
We may further assume expo(&) expoq), for otherwise expo(¢ X expo(h)and

>b& >§— (1§ — ¢l + 1b& — ¢
§ — (2P0 —u-1 2Lexpo¢3)/2m72) > § — 29XPO—k

If § > 28XPO@) theng > 28%PO@) 4 2eXPO@)—1 hy | emma2.13, and
h > § — 22PO@)—1 > PeXpOG) — Hexpo(+1
Thereforej = 28%P°@  which implies: > § and
h>be =4 — @ - bE) > — (¢ —b&) > § — 2@PV/AT=2 5§ geeett

In order to derive the bound fd, we may assume exppX < expo(¢), for otherwise
¢ < § and the inequality holds trivially. Sina@&;)2 > b(1 — €2),

P <h<BE)? Q- < [bg/(L— )P,
and hence
0 < b )(1—€?) < bE (L + 262).
Recall that expal) > |expob)/2] — 1 andg > =xb&;; hencebg; < 28P°@+2_ Thus,
€ < b&(1+26%) < bt +82 270D < G+ 1§ — | + |t — bt| + 8?2290

< § 4 22P0D)-n-1 | 2lexpob),2] 7 + 8¢ 22XP00) < G + 29P0@ (=11 4 oy 4 82
< qA + 2expo@)(27;471 + 27;171) — c} _{_zexpo@)fu.

U
We shall also require the following lemma, in order to invoke Lent@&a
Lemma 4.12. Under the hypothesis of Lemmal1,|§2 — b| < 22xP06)=3,
Proof. Since expak) < 2|expod)/2] + 1,5 < 22XP001+1 < (2lexpob)/21+1)2 Thys,
(b&)? = b(beD) < b < (21Po0/21+1)2
andbe; < 21ePob)/21+1 Now since
G = b&il <1g = ¢+ |b&i — ¢| < 2P0V  plexwod/2l+iy
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and
|G+ b&;| < 2bE + |G — be;| < 218XP00)/21+2 4 plexpob)/2]+1-pu _ lexpob)/2]+3
we have
142 — (652 = 1G — bEi1q + b | < 22100214 < =i
Thus,
162 = b1 < 142 — (BE)?| + bI1 — beP| < H2°H < 29001 +6,
O

Lemma 4.13. Assum@p = OP-SQRT) > 0, expof) < 2172, and letmbits(pc)= 4.
Let¢, h € Q such tha < ¢ < h and¢? < b < h2. Theng is normal,g is (« + 1)-exact,

0<§ +2min(expo@),expo(€))fu’
h> c} _ Zmin(expo@),expo(h))—u’
and

|£}2 _ ];| < 2expo(b)—3.

Proof. Leta = 2~M, g = 21xp06)/2)  ande = 3/2%. Fori e N, let{; be defined as in
Lemmad.11. Therb < 482 and|1— b&e?| < €2 . Fori > 0,b&? < 1andbg; < 28, which
implies 2XP°¢) < g, On the other hand,
(b&0)® = b(b&3) < 4p*(1+€) < 2B(L+ €))%
hencebéy < 28(1 + €) < 48, which implies 2P°%%) < 28. Also note that for al,
(B—be?)/2 =1+ (1 —be?)/2 < 1+ €2 /2.

We proceed as in the proof of Lemmda9, invoking Lemmasgl.11and4.12in each
of several cases. According to Lemm#&(c), the hypothesis of Theorehis satisfied by
x =y = Xp. Thus,

fo = nearxo?, M) = xo° = &2.

Similarly,
do = nearbto, M)
and
iio = neanbip, M) = neaxb&Z, M).

Therefore, by Lemma.26,

ldo — beol < 22PO50M < 24p
and

i — b3 < 2P0 M <

By Lemmas3.5and4.6,
(3—bg3)/2 — 20 < Fo < (3—bED)/2.
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Thus,
doro < (b&o + 2aB)(3 — bgZ) /2 < bEy + 2aB(1+ €/2) < b&y + 20 + 274
and
doro > (b&o — 20B)((3 — bEZ) /2 — 2a0) > bE1 — 2aB(1+ €/2) — 2B(1 + €) 20
> 1951 — 6aB — 2_1205,3.

