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Abstract

Similarly to other domains of the social sciences, behavioural science has grappled with a
crisis concerning the effect sizes of research findings. Different solutions have been pro-
vided to answer this challenge. This paper will discuss analytical strategies developed in
the context of computational social science, namely causal tree and forest, that will benefit
behavioural scientists in harnessing heterogeneity of treatment effects in RCTs. As a mix-
ture of theoretical and data-driven approaches, these techniques are well suited to exploit
the rich information provided by large studies conducted using RCTs. We discuss the
characteristics of these methods and their methodological rationale and provide simula-
tions to illustrate their use. We simulate two scenarios of RCTs-generated data and explore
the heterogeneity of treatment effects using causal tree and causal forest methods.
Furthermore, we outlined a potential theoretical use of these techniques to enrich behav-
ioural science ecological validity by introducing the notion of behavioural niche.

Keywords: treatment effect; heterogeneity; computational social science; causal forest; behavioural niches

Introduction

Reflections on the limitations and shortcomings of current research practices have
become common in social science research. The more general framework of the
so-called metascience research is scrutinising research practices intending to improve
the reliability and reproducibility of findings. Like other contingent disciplines,
behavioural science has grappled with a crisis concerning the effect sizes of research
findings (e.g. Maier et al., 2022). This crisis, often known as the effect size crisis, high-
lights the frequent overestimation of the magnitude and significance of the effects
under study. The main concern in behavioural research and experiments has been
the large body of small effect sizes of treatments that need to be statistically validated.
Researchers might report disproportionately significant effect sizes that are rarely rep-
licable and often vanish or shrink significantly in subsequent, more robust studies.
There is a long-standing debate about effect size in psychology that has shaped the
research practices of the past years (Kelley and Preacher, 2012, Westfall et al, 2014,
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Van Bavel et al., 2016, Schafer and Schwarz, 2019). In general, we can identify aspects
related to the problem of making behavioural findings more robust. The first concern
is the issue of treatment selections. As behavioural research is meant to be applied,
selecting and testing a given treatment in a randomised controlled trial is, at best,
often compared to a couple of other alternatives. Therefore, the relative effectiveness
of the treatment, given the overwhelmingly small effect sizes found in behavioural
studies, is difficult to assess when the efficacy of alternative treatments remains
unknown. An answer to the selection problem has been the introduction of the ‘mega-
studies’ (Milkman et al, 2021). These are large-scale studies that simultaneously test
many treatments or interventions. Mega-studies’ power lies in trying to overcome the
selection bias of treatments, their increased statistical power to detect even small effect
sizes and their ability to provide more accurate estimates. Furthermore, they allow
researchers to assess the consistency of effects across various experimental conditions
and populations. Yet, despite these advantages, mega-studies also carry challenges,
such as complex data management and analysis, and they may inadvertently inflate
type I errors if multiple testing corrections are not appropriately applied.

One issue often neglected in both conventional and large-scale studies is the exam-
ination of heterogeneity in treatment effects. Heterogeneity of treatment effects refers to
the variability in how different subgroups within a sample respond to an intervention or
treatment. For example, a certain behavioural intervention might be effective for one
demographic group but not for another. By failing to analyse this heterogeneity with
sophistication, researchers may miss crucial insights and patterns in the data that
have practical implications (see Schimmelpfennig et al, 2021; Steinert et al, 2022;
Athey et al, 2023). According to some behavioural scientists (Bryan et al, 2021;
Hallsworth, 2023; Hecht et al., 2023), behavioural science must address that most treat-
ment effects are heterogeneous. It is essential to incorporate sophisticated heterogeneity
treatment effects analysis in traditional and mega-studies to offer a nuanced view of the
population under study, recognising individuals™ diversity and unique characteristics of
the population’s milieus. Doing so provides more precise estimates of effect sizes and
offers insights into potential moderators and mediators of these effects. Sophisticated
analysis of these effects can yield insights missed in studies only seeking to establish
the average treatment effect (ATE) (Ding et al, 2019). Treatment effects can differ
based on various factors, including demographics, cultural background and even genetic
variations, as socio-genetics studies claim. Despite the importance of this variability, it
has yet to be analysed with sophistication in behavioural research. It is more analytically
complex to analyse beyond comparing two or three groups defined by categorical vari-
ables. This paper will discuss analytical strategies developed in the context of computa-
tional social science that will benefit the behavioural scientist. We will discuss the
methodological rationale and provide simulations to illustrate the points.

