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Abstract

For unbounded operators Ax, ... , Ad , Gevrey spaces Sx x {Ait ... , Ad) of order
( A , , . . . , Xd) are introduced, where the orders A,, . . . , Xd need not be equal. These extend
the notion of Gevrey space denned by Goodman and Wallach where X{ = ••• = Xd . Several
mild conditions on the operators Ax, ... , Ad and the orders Xx, ... ,Xd are presented such

that the equality Sx x (At, ... , Ad) - f\d
k=l Sx (Ak) is valid. Examples are included.

1991 Mathematics subject classification (Amer. Math. Soc.): 47 D 30, 22 E 45.

1. Introduction

In his well-known paper, [11], Nelson has introduced the concept of analytic
vector relative to a finite set of operators as follows: Let A{, ... , Ad be (not
necessarily bounded) operators in a normed space E. A vector u e E is
called a C°°-vector for {A{, ..., Ad} if u belongs to the domain D(At o
• • • o Ai ) of the operator At o • • • o Ai for all n e N 0 and all / , , . . . , in €

{ 1 , . . . " , d} . Let D°°(Al,... ,Ad) denote the space of all C°°-vectors for
{Ax, ..., Ad} . A vector u £ E is an analytic vector relative to {A{, ... , Ad}
if u is a C°°-vector and there exist constants c, t > 0 such that for all
n G No and all jj , . . . , / „ e { 1 , . . . , d) we have

\\A, o • • • o At u\\ < ctnn\.

An extension of the concept of analytic vector, given by Goodman and
Wallach [10], is derived by replacing n\ in the above expression by n\x.
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264 A. F. M. ter Elst [2]

Thus we arrive at the concept of Gevrey vector of order X > 0 relative to
{Ax, ... , Ad}. In the latter definition of Gevrey vector the operators are
treated on the same level.

The notion of Gevrey vector is based on the notion of Gevrey function
whose definition according to Gevrey [6], is the following. Let Xl, ... , Xd >
0. A function / defined on an open subset U of Rd is called a Gevrey
function of order {Xx, ... , Xd) (in [6], a function of class A, in x{, ... , of
class Xd in xd) if / is infinitely differentiable and for every compact subset
K of U there exist constants c, t > 0 such that for all « , , . . . , nd e No

and all x e K we have

!(/>?•. ..Dn/f)(x)\ < ctn>+-+n<n/> • • • n/<.

Here Dk denotes partial differentiation with respect to the A>th coordinate.
We see that in Gevrey's original definition the variables (JC, , . . . , xd) are
not treated on the same level and thus the following natural generalization
of the concept of Gevrey vector arises. Let Ax, ... , Ad be (possibly not
everywhere defined) operators in locally convex topological vector space E.
Let X{, ... , Xd > 0. A vector u € E is called a Gevrey vector of order
(A,, . . . , Xd ) relative to (Ax, ... , Ad) if for every continuous seminorm p
on E there exist constants c, t > 0 such that for all n e No and all
i{, ... , in€ {I,... , d} the vector u belongs to the domain of the operator
Ai o• • •oAi and p(At o• • • oAt u) < ctnnx\ ' • • • nd\

 d, where nk := card{/ €
{I 1 , . . . , « } " : i , = A : } ' f o r a l l "k € {l,...,d}. B y 5 A ^{Ax, ... , Ad)

we denote the space of all Gevrey vectors of order (Xx, ..., Xd) relative to
(Al,...,Ad).

Trivially, a Gevrey vector of order (Xx,... , Xd) relative to (A{,... , Ad)
is a Gevrey vector of order Xk relative to Ak for all k, so Sx x (A{, ... ,

Ad) c ( \ = i $x (^fc). So the following interesting problem comes up: find

appropriate conditions on Xx, ... , Xd and Ax, ... , Ad such that

k=\

In Sections 3 and 4 such conditions are presented for skew-hermitian oper-
ators. Our strategy is as follows. First mild conditions are presented such
that
(2)

^ , , . . . , ^ ( ^ 1 ' ••• ' Ad> =SX{ -1,(^1' ••• ' An)nSXa+l Xd(
An+\' " • ' Ad>

for some n e {I, ... , d - 1}. Then from this we derive stronger condi-
tions such that equality (1) holds. In the literature these problems have been
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[3] Gevrey spaces and their intersections 265

looked at only in case kx = • • • = Xd = 1 by [7] and [4] in order to prove sep-
arate and joint analyticity for representations of Lie groups in certain cases.
In those papers, the operators Ak are infinitesimal generators for the repre-
sentation. (Cf. Theorem 24.) However, in general equality (1) is not valid.
(See Example 7.)

In general, the C°°-domain Doo(Al, ..., Ad) is trivial, i.e. it contains
only the zero vector, hence the Gevrey space Sx x (A{, ... , Ad) is also
trivial. In Section 5 we present several examples of non-trivial Gevrey spaces
by taking for Ax, ... , Ad infinitesimal generators of a representation of a
Lie group. In Section 6 we consider the ax + b group. Another interesting
illustration is the Heisenberg group. This group has served as a major source
of inspiration and is used frequently in the present paper.

2. Multi-indices and Gevrey spaces

Let d G N and let Ax, ... , Ad be (possibly not everywhere defined) oper-
ators in a locally convex topological vector space E. Since we do not assume
that the operators A{, ..., Ad commute, we have to take care of the or-
der in which the operators occur. To this end we introduce the concept of
multi-index.