Suppose pe= PC-32 andu = 24. We shall apply Lemmasl1land4.12with ¢ = doro,
i =1, andp = 7a. Under these substitutions, we have

bg; — ¢| < Tap = 21eP0b)/2])
and
20+ 862 =14.27Y + 8¢ <14 2775 +9. 2729 - 9=25 _ o—p-1

The remaining hypotheses of Lemrhd 1are ensured by Lemna7, and the conclusion
follows.

Thus, we may assume p& PC-32. Now we havef; = neal#?, M); hencefi — | <
«, which implies

h < (B-bhE)?/A+a

and
f1> (38— b£§)/2— 20)* —
> 3-b£2)?/4—da(l+€/2) —
> (83— bgd)?/4—5a — 27 .
Consequently,
rioft < (bE§ + @) (83— bEG)?/A+ @) < &2 + (14 ) + a(1+ €/2) + o
< 1;512 + 20 4+ 2713
and

rofy > (bs§ — a)((3 = b5§)%/4 — 5o — 27 %)
> I;Slz — A+ e)Ba+23e) —a(l+ 6/2)2 > l;$12 —6a — 2.
Sinced; = neadory, M), |di — doro| < 28P0do)—M < 248: hence
be1 — 8ap — 27 2up < dy < bE1 + daf + 27 HMap.

Similarly, i1 = neaxriofy, M), |riy — riofr| < 28XPOto)—M < o and

be? — Ta — 27 < 1y < bEE + 30+ 27 0.
By Lemmas3.5and3.6,

A < (B—r1iof)/2 < (3—bE2) /2 + 3a + 2710
and

A > (3—rofh)/2 — 2a > (3— bEP) /2 — 3a — 27 %,
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Thus,
diAL < (b&1 + dap + 2 Map) (3 — bE]) /2 + 3o + 271%)
< b&y + 2BBa + 27 0) + (4af + 27 aB) (1 + €2/2)
+Ba + 27 (4ap + 27%p)
< b&y 4 1008 + 27 8ap
and

dify > (b&1 — 8af — 27 Y2aB) (3 — bE?) /2 — 3o — 27 12)

> b&y — 283 + 2 2a) — Bap + 27 2upB) (1 + €2/2)

> b&y — 14ap — 27 100p.
Suppose pe= PC-64 andu = 53. We shall again invoke Lemmasl1and4.12, now
with ¢ = d1r1, i = 2, andn = 15a. Thus

b8 — £ < 15ap = 21P00/2y,
and
27+ 862 =30.27M £ 84 < 30.27 754 81.2761 - 2754 _ p-u-l

The remaining hyptheses of Lemma lare again ensured by Lemra/.
Thus, we may assume pe PC-80 or pc = PC-87. Continuing in the same manner,
we have

N N 22y
|t — 1% < 2P0EIM

fy < (3 —bED?/4+2(1+ €2/2)%(Ba 4+ 271%) + B + 27 00)? + &
< (B—bEP?/4+Ta+ 278,

fr > (3—beD2/4— 21+ €2/2)%Ba + 2 20) — «
> (3—beD)?/4—Ta + 270,
\dy — dyfy| < 22XPOD-M 205
bey — 16af — 270w < do < bEp + 1208 + 27 8uB,
i1ty < (b&2 + 3a 4+ 271%) (3 — be2)? /4 + Ta + 2 8a)
< bEZ + (Ta+278a) + (1 + €%/2)%(3a + 27 Ba)

+@a+ 27 Bw) (7a + 27 8)
< bE} + 100 4 27 e,

i1y > (b€2 — Ta — 27 o) (3 — be2)? /4 — Ta + 27 V)
> beZ — (Ta+ 27%) — (1 + €2/2)%(Ta + 27 Ma)
> bg? — 1da — 27 %,