Computational social science methods for heterogeneity analysis

As mentioned in the previous section, the challenge of implementing the heterogeneity
analysis approach in methodological terms is not easy. Help, however, comes from the
new analysis techniques that have emerged in the computational and computer sciences
and their application in social sciences. There is a larger discussion about the

https://doi.org/10.1017/bpp.2023.35 Published online by Cambridge University Press


https://doi.org/10.1017/bpp.2023.35

Behavioural Public Policy 3

transformative aspect of computational social science on the modelling practices of
social scientists. In summary, the predominant modelling culture in the social sciences
has been defined as the data modelling culture or DMC in contrast with the emerging
algorithmic modelling culture or AMC (Breiman, 2001; Veltri, 2017). The convergence
process between these two modelling cultures is an object of the aforementioned dis-
cussion. First, the emphasis on ‘explainability’ using simpler statistical models with
reduced predictive power is increasingly questioned (Hofman et al, 2017). Hence,
the hybrid approach argues that we should think about models in terms of their valid-
ation in terms of prediction, which means embedding better practices of increasing reli-
able, valid and replicable causal inferences in the social sciences. Future social scientists
will need to be acquainted with the logic of predictive modelling developed in machine
learning techniques. There is a renovated emphasis on identifying causal relationships
in the social sciences. This is due to the increased use of experiments, particularly in the
form of randomised controlled trials (RCT), partly due to the digital data revolution.
All sorts of social scientists now run different forms of online experiments (Veltri,
2023). Large-scale experiments are part of the testing phase of public policy develop-
ment, and, in general, the search for the identification of causal effects has become
increasingly important. The traditional concerns about the external and ecological val-
idity of experiments have been surpassed by the capacity to run experiments outside the
lab and, at the same time, increase the granularity of measurements. Outside academia,
digital platforms have already entered the age of big experimentation, running literally
thousands of experiments, the so-called A/B testing, to continuously improve the way
platforms can shape their users’ behaviour. At the same time, advancements in causal
inference modelling have produced several new approaches tailored to inferring caus-
ality from observational data (Pearl, 2010; Imbens and Rubin, 2015; Peters et al.,
2017; Hernan and Robins, 2024). The same effort is behind the increased sophistication
in determining causal effects in experimental data that will be discussed later in this
paper. One approach to how social and behavioural sciences can benefit from analytical
approaches developed in the context of computational methods is the development of
model-based recursive partitioning. This approach is an improvement in the use of
classification and regression trees. The latter also being a method from the ‘algorithmic
culture’ of modelling that has useful applications in the social sciences but is essentially
data-driven (Berk, 2006; Veltri, 2023). In summary, classification and regression trees
are based on a purely data-driven paradigm. Without using a predefined statistical
model, such algorithmic methods recursively search for groups of observations with
similar values to the response variable by constructing a tree structure. They are very
useful in data exploration and express their best utility in the context of very complex
and large data sets. However, such techniques make no use of theory in describing a
model of how the data were generated and are purely descriptive, although far superior
to the ‘traditional’ descriptive statistics used in the social sciences when dealing with
large datasets.

Tree-based methods

Model-based recursive partitioning (Zeileis et al., 2008) represents a synthesis of a
theoretical approach and a set of data-driven constraints for theory validation and
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further development. In summary, this approach works through the following steps.
Firstly, a parametric model is defined to express a set of theoretical assumptions (e.g.
through a linear regression). Second, this model is evaluated according to the recur-
sive partitioning algorithm, which checks whether other important covariates that
would alter the parameters of the initial model have been omitted. The same regres-
sion or classification tree structure is produced. This time, instead of partitioning by
different patterns of the response variable, it creates different versions of the paramet-
ric model in terms of B estimation, depending on the different important values of the
covariates. (For the technical aspects of how this is done, see Zeileis and Hornik,
2007.) In other words, the presence of splits indicates that the parameters of the initial
theory-driven definition are unstable and that the data are too heterogeneous to be
explained by a single global model. The model does not describe the entire dataset.