Let V be a non-empty finite set. We define the set M{V) of multi-indices
over V by M{V) := \Jn€Ti V" . Here V° denotes the set with one element,
called the empty sequence, which is denoted by ( ) . For a = (j{, ... , jn) e
M(V) define the length \\a\\ of a by ||a|| := n and for v e V define the
v - l e n g t h \\a\\v o f a b y \ \ { j x , . . . , j n ) \ \ v : = c a r d { / e { 1 , ... , n ] : j( = v } .
For v e V let Xv > 0. For a e M(V) define

In a natural way we define an operation on M(V): for a, /? e M(V)
define the concatenation {a, fi) of a and /? by

(O'i , . . . , . / „ ) , ( * ! , . . . , kj) := 0', , . . . , ; „ , fc,.... , kj

for all n, m e No a n d all j x , ..., j n , k y , ... ,km e V. So M(V) is a
monoid with identity ( ) . Define similarly the concatenation (al, ... , ap)
ofalt...,apeM{V).

Finally, for a e M{V) define the reverse a of a by (j{, ... , jn)
T :=

Un» • • • » J\) • 1° Section 4 we introduce some more operations on M( V).
Now let V := {1 , ... ,d}. For a e M(V) define the operator Aa by
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266 A. F. M. ter Elst [4]

A( j : = / and

Then the joint Cx'-domain of the operators A{, ..., Ad equals

a€M(V)

Now we define our Gevrey spaces. Let Xx,..., Xd > 0 . A vector u e E
is called a Gevrey vector of order (A,, . . . , Arf) relative to (Al, ... , Ad) if
u € D°°(Al, ..., Ad) and for every continuous seminorm p on E there
exist constants c, t > 0 such that for all a e M(V) we have

The space of all Gevrey vectors of order (A,, . . . , kd) relative to (A{,... ,
Ad) is denoted by Sx x (A{,... , Ad). Note that if E is a normed space,
then

= {ue D°°{AX ,...,Ad): 3c, ,> 0Va e A / ( K )[ |Ma«| | < ctMa\X]}.

In case the operators Ax,... , Ad are skew-Hermitian operators in a
Hilbert space, we have the following important characterization of

LEMMA 1. Let Ax,..., Ad be skew-Hermitian operators in a Hilbert space
H. Let Xx, ... , Xd > 0. Let ueH. Then ueSx k{Ax, ... ,Ad) if and
only if u € D°°{Al,..., Ad) and there exist c, t > 0 such that for all
aeM({l,...,d}) we have \(Aau, w)| < ctMa\\

PROOF. We only prove the " i f part. Let a e M({1, . . . , a\}). Then

We finish this section with some examples.
EXAMPLE 2. Let U be an open subset of Rd. Let C(U) be the lo-

cally convex topological vector space of all continuous functions on U with
the topology of uniform convergence on compacta. Let Dx,..., Dd be
the partial differentiation operators in C{U) with domain CX(U). Then
Sx x (D{,... , Dd) is the space of Gevrey functions of order (X{, ..., Xd).
(See[6].)
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[5] Gevrey spaces and their intersections 267

EXAMPLE 3. Let A be an operator in a Hilbert space H. Then S0(A) is
the set of all bounded vectors for A. (See [3, Section 26].)

EXAMPLE 4. Let A{,..., Ad be d operators in a Hilbert space H and
let X > 0. Then Sk X(AX, ... , Ad) is equal to the set of Gevrey vectors of
order X relative to {Ax,... , Ad} . (See [10, Section 1].) In particular, for
X = 1, the set Sl X(AX,... , Ad) is equal to the set of analytic vectors for
{Al,...,Ad}. (See [11, Section 2].)

EXAMPLE 5. Let (X, 38, m) be a measure space and let h be a measur-
able function. Let H := L2(X, m) and let A be the multiplication operator

by h. Let X > 0. Then SX(A) = {e~'wmf: f e L2(X, m)} .
EXAMPLE 6. Let Q be the multiplication operator by the function x »-> JC

in L2(R). Let D be the skew-adjoint differentiation operator in L2(R).
Then D°°(Q,D) is equal to Schwartz' space S(R) , that is, the space of all
infinitely differentiable functions (p defined on E such that sup{|x*9>(/)(x)| :
JC G E} < oo for all k, I e No . (See [7, p. 65].) Let a , /? > 0 and suppose
that a + 0 > 1. By [2, Theorem 4.3] we obtain that

SaJi(Q, D) = {<pz D°°(Q, D) := 3c,>oVfc>/eNo[||<2*Z>V|| < ctk+lkf if ]}.

(See also the proof of Theorem 11.) So the Gevrey space Sa fi(Q, D) is

equal to the Gelfand-Shilov space s f , which is defined by

Sp
a := {<p € 5(E) : 3 n € N sup \x / '(x)\n k I " < oo}.

k, /€N0

(See [5, Section IV.3.3] and [16, Section 29.5].)
EXAMPLE 7. Let H := /2(N) with standard basis el, e2,... . Let A be

the continuous shift operator, determined by Aen := en+l for all n e N and
let B be the self-adjoint multiplication operator determined by Ben :- n\2en

for all n 6 N. Then ex e Sx{A)n SX{B). But ex $ SXX{A,B) since

\\BAn~lex\\ = n\2 for all n e N .

3. Gevrey spaces relative to coupled sets
of skew-Hermitian operators

As said in the introduction, the main step in the proof of equality (1) is
equality (2). The following theorem is the first of such intersection theorems.

THEOREM 8. Let dx,d2eN and let Xx,... ,Xd ,YX,..., Yd be skew-

hermitian operators in a Hilbert space defined on a common invariant domain.
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Suppose
[Xt, Yj] G span({Jr,, . . . , Xdy, Y,, . . . , Y^})

for all i e { 1 , . . . , dx) and j e { 1 , . . . , d2}. Let X, pi > 1. Then

$x,...,x,n iAxi' ••• ' Xd{'
 Yi' ••• ' Ydj

This theorem yields three extensions of a result, [4, Theorem 2], of Flato
and Simon at once. Indeed, they proved the above intersection theorem in the
following very special case: X = fi — 1; g :— span({A'1, ..., Xd , 7 , , . . . ,
Yd }) is an integrable Lie algebra and both span ({X,, ..., Xd}) and span
{{Yx, ... ,Yd}) are subalgebras of g. However, the theorem of Flato and
Simon is also valid for representations in a Banach space. The essence of the
proof in [4] is that for each element of 5, l(Xl, . . . , Xd )nS{ l(Yl,...,
Yd ) a function is constructed, which is separately real analytic in a uniform
sense and because of a result of Browder ([1]) this function can be shown to
be jointly real analytic. The proof of our more general intersection theorem
is based on totally different techniques.