Fo < (3—11f2)/2 < (3~ be3) /2 + Ta + 27 Xa,
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P2 > (3—11f2)/2 — 2a > (3— bE2) /2 — Ta — 2780,

dofs < (b2 + 120 + 27%ap) (3 — bED)/2+ Ta + 27 0a)

< b3+ 2B(Tor+ 270 + (L4 €4/2) (1208 + 2 %ap)
+(1208 + 278 (Ta + 27 0)
< bE3 + 260+ 27 Tap,
and

dory > (b&y — 16af — 27 %) (3 — he2) /2 — Ta + 27 8a)
> b3 — 2B(Ta+ 2 %) — (1+ €*/2) (160 + 27 %p)
> bez — 30up — 2 %agB.

Finally, we apply Lemmas.11and4.12with ¢ = dor, i = 3, andy = 31a. Thus,
1b; — ¢| < 3lap = 2100002y,
and sinceu < 68,
274+ 86% =62.27M 1 88 <62.2775 4 27112 _ 969 < pu-1
The proof is completed by invoking Lemmas and4.11. O
4.5. Final rounding
The remaining analysis pertains to the latter pafeBJ-DIV-SQRT, in which the ap-

proximationg is adjusted to produce the correctly rounded result.
The significance of the variablgsguardandg-Isbis given by the following.

Lemma 4.14. Assume that q is normal arddis (« + 1)-exact, where. = mbits(pc).
(a)g-guard= 0 < ¢ is u-exact;
(b) ¢-Isb= 0 < trunc@, n) is (u — 1)-exact.

Proof. (a) Letm = get-marig). Thenm is (u + 1)-exact, i.e,
mZM_eXpo(m) = m2“+1_M e
and
g-guard= m[M — pu — 1] = rem(|m2**1M | 2) = remm2+T1=M 2).
But
m is u-exacte m24M e 7, & m2rt1-Mis evens g-guard= 0.
(b) g-lsb = m[M — ] = rem(|m2*—™ |, 2) and trunc(m, p)= |m2*—¥ |2M=1 Thus,

trunc(m, wp)is (u — 1)-exactes [m2t~M |pM=—ru=D=1=-M=1) _ |, on=M /2 c 7,
& m2h M| s even
& g-Isb=10.

The correctness proof for division will be based on the following.
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Lemma 4.15. Let u = mbits(pc). Suppose g is normdljs (u + 1)-exact,sign= 0, and
212" < § < 2272 — 211, Letx € Q such that

(a) Ix — qu < 2min(expo@),expo(x))fu;

(b) if remneg= 1, theng > x;

(c) if rempos= 1, theng < x;

(d) if remzero= 1, theng = x.
Then z is normal anchd(x, rc, pc) = Z.

Proof. Note that the hypothesis implies tifat- 0 andx > 0.
Case 1rc = RC-NEGor rc = RC-CHOP

In this case, rn@, rc, pc) = trunc(x, u).
Subcase 1.l3-guard= 0 and rem-neg= 1

By Lemma4.14,g is u-exact. Alsox < ¢. By Lemma2.24,

get-marig) & (2" — 2¥~*) = trunc(get-marty), 1) = get-marig).

If get-mar(g) = 2¥~-1, theng = 28*P°@ where by hypothesis, expp) > 1 — 217, In
this case? = (2 — 21-1#)28xP0@)~1 and expof) = expoq) — 1. In all other casesj >
28XpoG) 4 p1+expof)—p 5 — 5 p1+eXpo@)—i 7 > 2€XP0@) and expof) = expog). In any
case? + 21+expo6)—1 — 4 Since trunc(x, u)< x < §, trunc(x, w) < 2 by Lemma2.13.
Also, trunc(x, u)> z, for otherwise we would have < z, expo(x)< expog), and