Classification trees look for different patterns in the response variable based on the
available covariates. Since the sample is divided into rectangular partitions defined by
the values of the covariates and since the same covariate can be selected for several
partitions, classification trees can also evaluate complex interactions and non-linear
and non-monotonic patterns. The structure of the underlying data generation process
is not specified in advance but is determined in an entirely data-driven manner.
These are the key distinctions between classification and regression trees and classical
regression models. The approaches differ, firstly, with respect to the functional form
of the relationship, which is limited, for example, to the linear influence of covariates
in most parametric regression models and, secondly, with respect to the pre-
specification of the model equation in parametric models. Historically, the basis for
classification and regression trees was first developed in the 1960s as Automatic
Interaction Detection (Morgan and Sonquist 1963). Later, the most popular algo-
rithms for classification and regression trees were developed by Quinlan (1993)
and Breiman et al. (1984). Here we focus on a more recent framework by Hothorn
et al. (2006), based on the conditional inference theory developed by Strasser and
Weber (1999). The main advantage of this approach is that it avoids two fundamental
problems of previous classification and regression tree algorithms: variable selection
bias and overfitting (see, e.g. Strobl et al., 2009).

Hothorn et al’s (2006) algorithm for recursive binary partitioning can be
described in three steps: first, starting with the entire sample, the global null hypoth-
esis that there is no relationship between any of the covariates and the response vari-
able is assessed. If no violation of the null hypothesis is detected, the procedure stops.
If, on the other hand, a significant association is discovered, the variable with the lar-
gest association is chosen for splitting. Secondly, the best cutpoint in this variable is
determined and used to split the sample into two groups according to the values of
the selected covariate. Then the algorithm recursively repeats the first two steps in the
subsamples until no more violation of the null hypothesis or a minimum number of
observations per node are reached. In the following, we briefly summarise which cov-
ariates can be analysed using classification and regression trees, how the variables are
selected for splitting and how the cutpoint is chosen. Classification trees look for
groups of similar response values with respect to a categorical dependent variable,
while regression trees focus on continuous variables. Hothorn et al. (2006) point
out that their conditional inference framework can also be applied to ordinal and
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censored survival time situations and multivariate response variables. Within the
resulting tree structure, all respondents with the same covariate values — represented
graphically in a final node - obtain the same prediction for the response, i.e. the same
class for categorical responses or the same value for continuous response variables.

The next question is how the variables for potential splits are chosen and how the
relevant cutpoints can be obtained. As described above, Hothorn et al. (2006) provide
a statistical framework for tests applicable to various data situations. In the recursive
binary partitioning algorithm, each iteration is relative to a current data set (from the
entire sample), where the variable with the highest association is selected by means of
permutation tests as described below. The use of permutation tests makes it possible
to evaluate the global null hypothesis H0 that none of the covariates has an influence
on the dependent variable. If HO is valid (in other words, if the independence between
any of the covariates Zj (j=1,. . ., 1) and the dependent variable Y cannot be
rejected), the algorithm stops. Thus, the statistical test acts both for variable selection
and as a stopping criterion. Otherwise, the strength of the association between the
covariates and the response variable is measured in terms of p-value, which corre-
sponds to the partial null hypothesis test that the specific covariate is not associated
with the response. Thus, the variable with the smallest p-value is selected for the next
split. The advantage of this approach is that the p-value criterion guarantees an
unbiased selection of variables regardless of the measurement scales of the covariates
(see, e.g. Hothorn et al., 2006; Strobl et al., 2007 2009). Permutation tests are con-
structed by evaluating the test statistic for the data given under HO. Monte Carlo
or asymptotic approximations of the exact null distribution are used to calculate
p-values (see Strasser and Weber, 1999; Hothorn et al., 2006, for more details).
After the variable for the split has been selected, we need a cutpoint within the
range of the variable to find the subgroups that show the strongest difference in
the response variable. In the procedure described here, the cutpoint selection is
also based on the permutation test statistic: the idea is to calculate the two-sample
test statistic for all potential splits within the covariate. In the case of continuous vari-
ables, it is reasonable to limit the studied splits to a percentage of potential cutpoints;
in the case of ordinal variables, the categories’ order is considered. The resulting split
lies where the binary separation of two data sets leads to the highest test statistic. This
reflects the largest discrepancy in the response variable concerning the two groups. In
the case of missing data, the algorithm proceeds as follows: observations with missing
values in the currently evaluated covariate are ignored in the split decision, while the
same observations are included in all other algorithm steps. The class membership of
these observations can be approximated using so-called surrogate variables (Hothorn
et al., 2006; Hastie et al., 2008).