PROOF OF THEOREM 8. Let Vx := {1, . . . , J , } , V2 := {1, ... ,d2} and

V := { 1 , . . . , < / } , where d := dx + d2. Let Z, := X,,...,Z^ := X^,
Zd +1 := Yj, . . . , Zd := Yd . For all k, m e N 0 we define the subset Uk m

of'M(V) by

c' bjBy a s s u m p t i o n , f o r al l / € Vl a n d j & V2 t h e r e ex is t c) .,..., ci' • ,bj •,... ,

b^j e R s u c h t h a t

d d

L e t M : = 1 + m a x f l c j j \ : i, I e Vx, j G V2} + m a x { \ b l
t j \ : i e V{, j , I e V2} .

Let M G Sx X{X[, ... , Xdi) n 5A ^(7 , , . . . , Y^). Then there exist

c, t > 0 such that \\Xau\\ < crIWI||a||!'1 and \\Yfiu\\ < crl"ll|D8||!" for aU
a e Af(Fj) and fi e M(V2). We may assume that t > Md. For N G No let
hypothesis P(N) state:

(3) \(Yfi

for all Ar,

,u)\

m G

< C
23M

N 0 , a G

such that

-11/

i )

k

'IN

+

-IMI(|

P e
/n =

MM-fc)!A(PII"
2) and y G

•f m

m
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[7] Gevrey spaces and their intersections 269

For a 6 M{Vy) and /? 6 M(V2) we obtain by Schwarz' inequality

\(YfiZ{ }Xau, u)\ = \(Xau, Yfi,u)\ < \\Xau\\ \\Yfi,u\\ < rtl|o|l||a|| W ' l l / ? ! ! ! " .

So hypothesis P(0) holds, because Uo 0 = { ( ) } .
Let J V e N and suppose hypothesis P(N - 1) holds. Let k, m € NQ,

a € M{VX), $ e M(V2), y e Uk m and suppose k + m = N. If k = 0 or
m = 0, inequality (3) follows by hypothesis P(0). So we may assume that
k ^ 0 and m ± 0 .

Suppose fc > m. By pushing the rightmost operator Xx in Zj, to the right
and taking in account all possible commutators, we see that there exist x e
^ ^ ^ . u > c . c ^ e C , ^ . • • • . ^ 1 m € ^ , m _ i , * i , - - . , ^ w e
C and ril,..., ^ m e Uk_lm such that

and \cp\ < M and \bq\ < M for all p, q. Now by induction hypothesis
P{N - 1) and the inequality dM < t we obtain that:

\{YpZyXau,u)\

A

m - 1)!"

(5) + rf2mMc23lbl|-1rW+ll/!|l+ll)'l|-1(||a|| + k- 1)!A(||)S|| + m)f

, w m {\\a\\ + k)

In case k < m a similar argument can be used by decomposing Zy =
YyZg+ "small terms". This proves hypothesis P(N).

In particular, for all k, m € No and y e Uk m we obtain that \{Zyu, u)\ <

c2{3t)M k^mf . Now by Lemma 1 we derive that u e Sx x ^ ft(Zl, ... ,

COROLLARY 9. Let $ bea solvable real Lie algebra ofskew-Hermitian oper-
ators defined on a common invariant domain. Let Xx, ..., Xd bea basis in g
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270 A. F. M. ter Elst [8]

such that ^ :— spand^Yj, . . . , Xt}) is a subalgebra of JJ and .2^ is an ideal
in S?M for all i e {1, . . . , d}. Let X > 1. Then Sx x(Xl,... ,Xd) =

t
We apply the arguments of the proof of the above theorem for two oper-

ators which satisfy the Heisenberg commutation relations.

LEMMA 10. Let X, Y be skew-Hermitian operators in a Hilbert space de-
fined on a common invariant domain. Suppose [X, Y] = il. Let X, n > 0
and suppose that X + n>l. Then SXfl(X, Y) = SX(X) n S^Y).

PROOF. The proof of this theorem is similar to the proof of the previous
theorem, except that now we can take 6p e Ulc_l m_l and bq = 0 for all
p, q in the equality (4). Hence in inequality (5) we now obtain the factor

( m kx m* mk\

\ + x+" )\ (\\\\ ) mr kx) '
which is less than or equal to 2.

Now we obtain easily the following theorem, which has been proved firstly
by Van Eijndhoven, ([2, Theorem 4.5]), in case a > 0 and P > 0.

THEOREM 11. Let Q, D be the operators in L2(R) as in Example 6. Let
a, P>Q and suppose a + P>\. Then Sf = SaJj(Q, D) = Sa(Q)nSp(D).

PROOF. Let X and Y be the restrictions of the operators -iQ and D
to Schwartz' space S(SL) respectively. Then Sa fi(X, Y) = Sa(X)nSfi{Y)
by Lemma 10. Since D°°(X, Y) = D°°{Q, D) = 5(R) = D°°XQ) C\D°°(D),
by [7, Section 6], we obtain that Sa fi(Q, D) = Sa(Q) n Sfi{D). So Sf c
Sa(Q) n Sfi(D) = Sa p{Q, D)dSp

a, and the theorem is proved.

The following theorem can be proved in the same spirit as Theorem 8.

THEOREM 12. Let Xx, ... , Xd , Yl, ... , Yd be operators in a Hilbert

space defined on a common invariant domain. Suppose all operators X{,...,

Xd , Yl, ..., Yd are Hermitian or skew-Hermitian and suppose [Xi, 7.] = 0
for all i e { 1 , . . . , dx} and j &{\,... , d2}. Let Xx, ... , Xd , fix, ..., fid

*°- T h e n \ v * ^ ( * " •••' **• yi> - ' Y 4 > = K V * " - '
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[9] Gevrey spaces and their intersections 271

PROOF. NOW we can take the constants cp = bq — 0 in equality (4) and
so the factor in inequality (5) becomes 1.