x > § — 290 -1 o 4 plHexpot)—p _ 5

Subcase 1.2-guard= 1 )
In this caseg is notu-exact, and = trunc@, ). By Lemma2.27,z = § — 28XP0@)—#
Therefore,

trunc(x’ M) g X < é + 28Xp0@)—u — 2 + 2exp0@)+l_ll — % + 29Xp0€)+l—#«,

and hence trunc(x, u 2. Butsincex > § —28Po@—1 — 2 trunc(x, w) > trunc@, u) =
Z.
Subcase 1.3;-guard= rem-neg= 0
g is u-exactx > ¢, andz = trunc@, 1) = q.
In this case,

trunc(x, W) < x < § + 28XPO@)—L — 5 4 D8XPOC)—p _ 5 4 2EXPOCO)+1—p

which implies trunc(x, w)< z. Butx > ¢ = Z implies trunc(x, )= Z.
Case 2rc = RC-POS
In this case, rn¢k, rc, pc) = away(x, u).
Subcase 2.13-guard= 1
Here,q is (1 + 1)-exact but notc-exact. By the same reasoning as used in Subcase 1.1
we may show that

2 =trunc@, p) + 28PCD+1-1,
But then by Lemma.27,
t=q— 28XPOG)—pt | eXPOg)+1-p _ g+ 28XpOg)—p _ away(g, i).

Sincex < g + 28XPoG)—1 — 7 away(x, i) < awayz, u) = z. Butx > g — 2EXPOG)—1
trunc@, u); hence awagx, ;1) > trunc@, w) + 28%PO@+1-1 — 7.
Subcase 2.2-guard= 0 and rem-pos= 1.
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In this casegq is u-exact,g < x, and
£ = trunc@, p) + 2P0+ — G 4 PSP +1-k,

Sincex < z, away(x, u) < away(z, u) = z. But awayx, u) > x > g, so awayx, u) >
6} + zexpo@)+1—u =3.
Subcase 2.3;-guard= rem-pos= 0

g is u-exactx < g, andz = trunc@, n) = ¢. Thus,

away(x, n) < awayq, ) =4 = Z.

Sincex > g — 28POM—1 away(x, 1) > nearx, u) > ¢ by Lemma2.28.
Case 3rc = RC-NEARandg-guard= 0

Here,g is u-exact, rndx, rc, pc) = neaxx, ), andz = trunc@, u) = g.

Sincex < § + 28%P9@)—1 implies neatx, 1) < § = 2 by Lemma2.28(b). But since
x > § — 2800~ nealx, u) > ¢ by Lemma2.28(c).
Case 4rc = RC-NEARandg-guard= 1

In this caseg is (u + 1)-exact but noju-exact. Leta = g — 28*P°@ 1 andp =
g + 280~ By Lemma2.27,a = trunc@q, u) andb = away(q, i).
Subcase 4.Tem-pos= 1

In this case? = b andg < x. Sincex < § + 28XPOD)—1 — p,

neaix, ) < neaikb, u) =b = 3.

Butx > g = b — 28¥PO@)—1 > |, _ 2EXPO)—1t hence nedt, u) > b.
Subcase 4.2em-neg= 1

Inthis case; = trunc@, n) = a andx < g; hence nedr, 1) < a = zbyLemma2.28,
andx > g — 28¥P°@—1 — 4 implies neatx, i) > neala, 1) = a.
Subcase 4.3em-zero= 1

Here,x = g; hence nedxr, 1) = nearg, ). We shall show nedd, 1) = Z. Note that
by Lemma2.29, neafg, u) is (© — 1)-exact.

If g-Isb= 1, thenz = b anda = trunc@, w) is not(u — 1)-exact by Lemmad.14. Thus,
neaxg, u) # a, which implies neaig, n) = b = z.