MBRP or Model-based recursive partitioning was developed as an advancement of
classification and regression trees. Both methods come from machine learning, which
is influenced by statistics and computer science. The algorithmic logic behind classi-
fication and regression trees is described by Berk (2006, p. 263) as follows: ‘With algo-
rithmic methods, there is no statistical model in the usual sense; no effort is made to
represent how the data were generated. And no excuse is offered for the absence of a
model. There is a practical data analysis problem to be solved that is attacked directly
with procedures designed specifically for this purpose’. In this sense, classification
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and regression trees are purely data-driven and exploratory — thus marking the com-
plete opposite of the model specification theory-based approach prevalent in the
empirical social sciences. However, the advanced model-based recursive partitioning
method combines the advantages of both approaches: first, a parametric model is for-
mulated to represent a theory-driven research hypothesis. Then, this parametric
model is handed over to the model-based recursive partitioning algorithm that checks
whether other relevant covariates have been omitted that would alter the model para-
meters of interest. Technically, the tree structure obtained from the classification and
regression trees remains the same for model-based recursive partitioning. The model-
based recursive division finds different patterns of associations between the response
variable and other covariates that have been pre-specified in the parametric model.
Trees, in this technique, show how the relationship between the dependent variable
and two independent variables changes considerably (statistically significant, as indi-
cated by the p-values) in the different subdivisions of the sample of respondents. For
example, if the relationship between the dependent variable and each independent
variable changes signs for certain partitions of the dataset represented by the sub-
groups, a one-size-fits-all approach is highly problematic.

Causal machine learning

The evolution of model-based recursive partitioning for causal estimation led to the
so-called causal tree approach. Causal Trees are a novel concept in computational
social science that aims to enhance the understanding and visualisation of causal rela-
tionships in complex data. This approach builds on the traditional decision tree
methodology by focusing not only on predicting outcomes but also on identifying
the causal effect of an intervention or variable of interest. The fundamental goal of
Causal Trees is to understand the impact of a specific treatment or intervention on
different subgroups in a population. They help identify heterogeneity in treatment
effects, thus enabling decision-makers to personalise interventions based on individ-
ual or group characteristics. Essentially, these algorithms are designed to answer the
question: for whom does this intervention work best? Causal Trees are an expansion
of the previously discussed MBRP. However, unlike standard MBRP trees that aim to
minimise prediction error, Causal Trees use a splitting criterion based on potential
outcomes and treatment effects. The trees identify subgroups or ‘leaves’ with similar
characteristics where the treatment effect is most significant. Therefore, instead of
producing a single ATE, they provide local average treatment effects (LATE) or con-
ditional average treatment effects (CATE), allowing a more nuanced understanding
and application of the treatment.

A notable contribution to this field has been made by Athey and Imbens in their
paper ‘Recursive partitioning for heterogeneous causal effects’ (Athey & Imbens,
2016). They proposed a new method, Causal Trees or CT and an accompanying algo-
rithm, Causal Forests. Causal Trees are used for partitioning the data into homogen-
ous groups with regard to the treatment effect, and Causal Forests are an extension of
this, using a random forest approach to provide more reliable and precise estimates.
Wager and Athey later furthered the idea in ‘Estimation and Inference of
Heterogeneous Treatment Effects using Random Forests’ (Wager & Athey, 2018).
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They introduced a method of Generalized Random Forests, which extended the con-
cept of Causal Forests, thereby improving upon the precision and interpretability of
the results. Their approach effectively combined robust non-parametric machine
learning with the ability to infer heterogeneous treatment effects, addressing the lim-
itations of prior methodologies.