Using Lemma 10 and Theorem 12 the following version of Theorem 11
for Gelfand-Shilov spaces in several variables can be proved: let d e N,
for k e { 1 , . . . ,d} let Qk be the multiplication operator in L2(E ) by
the function x >-* xk and let Pk be the Fourier transform of Qk , that is,
Pk := ¥~xQk¥. Let a{, ... , ad, 0{, ... , 0d >0 and suppose ak + fik>l
for all k. Then

k k
k=\ k=\

COROLLARY 13. Let Xx,... , Xd be commuting operators in a Hilbert
space defined on a common invariant domain. Suppose all operators
Xx,... , Xd are Hermitian or skew-Hermitian. Let kx, ... , kd > 0. Then

U
COROLLARY 14. Let Ax, ... , Ad be strongly commuting self-adjoint oper-

ators in a Hilbert space, that is, self-adjoint operators whose spectral projec-
tions commute, or equivalently, self-adjoint operators whose Cayley transforms
commute. Let A , , . . . , Ad > 0. Then

k=\

PROOF. For k e { 1 , . . . , d} let Xk be the restriction of Ak to Doo(Al,

. . . , A d ) . B y C o r o l l a r y 1 3 w e o b t a i n S x fJl ( * , , . . . , X d ) = f)d
k^ SXk{Xk).

Since Doo(Al ,...,Ad) = n£=i D°°{Ak), the corollary follows.

REMARK 15. Theorems 8, 12 and Corollary 13 and their proofs are as well
valid with anticommutators instead of commutators.

4. Gevrey spaces, Lie algebras of operators
and their ideals

In this section we present several conditions such that equality (1) holds
in case there are sufficiently many ideals, (cf. Corollary 9.) Let ( / p ( / 2 6 N
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272 A. F. M. ter Elst [10]

and let Xx, ... , Xd , Yj, . . . , Yd be skew-Hermitian operators in a Hilbert
space defined on a common invariant domain. Suppose

[*,,?,.] e span({ * , , . . . , l y )

for all i 6 Vl := {1, . . . , d{} and j € V2 := {1, . . . , d2} . In the proofs of
intersection theorems of the form

we want to write XaYg as a sum of terms of the form cYgX . To this end,
for a, a e A/^FJ define a <a if a' is obtained by deleting indices from
the multi-index a . Let a\a be the complementary part in a. Moreover,
for a = ( ; , , . . . , jn) e M{VX) define Da by

h

The following lemma is due to Nelson ([11, Lemma 2.1]).

LEMMA 16. Let a € M(V{) and p e M(V2). Then

a. <a

If \Xi, Yj] e span({7 , , . . . , Yj}) for aU k, j , we obtain that Da{Yp) is
a sum of K,. In order to determine which y occur, we introduce the concept
of positive mutation. A positive mutation is a function T : V2 x V2 —* No such
that

z(v, w) = 0 for all t>, to e V2 with w < u;.

Let a, /? e M(V2) and fc€N0. We say that a w connected with /? v/a
a positive mutation of length k if there exists a positive mutation i on K2

such that

for all v e V2,
w>v w<v

T(V, w) = k.

REMARK. If a is connected with ft via a positive mutation of length
k, then in general it is not true that /? is connected with a via a positive
mutation of length k. Also the positive mutation T need not be unique and
it is well possible that a is connected with /? via a positive mutation of
length / with / e Nn, / ^ k.
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LEMMA 17. I. Let a, 0 e M(V2) and let k € No. Suppose a is connected
with 0 via a positive mutation of length k. Then \\a\\ — \\0\\.

ILLetneX, a , , . . . , an, 0X,..., 0n 6 M(V2) andlet kx, ... , kn eN Q .
Suppose at is connected with 0t via a positive mutation of length kt for all
i e {1 , ..., n}. Then {ax, ... , an) is connected with (0X, . . . , 0n) via a
positive mutation of length £"= 1 kt.

III. Let a, fi,y e M(V2) and let k, I e NQ. Suppose a (respectively
0) is connected with 0 (respectively y) via a positive mutation of length k
(respectively I). Then a is connected with y via a positive mutation of length
k + l. (Transitivity.)

PROOF. I: trivial, II: induction, III: trivial. (Take T = T, + T2 .)

LEMMA 18. I. There exist constants M > 1 and c^ y e R, where a e
M(VX) and 0, ye M(V2), \\fi\\ = \\y\\ such that

(6) Da(Y0)= Y, c1,yYy M all a € M(V{) and 0 € M(V2),

(7)
\c"pJ < (M||)S||)l|a|1 for all a e M(VX) and 0, ye M(V2) with \\p\\ = \\y\\.

II. Suppose [Xt, Yj] € span({7,, . . . , YJ) for all i e {1, . . . , d2} and
j € { 1 , . . . , d2}. Then the constants ca» in I can be chosen such that in
addition: for all a e M(V{) and 0, y e M(V2) with c^ y ^ 0 we have that
0 is connected with y via a positive mutation of length \\a\\.

PROOF. There exist (possibly non-unique) constants ci i k e R, where
/ € Vx and j , k e V2 such that

(8) [̂ .̂ ] =
k=\

f o r a l l i e F , a n d j e V 2 . L e t Mo : = 1 + m a x f l c , . }: k\ : i e Vx, j , k e V2} .
For aU 0, y e M(V2) take c{

p\:=\ if 0 - y and c\]y := 0 if 0 / y. Take
c°){} := 0 for all a e MiV^yo. Then (6) and (7) hold for all a e M(VX)
and 0,ye M(V2) such that a = ( ) or 0 = ( ) or y = ( ) .