If g-Isb = 0, thenz = a, a is (u — 1)-exact by Lemmal.14. It follows thatb is not
(n — 1)-exact, and hence néar ) = a. O

We may now state the correctness theorem for division. Note that the bound a@)expo
is required by Lemma.4 and is therefore unavoidable. The other constraint states tha
expo@,/b) may not assume either of the limiting values 217 and 27. This is acceptable
since the hardware would never be expected to return a value with either of those exponel
In particular, IEEE compliance only involves exponents that are accommodated by the 80-
(64, 15) format.

Theorem 2. Assumeop = OP-DIV, rc is a rounding control specifier, pc is an external
precision control specifier, and a and b are normal encodings sucretti¢) < 2172
and2 — 217 < expo@/b) < 27 — 1. Then z is a normal encoding and

2 = rnd@a/b, rc, pc).

Proof. By the same reasoning that was used in the proof of Thedrere may assume
thata > 0 andb > 0. We need only show that the hypotheses of LemMniaare satisfied
byx =ay/b.
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First note that our hypothesis regarding ep) yields the bounds ofii/b| that are
required by Lemmd.9, which implies tha is (u + 1)-exact and

G —a/b| < omin(expog).expod/b))—u_

This in turn implies the bounds apthat are required by Lemmal5, as well ag > 0,
and hence get-sigg) = sign= 0.
Next, we apply Lemm&.8with x = b, y = ¢, d = a, andz = rem, which implies that

la/b| > |G| < |bg| < |a| < get-marirem)[M — 2] = 1 < rem-pos= 1
and
a/b=§ < bg = a < get-marrem[M — 2 : 0] = inexact= 0 < rem-zero= 1.
But since exactly one of rem-pos, rem-zero, and rem-neg is nonzero, it follows that
la/b| < |§| < rem-neg= 1,
and all hypotheses of Lemmdal5are satisfied. O

In order to prove our correctness result for square root, a modification of Letririia
will be required.

Lemma 4.16. Let u = mbits(pc). Suppose q is normdljs (u + 1)-exact,sign= 0, and
212" _ 5 < 222 — 21-1), Lett, h e Q such that

(@) — omin(expog),expo(f))—u G <h+ 2min(expo@),expo(h))—u;

(b) if remneg= 1, theng > ¢;

(c) if rempos= 1, theng < h;

(d) if remzero= 1, thent < g < h.
Then z is normal andhd(¢, rc, pc) < zZ < rd(k, rc, pc).

Proof. We shall prove the first inequality; the proof of the second is similar.
Case 1. rem-neg- 1

Since? < §, we may findx such that’ < x < § andx > § — 2min(€xpog).expo(x)—p
Then rnd?, rc, pc) < rnd(x, rc, pc), but by Lemmat.15, rndx, rc, pc) = Z.
Case 2. rem-pos= 1

Chooser so thatj < x < g + 2"n(€xP0G).expo(x)—1 gndy > ¢. Then rnd¢, rc, pc) <
rnd(x, rc, pc), but by Lemmat.15, rndx, rc, pc) = zZ.
Case 3. rem-zere= 1

Letx = ¢. Thent¢ < x; hence rnd¢, rc,pc) < rnd(x, rc, pc), but by Lemmad.15,
rnd(x, rc, pc) = Z. O

Theorem 3. Assumepp = OP-SQRT, rc is a rounding control specifier, pc is an external
precision control specifier, and b is a normal encoding such éxpo®) < 217 _ 2. Let
¢,h € Qsuchthad < ¢ < h and¢? < b < h?. Then z is a normal encoding and

rnd(¢, rc, pc) < z < rnd(h, rc, pe).

Proof. It suffices to show that the hypotheses of Lemmaks are satisfied. First, by
Lemma4.13,g is (u + 1)-exact,

C<g+ 2min(expo@),exp0(€))—lt’
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and
h>g— 2min(expo@),expo(h))—,{

Substituting 2XP°©)/2) for ¢ in the same lemma, we have
G > 2lexpod)/2] _ plexpob)/2i-u o plexpob)/2)-1 .
hence
get-sigriig) = 0 = sign
Similarly, substituting #xP°®)/2+1 for 1 yields

G < 2leXP00)/21+1 4 olexpob)/2l+1-n _ plexpob)/2|+2,

Thus,

22_217 < 2|_expo@)/2j—1 < C? < 2Lexp0¢3)/2j+2 < 2217.