Athey, Tibshirani and Wager in ‘Generalized Random Forests’ (2019) built upon
their previous work, introducing a new statistical framework that allowed their
Generalized Random Forest to be used not only for estimating heterogeneous treat-
ment effects but also for quantile regression, instrumental variables and structural
equation models. These advancements have expanded the potential applications of
Causal Trees and their variants in academia and fields like healthcare, marketing
and public policy, where personalising interventions can lead to better outcomes.
In summary, Causal Trees provide a promising method for identifying and under-
standing heterogeneous causal effects (Dandl et al., 2022). This works particularly
well for experiments and unconfoundedness because, in these cases, the effect esti-
mates are based on treated and controls with similar values of the covariates. This
similarity of covariate values of different observations is also a defining feature of a
(final) CART leaf. Thus, the main difference between a CART and a CT is that
the latter computes average outcome differences between treated and controls (with
or without propensity score weighting) in the final leaves and uses a splitting criterion
adapted to causal analysis. This adapted splitting rule is based on maximising treat-
ment effect heterogeneity instead of minimising the (squared) prediction error.

The variance-bias trade-off in a CT also requires finding an optimal leaf size that is
small enough to make the bias small but not so small that the estimator’s variance
becomes too large. However, CT's are rarely used in applications for the same reason
as Random Forest may be preferred to CARTs for prediction tasks. As in a Random
Forest, final leaves in a Causal Forest are small and, thus, bias is low. This is possible
because the variance of the prediction from a single leaf is reduced by averaging over
such predictions from many randomised trees. As in Random Forest, randomisation
of these (deep) trees is done by randomly selecting splitting variables and by inserting
randomness via the data used in building the tree. However, while trees in Random
Forest are typically estimated on bootstrap samples, the theory of Causal Forest
requires to use of subsampling (i.e. sampling without replacement) instead.
Another important concept used is ‘honesty’, i.e. the data used to build the Causal
Tree differ from the data used to compute the effects given the Causal Tree. This
is achieved by sample splitting. Under various additional regularity conditions, esti-
mated IATEs (individualised ATE) from such Causal Forests converge to a normal
distribution centred at the true IATEs. As usual, GATEs (group average treatment
effects) and IATEs are then obtained by averaging.

The contribution of causal trees and forest methods can be conceived in two ways.
First, by enabling personalised interventions based on individual characteristics, they
hold great potential for personalised interventions. Not surprisingly, this application
is most appealing to the industry. Second, they allow the identification of local models
associated with particular groups of individuals. The latter consideration requires fur-
ther theoretical consideration. However, first, we illustrate the point carrying two simu-
lated RCT and carrying out causal forest estimations of heterogeneity treatment effects.
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Simulations

To illustrate the challenges posed by identifying complex sources of heterogeneity, we
carried out simulations to help illustrate the impact of treatment size on the outcome
and the heterogeneity of treatment effects. These simulations demonstrate how causal
forests can uncover the heterogeneity in treatment effects, which might not be evident
from a simple estimation of average treatment effects. We simulate two experiments
with a sample of 5,000 individuals with the following characteristics: Scenario 1 cre-
ates normally and non-normally distributed covariates C1, C2 and C3, simulates a
binary treatment X and calculates an outcome variable Y as a noisy sum of the cov-
ariates, the treatment and a random component. The treatment effect is set to be
small, in line with a common context in behavioural research. The regression analysis
then estimates the effect of the treatment on the outcome variable, controlling for the
covariates; Scenario 2 creates normally and non-normally distributed covariates C1,
C2 and C3, simulates a continuous treatment X and calculates an outcome variable
Y as a noisy sum of the covariates, the treatment and a random component. The treat-
ment effect is set to be small, like in the previous simulation. The regression analysis
then estimates the effect of the treatment on the outcome variable, controlling for the
covariates. The code and the regression models are reported in the Annex.