Let m e N. Now we want to choose suitable constants ci such that
(6) and (7) hold for all a e M(VX) with a / ( ) and 0, y e 'M(V2) with

= ||y|| = m. Let i e Vx, p e {l,...,m} and let k e V2. For
= (jx,...,jm)eV2

mcM(V2) define
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274 A. F. M. ter Elst [12]

and

Let n € N, a e V" and let fi eV™. Let a = ( / , , . . . , in). It follows by
induction to n that

Pn=lkn=\

Now the definitions of c^ y, with y e F 2
m speak for themselves. For y e V2

we define

where the sum is over all p{,... ,pn e {I,..., m} and k{,..., kn € f̂
such that y = f k o ••• o f k (fi) • This proves (6), and clearly |c« I <

II. Now suppose that [Xt, Xj] e ({Y{,..., 7;}) for all i e Vl and j e V2.
Then the constants in (8) can be chosen such that c( }: k — 0 for all j , k e V2

with it > ; . We define ca
fi y as in I . Let a e Af(Vj), P,y £ M(V2) and

suppose Co j, # 0 . We may as well assume that a ̂  ( ) , p ̂  ( ) and y ̂  ( ) .
L e t m : = \\p\\ = \\y\\ a n d l e t i{,... , i n e Vl b e s u c h t h a t a = { i x , . . . , i n ) .
Let fpk and g, p f c be as in I.

Let S = (j{,.'..', jm) e V2
m, let i e Vx, p e { 1 , . . . , m), k e V2 and sup-

pose gi p k(S) ^ 0 . Then c(J k ^ 0 . This implies that k < j p and so 8 -

( ; , , . . . , j p , . . . , jm) is connected with fPyk{8) = (Ji > • • • - JP-i. * - ^ + i >
• • • > -An) ^ a a positive mutation of length 1. (Take as mutation T(V , w) := 1
if v = j p and w = k and T(U , to) := 0 otherwise.)

Since ca
p y ^ 0 there exists p , , . . . , pn e { 1 , . . . , m} and k{,... , kn e

V2 such that

and

Because g, n , (j8) / 0 we obtain that fi is connected with /„ . IB)
in'l'n'Kii Pn'Kn

via a positive mutation of length 1. Because gt k (f k ()9)) ̂  0
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we obtain that f k (fi) is connected with f k (f k {ft)) via a pos-
* it ' tt ' n —-1 * n ~ 1 "tt ' ft

itive mutation of length 1. Then by Lemma 17.Ill, fi is connected with
f k (f k (fi) via a positive mutation of length 2. By induction, fi is

"tt — 1 * n — 1 "n ' n

connected with fp k o ••• o fp k(f}) = y via a positive mutation of length
n = \\a\\.

LEMMA 19. Let fi, ye. M(V2), let j e No and let 0 < fi{ < n2 < • • • <
Hd . Suppose fi is connected with y via a positive mutation of length j .
Then

yf < (2d'""2)m+jfif ,

PROOF. In this lemma we write d := d2. Let T be a positive mutation on

+ E V . " E *v,w = Mv ^r all v e V2

V2 such that

w>v w<v

and

Z_^ Tv,w = J '

where xv w := T(V , w), for all v, w e V2. Then by the inequalities

{n + m)\ < 2n+mn\m\ and (« - m)\ < n\m\~l we obtain

' + S . . - t ' . - ) TT Xv'wl>i

v,w€V2 v,
v>w

'fit.
Note that the ordering of the n 's is essentially used in the last inequality
only.

LEMMA 20. Let p e N and fc,, . . . , kp, j { , . . . , jp e No. Let j0 := 0.
Let k := fc, H h k . Suppose j t < kt + j j _ l for all i e {1 , ... , p}. Then
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PROOF.

(
p p l p k2 ) \ kp ) j p \

kx\---kp\

k\ 1 1

j p \

JpH^+Jo-Jjl {kp+jp_x-jp)\-

This proves the lemma.

We now prove the main theorem of this section.

THEOREM 21. Let dx,d2eN and let Xx, ... , Xd ,YX, ... ,Yd be skew-
Hermitian operators in a Hilbert space defined on a common invariant domain.
Suppose

for all i G { 1 , . . . , dx} and j e { 1 , . . . , d2}. Let Xx, ... ,Xd > 1 and let
0 < nx < •• • < nd . Then

in the following two cases:

i . nx = ... = n d i .
II. [Xn Yj] G span({yi, . . . , Yj}) for all i G {1, . . . , rf,} and j €

{U...,d2}.

Note that ft. may be taken smaller than 1.

PROOF. Let Vx := {1 , . . . , dx) , V2 := {1 , . . . , d2) and let M > 1 and let

ca
py be as in Lemma 18. Let « e ^ ^ ( ^ . . . . . I

Yd ) . Then there exist c, t > 0 such that

||*>ll < rtNla!A for all a G M{VX),

\\Ypu\\ < c^pf for all S G M(V2).

Let p G N , ax,...,ap G M(VX) and px,...,Pp G M(V2). Let Z :=
X YB o • • • o X YR . We will consider (Zu, u). By Lemmas 16 and 18 we

i "i ap Pp
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obtain

X Y•= Y Y cfa'YX,
a p / ; / ' p ,y y a

a'<a 115-11 = 11̂11

for all a € M{V{) and P e M(V2). So Z is the sum of

where the sum is over all S[ e M(VX) with S[ < d{ and <5, :— a{, and
aU y, € M(V2) with ||yj|| = | |£ , | | , over all S'2 G M^) with 82 < S2

and 82 := (d[,a2), and all y2 € M(V2) with ||y2|| = ||j82||, . . . , over all
S'p e M{VX) with S'p < 8p and <5p := (d'p_x, ap), and all yp € AT(F2) with
|| v || = || fl | | . Consider one term of the sum

which is not zero and which cor responds t o the tuple S[, y{, ... , S'p, yp.