Finally, we apply Lemm&.8with x = y = ¢, d = b, andz = rem, which yields the
following.

(1) if rem-neg= 1, theng? > b > ¢2; hencej > ¢;
(2) if rem-pos= 1, thenj? < b < h?; hencej < h;
(3) if rem-zero= 1, thenj? = b; hencet < § < h.
Thus, all hypotheses of Lemmadsl6are satisfied. O

5. Conclusion

As noted in the introduction, the practical value of formal verification has been illustrate
in this exercise by the detection of two design flaws. Both of these were in the definitio
of the procedur&PU-MUL, but neither affected the results of multiplication. One was an
error in the specification of the parametein the rare case in which overflow 0 and
round-carryout-no-overflows 1, which would inevitably have led to erroneous quotients
and square roots for certain inputs. The other was in the calculatipinadhe OP-BACK
case, and might have led to improper rounding of square roots, although we were unable
exhibit a concrete example of this behavior. It was not surprising that neither problem wi
exposed by traditional testing methods. Once they had been identified, however, both wi
easily corrected before the design was committed to silicon.

Aside from the correction of errors, formal analysis may also provide insight that allow
improvements in the efficiency of a design. For example, while the multiplier that wa
originally presented to us had a width of 76 bits, we were able to show, by representing
as an indefinite parametéf, that this width could effectively be reduced to 75 bits without
sacrificing the accuracy of any of the operations that the multiplier supports.

Although the functionality of a physical device cannot be absolutely guaranteed by tf
properties of a mathematical model, a realistic model can provide a fairly high level of cor
fidence. In this case, our analysis was based on a register-transfer model, far less abst
than the hardware models that are typically used in formal verification of floating poin
algorithms. It must be noted, however, that the evidentiality of our mechanical verificatio
depends on the accuracy of several stages of manual translation. The original C encod
of the design was translated by hand into a special-purpose hardware description langus
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from which a gate-level implementation was eventually constructed. Meanwhile, our verif
cation began with the pseudocode representation of the C program on which the lemmas .
theorems of this paper are based. After detailed proofs of all of these results were derived
formally (and this paper was essentially written), the pseudocode was translated into AC
along with the lemma statements. Finally, formal proofs of these statements were genera
mechanically by guiding the ACL2 prover through each step of the informal proofs.

Obviously, our confidence in the final product would be enhanced if we could eliminat
or mechanize any of the steps in these translations. This has been a focus of our more re
work: we have implemented a mechanical translator from AMD’s hardware descriptio
language directly to the logic of ACL2, thereby reducing the possibility of human error ir
the formalization of hardware designs. In a report that is yet to be released, we describe
use of this translator in the mechanical verification of the AMD-K7 floating point adder.

Of course, a successful formal verification project requires a significant investment. Tt
cost to AMD of the results presented here was five months of the author’s time, divided a
proximately equally between writing the informal proofs and checking them mechanically
Much of this time, however, was spent developing general methods and results, especic
the theory of floating point arithmetic presented in Secfionvhich could be reused in
any floating point verification effort. We have already applied the same results to sever
problems, and it is our hope that others will find them useful in similar projects. Thus, th
ACL2 formalization of this theory is included iippendix B

Appendix A. Input to the ACL2 prover

This appendix is available to subscribers to the journal at:
http://www.Ims.ac.uk/jcm/1/iIms98001/appendix-a/.

Appendix B. An ACL2 library of floating point arithmetic

This appendix is available to subscribers to the journal at:
http://mww.Ims.ac.uk/jcm/1/Ims98001/appendix-b/.
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