Figure 1 shows the causal tree for our simulated RCT in Scenario 1, where our
treatment is binary (participants have received or have not received treatment),
and the ATE has been pre-established at .10, it means that, on average, receiving
the treatment or intervention is associated with a .10 unit increase in the outcome
Y compared to not receiving the treatment. Figure 1 is a visual representation of
the trained decision tree model. We see a tree-like plot where each node represents
a decision made based on one of the input features (C1, C2, C3), and each leaf
node represents a prediction of the response variable Y.

How should we interpret the tree? On the top, we can see the average Y* in the
data, 1.25. Starting from there, the data gets split into different branches according
to the rules highlighted at the top of each node. In short, every node contains an

G<=15
squared_ermor = 1.28
samples = 100.0%
value = 1.25

C2<m 171 C2<m 202
squared_emor = 1.15 squared_error = 1.21
samples = 73.5% samples = 26.5%

value = 1.05 value = 1.82

C2<=114

C<=05 CQ<=25
squared_emor = 1.07 | squared_error = 1.13

squared_ermos = 1.11
samples = 23.8%
value = 1.73

samples = 60.4% samples = 13.1%
value = 0.92 value =

-

\ / \

[;ndarcd orror = 1 G‘J[{qumm_mr 1 03] Squared_error = 1. 01] squared_ermor = 1.19
0.0%

swmd ermor = 1.06
sampies = 7.8%
value = 2.06

samples = 30.4% samples. samples = 9.6% samples = 3.3%
value = 0,73 wlu: 1 -iﬁ value = 2.08

samples = 16.0%
value = 1.57

sampies = 1.8%

squared_eror = 1.07
walue = 2.4

lsqluredl«w-lﬁ‘ quared error =

Figure 1. Scenario 1: Simulation of a causal tree with a binary treatment (X), one normally distributed
covariate (C1) and two non-normally distributed covariates (C2, C3). Max-depth set to 3.
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estimate of the conditional ATE E[zi | Xi], where darker node colours indicate higher
prediction values. For each node in the tree, it shows the condition used to split the
data, the expanded mean squared error (Emse) of the response variable for the data
points that satisfy the conditions up to that point, the number or proportion of data
points that satisfy the conditions up to that point; The predicted value of the response
variable for new data points that would end up in that node. The terminal node of the
tree indicates the variation of the treatment effects conditional to combinations of
values of the covariates (C1, C2, C3), and it indicates the percentage of the sample
that falls in each terminal node. For example, 30% of individuals had a Y value of
.73, while there is a 16% value of 1.57. A minority of almost 1% of the sample has
a Y value of three times the average.

We will discuss later how the data-driven identification of subsamples of the ter-
minal nodes might have theoretical implications for behavioural research. Next, a
causal forest using 2000 trees is generated to estimate the treatment effect conditional
to partitions generated by covariates values, and the resulting heterogeneity in treat-
ment effects is visualised. We have restricted the tree to a maximum depth of 3 to
easily plot the tree and visualise the estimated groups and treatment effects. This
helps us understand the distribution of treatment effects across the individuals in
our simulated RCTs. Figures 2—4 report the estimated treatment effects (7) heterogen-
eity due to different values of covariates C1, C2 and C3 in our Scenario 1 with a bin-
ary treatment. Depending on the distribution of each covariate, such heterogeneity
can take different shapes. In the case of C1 (Figure 2), a normally distributed variable,

Treatment Effect Heterogeneity due to C1

1.00 - ¢ r L]
0.75 - !

0.50 1

-

0.00 0

Treatment Effect

—0.25 A

—0.50 1

—0.75 A

-4 -3 -2 -1 0 1 2 3
Covariate C1

Figure 2. Scenario 1: Scatterplot reporting ATE’s heterogeneity values due to Covariate 1 estimated using
a causal forest model (2000 trees).
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Treatment Effect Heterogeneity due to C2

0.75 A
0.50 A
(Ll I XX N J

0.25 1

0.00 1

Treatment Effect

—0.25 A

—0.50 1

—0.75 1

0 1 2 3 4 5 6 7
Covariate C2

Figure 3. Scenario 1: Scatterplot reporting ATE’s heterogeneity values due to Covariate 2 estimated using
a causal forest model (2000 trees).