Let j} := \\S\\\, kt := ||a,.|| a n d mt := p , . | | = ||y,|| for all i € { 1 , . . . , p}.
Let jQ := 0 . Let k :— fc, + h kp a n d w := m , + • • • + mp . Let a :—
(ai,...,ap), P:=(fix,...,pp) and y := (yx, ... ,yp). Then 7. < ||^|| =
kt + jt_i, for all / e { 1 , . . . , p) . Moreover, k = ||a|| and m = \\p\\ = \\y\\.
By Schwarz' inequality we obtain that

\(Y, fail, u)\ - \{Xs,u, Y,u)\ < \\Xg,u\\ \\Yru\\

< c2t¥'"l]+mS'\X • yf < c2tk+md'/ • yf.

Let l(v) := \\a\\v - \\d'p\\v for all veV{. Then l(v) > 0 and Y,vevx
 liv) =

k-jp. So

S'/<

This is the only place where we use that Xx, ... , kd > 1.

Next we estimate the factor yf in the cases I and II.
Case I. Suppose /*, = ••• = /i^. Then yf < WyWf* = \\p\\f<2 <

Case II. Suppose [Xt, Yj\ G spanCfy,, . . . , Y}}) and all / e F, and j e
V2. This case needs more care. Now we can use Lemma 18.11 and so we
may assume that the constants ca

p are as in Lemma 18.11. Recall that we
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a r e c o n s i d e r i n g a n o n - z e r o t e r m o f a l a r g e s u m . S o t h e c o e f f i c i e n t s c J '
Pi > /|-

are not zero for all i G { 1 , . . . ,p}. Hence by Lemma 18.11 we obtain
that 0( is connected with yi via a positive mutation of length ||<J,V,'|| =
kt + j t l - jj. Therefore by Lemma 17.11, 0 = (0lf ... , 0p) is connected
with y = (yl, ... , y ) via a positive mutation of length k — j . But then by
Lemma 19,

yf < (2d^*2)m+k-hpf < (2d2"'2)m+k01" .

Having estimated yf in the two cases we obtain that yf < (2d^h)k+m 0f .
Then

k

where bx :=

We count the number of terms in the sum. There are ( i+Ji~') multi-

i n d i c e s S. w i t h S't < 5t a n d \\S\\\ = j t f o r a l l i G {l,...,p}. T h e r e

are c?™1 multi-indices yt G M(V2) with HyJI = H^H = mr Furthermore,

\cS^';\ < {Mmf*^ = (Mmf^'-1'-1' for aU ie{l,...,p}. Hence we

obtain by the triangle inequality and Lemma 20:

«, U)\ <

,)*1*-'0"-'1 • • • (Mmpf>
+j''-l~j<'c2(blt)

k+m{k - ;p)!~'a!A • £!A

Since IKa,, . . . , ap)\\ + \\(0X, ... , 0p)\\ = k + m, this proves the theorem by
Lemma 1.

COROLLARY 22. Let % be a real Lie algebra of skew-hermitian operators
in a Hilbert space defined on a common invariant domain. Let dl,d2eN and
let X{, ... , Xdi, r , , . . . , Ydi G 0. Suppose g = span({X,, . . . , X^ , Y,, . . . ,
Yd }) and suppose that span({ 7 , , . . . , Yd }) is an ideal in 9. Let A , , . . . , kd

> 1 and let fi>0. Then
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Let 0 be a Lie algebra and let Xx, ... ,Xd be a basis in Q. The basis
Xx,..., Xd is called an ordered basis in Q if

for all i, j e { 1 , . . . , d} . Not every solvable Lie algebra has an ordered
basis; but every Lie algebra which has an ordered basis is solvable. Every
nilpotent Lie algebra has an ordered basis. (For example, any Jordan-Holder
basis.)

COROLLARY 23. Let Q be a real Lie algebra of skew-Hermitian operators
in a Hilbert space defined on a common invariant domain. Let Xx, ... , Xd

be an ordered basis in Q and let Xd > 1 and Ad_, > •• • > A2 > max(A1, 1) >
A, > 0 . Then

^ Xd(xl,...,xd)=f]sXk(xk).
k=\

5. Non-triviality of certain Gevrey spaces

In this section we present several Gevrey spaces which are dense in the
corresponding Banach space. Let n be a representation of a Lie group G
in a Banach space E. For each X in the Lie algebra Q of G let dn(X)
denote the infinitesimal generator of the one parameter group t i-> nexptX .
We emphasize that for X, Y e Q the operators dn{X) and dn(Y) need not
have the same domain. In this connection there is the following theorem.

THEOREM 24. Let n be a representation of a Lie group G in a Banach
space E. Let X{,... , Xd be a basis in the Lie algebra g of G. Then
S{,..., x(dn{Xx),... , dn{Xd)) is dense in E. Moreover, for all A > 1 the
space Sk ^(dniXJ, ..., dn{Xd)) consists of all u e E such that the map
x >-* nxu is a Gevrey function of order A from G into E.

PROOF. See [11, Theorem 4] and [10, Proposition 1.5].

Now suppose the Lie group G is nilpotent. A basis Xx, ... , Xd in g is
called a Jordan-Holder basis in g if

for all i, j <d. Corollary 23 has the following form for unitary representa-
tions.
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THEOREM 25. Let n be a unitary representation of a nilpotent Lie group
G. Let Xx, ... , Xd be a Jordan-Holder basis in g. Let kd > 1 and Xd_x >
••• > X2 ^ max(A,, 1) > ^i > 0. Then Sx x (dn(Xx), ... , dn(Xd)) =

PROOF. Since D°°(dn(Xx),..., dn(Xd)) = C\d
k=l D°°(dn(Xk)) by [7, The-

orem 1.1], the theorem follows immediately from Corollary 23.

The Gevrey spaces considered in the above theorem are dense in the
Hilbert space if Aj > 1 according to Theorem 24. In this section we prove
that these spaces are dense in the Hilbert space if A2, . . . , kd > 1 and Xx > 0.

In case the representation n is irreducible, we can even take Xx = 0.
Indeed, because Xx belongs to the center of Q and dn{Xx) is closed, it
follows by Taylor, [14, Chapter 0 Propositions 4.3 and 4.5] that there ex-
ists a € C such tha t dn(Xx) = al. So S0l> x(dn{Xx), ... , dn(Xd)) =
Sj j , (dn(Xl),..., dn{Xd)) which is dense. In general, for non-
irreducible representations n, the operator d^X^) is not bounded.

Now let X{, ... , Xd be a fixed Jordan-Holder basis in g and let n be a
(not necessarily irreducible) unitary representation of G in a Hilbert space
H. Let QC be the complexification of g and let Gc be a connected sim-
ply connected complex Lie group with Lie algebra QC. (See [15, Theorem
3.15.1].) Let exp denote the exponential map from gc onto Gc. Without
loss of generality we may assume that G = exp(jj). For all k e { 1 , . . . , d}
define gk: C -» Gc by

gk(z):=exp(zXk) (zeC).

Define g: Cd -> Gc by

g{zx, . . . , zd):=gx(zx)---gd{zd) ( z , , . . . , zdeC).

By [15, Theorem 3.18.11], the map g is an analytic diffeomorphism from
Cd

G.
Cd onto Gc and the map g\Rd is an analytic diffeomorphism from R into

L E M M A 26. Let k e{l,... ,d}. Then there exists polynomials Pk j : Ck j

-> C , where j e{l, ... , k-2}, such that for all z e C and all tx, ... , td € C
we have
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with

*; = ',+iWz'W"''*-i) ifJ<k-U
Sk-l = lk-\ '

Sj = tj if) > k.

PROOF. See [8, Lemma 5.1].

THEOREM 27. Let G be a nilpotent Lie group with Lie algebra g. Let n
be a unitary representation of G in a Hilbert space H and let X{, ... , Xd

be a Jordan-Holder basis in g. Let A e (0, 1). Then Sx { 1(rf7r(^ri), . . . ,
dn{Xd)) is a dense subspace of H.

PROOF. We may suppose that G is connected and simply connected. Let
gc , Gc, gk and g be as above. Let the polynomials Pk j be as in Lemma
26. Let m be the maximum of the degrees of these polynomials Pk .. Let

p0 =p_x = 0 and for k e { 1 , . . . , d} let pk := (1 + m)k~\l - A ) " 1 , let

qk := max(pfe, mpk_2), and let Xk :— 1 - qk
l. Observe that Xl — A. Then

qk> Pk> (1 - A ) " 1 > 1 for all k e {2, , ..., d}, hence Xk > 0. We

shall prove that C\i=iSx (dn(Xk)) is dense in H. Since all Xk < 1, then

also Sx {dn{Xx))ri^\d
k=1Sx{dx{Xk)) is dense in H. Hence by Theorems 24

and 25, SXA^l(dn(Xl), . . . , dn{Xd)) = Sx {dn{Xx))n(\d
k=2Sx{dn{Xk)) is

dense in H.
Consider the following assertion.
There exists a dense set Z2 of LX{G) such that

d

x(f)(H) C f) SXk(dn(Xk)) for all / e Z2.

Because the representation n is continuous, U/ ez 7 t ( / ) ( ^ ) *s dense in
H and having proved this assertion, the proof of the theorem is completed.

Let Z be the set of all entire functions F on Cd for which there exist
constants A, B, C > 0 (depending on F) such that

d d

\F{zx zd)\ < Cexpt-^^|Rezfc|^ + J B£ | Imz/*]
fe=i fc=i

for all (Zj, . . . , zd) G Cd . Since pl,... , pd > 1, the set {F\Rd : F e Z} is

dense in Ll(Rd) according to [5, Section IV.9]. Let Zl := {/ e CGc : / o g e
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Z} and Z2 := {f\G : / e Z,} . By [13, page 90], the map / ~ fa f(g(z))dz
is a Haar integral on G, hence the set Z2 is dense in LX(G). Similarly, Zx

is dense in Ll(Gc) and in particular, a subset of L\GC).
Let / € Zx, let F := fo g and let A, B, C be constants corresponding

to F. Let k € {1, . . . , d}. There exists C, > 0 such that for all j e
{1, . . . , d} with j < k - 1, all tx, ... , td e R and all z e C we have

with Sj := tj + Pk j(z, tj+l, ... , tk_x). Using the inequalities \a + bf <
2p(\a\" + \b\p) and'-\a - bf <-2~p\a\p + \b\p for all a, b e R and p > 1,
and using the fact that 1 < px < • •• < pd , we obtain by Lemma 26 and a
straightforward calculation that for all (, ^ e R and all z e C,

\f(gk(z)g(tl,...,td))\<C2exp
7=1 7=1

where A{, Bx, C2, C3 are positive constants which depend only on A, 5 , C,
C, and px,... ,pd. For z e C define T z / : G -• C by

(TJ)(x) := f(gk(z)x) (xeG).

Since mpj_l < Pj for all j e {1, . . . , d) , we have T z / G L1 (G) for all z e

C. Hence the map t H-» Ttf from R into L1 (G) extends holomorphically

to an entire function from C into Ll(G) of exponential order < qk . So the

map 11-» Lnp,tX j(/ |G) = T_tf from R into Ll(G) extends holomorphically

to an entire function from C into Ll(G) of exponential order < qk =

( 1 - / I J - 1 . Then by [9, Corollary 4.1], n{f\G)u e SXk{dn{Xk)) for all uzH.

This proves the assertion.