Treatment Effect Heterogeneity due to C3

o
[ ] ®
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& 0.20
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0 1 2 3 4 5 6

Covariate C3

Figure 4. Scenario 1: Scatterplot reporting ATE’s heterogeneity values due to Covariate 3 estimated.
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C2 (Figure 3) has an exponential distribution and C3 (Figure 4) follows a Poisson dis-
tribution with A2 = 1. The treatment effect from the average of 0.10 can widely vary,
including negative values. For example, Figure 3 reports the treatment effect variation
conditional to the values of C2, where most of the heterogeneity is contained with a
few values of the covariates. Figure 4 reports the case of a different type of covariate,
C3, where we can identify from the scatterplot that the treatment effects variation is
clusterable in two groups of cases.

In the second simulation, we carried out the same settings as before, with the dif-
ference that this time, we simulated an RCT with a continuous treatment X.

In the case of continuous treatment, it is even more evident that the importance of
detecting subsets of our sample that might produce divergent outcomes. In Figure 5,
we can notice how, in the left terminal node, 16% of our sample had a negative Y
value of —41 in contrast with almost 15% that had a .41 increase in Y.

As in the previous scenario, Figures 6-8 report the estimated treatment effects het-
erogeneity due to different values of covariates C1, C2 and C3 in our Scenario 1 with
a binary treatment.

Depending on the distribution of each covariate, such heterogeneity can take dif-
ferent shapes. In the case of C1, a normally distributed variable, C2 has an exponen-
tial distribution and C3 follows a normal distribution skewed with a skewness
parameter a =10. The treatment effect can vary even more than in our scenario
1. For example, Figure 6 reports the treatment effect variation conditional to the
values of C1 where the spread of the heterogeneity is complex, with a group of
cases well above the average, a group on a null effect and a small group with negative
values. Figure 7 reports the case of a different type of covariate, C2, which is expo-
nentially distributed, where we can identify from the scatterplot that the treatment
effects variation is contained in a range of values of C2, like in Scenario 1. Last, we
have Figure 8, the most problematic of all, C3 has a skewed normal distribution,
the result is a complex picture with a polarisation of effects for several groups with
positive and some with negative treatment effects values.

Cl <=.0.15

C2 <= 192

squared_emor = 0.34
samples = 45.7%
value = .0,13

€2 <= 387
K squared error = 0.32 X
samples = 18.8% samples = 6.9% samples = 30.7%
value = -0.21 value = 0.3 vahe = 0.18

squared_error = 0.26 [sqL
samples = 24,3%
value = 0.09

squared_error = 0.28
samples = 16.4%
value = -0.41

squared_error = 0.27
samples = 5.2%
value = 0,17

samples = 22.4%

squared_errer = 0.26
value = -0.06

Figure 5. Scenario 2: Simulation of a causal tree with a continuous treatment (X), one normally distrib-
uted covariate (C1) and two non-normally distributed covariates (C2, C3). Max-depth set to 3.
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Figure 6. Scenario 2: Scatterplot reporting ATE’s heterogeneity values due to Covariate 1 estimated using
a causal forest model (2000 trees).
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Figure 7. Scenario 2: Scatterplot reporting ATE’s heterogeneity values due to Covariate 2 estimated using
a causal forest model (2000 trees).
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Treatment Effect Heterogeneity due to C3
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Figure 8. Scenario 2: Scatterplot reporting ATE’s heterogeneity values due to Covariate 3 estimated using
a causal forest model (2000 trees).

As shown by these simulations, which only partially simulate real data complexity,
the issue of detecting and identifying the heterogeneity of treatment effects condi-
tional to covariates deserves attention and effort. The use of computational methods
like causal trees and causal forests to not only detect the heterogeneity but link it to
specific cases in our sample produces a new set of rich information. How this infor-
mation can be used in the context of behavioural science is an open discussion, we
will offer one possibility in the next section.