COROLLARY 28. Let n be a unitary representation of a nilpotent Lie group
G in a Hilbert space H. Let Xx, ... , Xd be a Jordan-Holder basis in the Lie
algebra of G. Let k2,...,kd> 1 and let A, > 0. Then Sx x {dn(Xx),
..., dn(Xd)) is dense in H.
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6. Example: the ax + b group

The ax + b group is the topological space G := (0, oo) x R endowed with
the multiplication (a,b)-{c, d) := (ac,ad + b), (a, b), (c, d) e G. So G
is a Lie group which is isomorphic with the group of matrices of the form
(g*) with a > 0 and b e R. Let y denote the embedding from G into

R2. By e := (1, 0) we denote the identity in G. Define

X:= Y:=
d

Then X, Y is a basis in the Lie algebra fl of G and [X, Y] = Y. So by
Theorem 21.11 and [7, Theorem 1.1] we obtain for every unitary representa-
tion n in a Hilbert space, all X > 1 and all fi > 0 that

SxJdn(X), dn{Y)) = Sx(dn(X)) n S^d

The ax + b group has up to unitary equivalence two irreducible infinite
dimensional representations. For (a, b) e G there exists a unique unitary
map U* b) from L2(R) onto L2(R) such that

£ . *) e ^ / X * + log a) a.e. x e R

for all / G CC(R). Then (a, b) •-> t/(* ft) is a (continuous unitary) irre-
ducible representation of G in L2(R). Let D be the skew-adjoint differen-
tiation operator in L2(R). Let E be the multiplication operator in L2(R)
of multiplication by the function x >-» ex , x e R. Then rf(7±(X) = D and
j ( / ± ( y ) = ± / £ .

For A, ^ > 0 we shall consider the Gevrey space Sx /J(rft7
±(X), </t/±(y))

= Sltft{D,E). Since SXfi{D, E) C D°°{D, E) c D°°'{D), every element of
5A ^(Z>, £ ) is infinitely difTerentiable.

LEMMA 29. Let A, fi>0. Let feSX/l{D,E). Then there exist C,t>0

such that for all k,l e N o :

PROOF. By a classical Sobolev inequality we obtain for all k, I €
o :

where c, t > 0 are some constants.
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Paley and Wiener ([12, Theorems I and IV]) have given a characterization
of the space St (D) in terms of analytic functions. Because of our intersection
theorems, the characterizations of the spaces Sx (£>) as derived by Paley and
Wiener is useful in the characterization of the spaces S{ ^(D, E) where

THEOREM 30. Let f e L2(R). Then f € SX(D) is and only if there exist
t > 0 such that f can be extended to an analytic function F on the strip
{z eC: |Imz| < It) and

f°° 2
sup / \F(x + iy)\ dx < oo.
l(-t,t)J-oo

THEOREM 31. Let n > 0 and f e L2(R). The following conditions are
equivalent:

I. feSlfl(D,E),
II. / e 5j {D) and there exist C, a, t > 0 such that f can be extended

to an analytic function F on the strip { z e C : | Imz | < 2/} and

\F(x + iy)\ <Ce~ae

for all x eR and all y e(-t, t).

PROOF. I =*• II. This can be proved in the same manner as in [5, Section
IV.2] a characterization has been given for the space S^ .

II => I. Let k e N. Then

\{e*)kf(x)\2dx < %/2̂ 11/H2, + C2 r e
lxk^e-

lae%hl
 dx

Jo
< V2n\\f\\2 + ixC a k\ <oo.

So / e 51
1(|£'|1/'') = S (E). (See Example 5.) Hence, by assumption, / e

S{(D) n S (E). Now we use the intersection theorem in order to conclude
that feSl/t(D,E).

COROLLARY 32. Let fi>0. Define W from L2(R) onto L2(R) by

- J a.e. x eR

for all feL2(R). Then W is a unitary map in L2(R) which maps S1, ,(£>,£)
onto Slfl{D,E).

COROLLARY 33. Let ft > 0. Then the Gevrey space S, M(D, E) is dense

in L2(R).
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LEMMA 34. The space Sx 0(D, E) is trivial.

PROOF. Let / e 5, 0(D, E). By Lemma 29 there exist C, t > 0 such
that \\EkDlf\\oo < Ctk+'l\ for all k, I e No. So / can be extended to an
analytic function F on the strip {z e C : | Imz | < r1} . Let x e K be such
that ex > t. Then for all k e No : e ^ l / M I < C/*> so |F(JC)| = | / (x) | <
vaS{C{te~xf : k e No} = 0. Hence F = 0 and / = 0.

LEMMA 35. Let X e [0,1) and n > 0 . Then the space Sx ^(D, E) is
trivial.

PROOF. Let / € Sx ^(D, E). By Lemma 29 there exist C, t > 0 such

that H^D' / I IOO < Ctk+lk?tf for all fc, / € No. As in [5, Section IV.2.2],
it follows that / can be extended to an entire function F for which there
exist T , Cl > 0 such that

for all x, y e R. Let z = x + iy e C. Then

Hence l i m ^ ^ ^ F(z) • F{iz) • F{-z) • F(-iz) = 0 . By the Liouville theorem,
F(z) • F(iz) • F{-z) • F(-iz) = 0 for all z e C. Then also F = 0 and

At this point it is not known whether the spaces Sx Q(D, E) are trivial if
A > 1. This problem will be solved in the following lemma.

LEMMA 36. Let X > 1. Then the space Sx 0(D, E) is dense in L2(E). In

particular, the Gelfand-Shilov space SQ is a subspace of Sx Q(D, E).

PROOF. Let / e SQ . Then there exist t > 0 such that f{x) = 0 for all
JC G R, \x\>t. Therefore, for all k e No:

L\{ex)kf{x)\2dx<{elfkV2ii\\ft2,

hence / e SQ{E). Obviously, / e S j c SX{D). Therefore / e SX(D) n
S0(E). Using again the intersection theorem, we obtain that / e Sx 0(D, E).

We summarize the results of the previous lemmas and corollary.
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THEOREM 3

if and only if
THEOREM 37. Let A, n > 0. Then the space Sx U{D, E) is dense in L2(R)

A > 1 and fi>0 or A = 1 andn>0.
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