Conclusions

The use of computational methods has started to be applied in the context of behav-
ioural studies, see for example, Steinert Janina et al. (2022) in the context of testing
messages against COVID-19 vaccine hesitancy in a pan-European study. Applications
in the private sector are also more and more common, estimation of heterogeneous
treatment effects is essential for treatment targeting, which is particularly relevant in
the industry when the idea of individualised targeting and treatment is already popu-
lar. At the same time, the very same techniques are being applied to observational
data (Brand et al, 2021), where causal estimation based on different methods is
increasingly common. From a methodology perspective, the field is continuously
evolving, and there are alternatives. For example, an interesting element of innovation
is represented by the so-called Metalearners (Kiinzel et al., 2019). Metalearners are
algorithms capable of using different estimation models at the same time. We have
seen different estimators introduced by Kiinzel et al. (2019) that leverage flexible
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machine learning algorithms to estimate heterogeneous treatment effects. The estima-
tors differ in their degree of sophistication: the S-learner fits a single estimator includ-
ing the treatment indicator as a covariate. The T-learner fits two separate estimators
for the treatment and control groups. Lastly, the X-learner is an extension of the
T-learner that allows for different degrees of flexibility depending on the amount
of data available across treatment and control groups. Among the many other papers,
it’s important to mention the R-learner procedure of Nie and Wager (2021). Another
alternative is using a Bayesian framework, like the Bayesian Additive Regression Trees
(BART) (Green and Kern, 2012). One of the benefits of using advanced Bayesian
models like BART for estimating causal effects is that the posterior provides simultan-
eous inference on CATEs, sample average treatment effects and everything in
between. Moreover, it provides opportunities for summarising the information in
the posteriors. Recent developments in applying causal machine learning to hetero-
geneity analysis include ‘causal clustering’ (Kim, 2020; Kim and Zubizarreta, 2023),
which can be used to ascertain subgroups with similar treatment effects, applying
clustering techniques to an unknown outcome to be estimated. This represents an
intriguing new application of clustering methods that have yet to be exploited in cau-
sal inference and the heterogeneous effects problem.

While it is clear that the analytical approach is technically growing fast, it is less
obvious how to place it within the context of behavioural research from a more the-
oretical standpoint. The latter is a discussion that is in its early stages. One possible
application is what we can call the ecological use of heterogeneity. This is in line with
the recent discussions in the behavioural science community about the need to
understand contextuality (Banerjee and Mitra, 2023), to address hidden heterogeneity
in a population (Schimmelpfennig et al., 2021), to model personalised intervention
based on individual models (Krpan et al., 2021; Mills, 2022).

Identifying heterogeneous treatment effects in behavioural research is functional in
identifying what we can call behavioural niches. It is well known that one of the main
forces shaping the adaptation process is natural selection. That is, the evolution of
organisms can be seen as the result of selective pressure to adapt to their environ-
ment. Adaptation is thus seen as a kind of top-down process from the environment
to the living creature (Godfrey-Smith, 1998). In contrast, several evolutionary biolo-
gists have recently attempted to provide an alternative theoretical framework by
emphasising the role of niche construction (Odling-Smee et al., 2003). According
to this view, the environment is a kind of ‘global marketplace’ offering unlimited pos-
sibilities. In fact, not all the possibilities the environment offers can be exploited by
human and non-human animals acting upon it. For example, the environment pro-
vides organisms with water for swimming, air for flying, flat surfaces for walking, etc.
However, no creature is completely capable of exploiting them all. Furthermore, all
organisms seek to modify their environment to exploit better the elements that satisfy
them and eliminate or mitigate the effects of the negative ones. This environmental
selection process allows living creatures to construct and shape ‘ecological niches’. An
ecological niche can be defined, following Gibson, as a ‘set of environmental charac-
teristics that are suitable for an animal’ (Gibson, 1979). It differs from the notion of
habitat in the sense that niche describes how an organism experiences its environ-
ment, whereas habitat simply describes where an organism lives. In each ecological

https://doi.org/10.1017/bpp.2023.35 Published online by Cambridge University Press


https://doi.org/10.1017/bpp.2023.35

Behavioural Public Policy 15

niche, the selective pressure of the local environment is drastically modified by organ-
isms to diminish the negative impacts of all those elements to which they are not
adapted. This new perspective constitutes a different interpretation of the traditional
theory of evolution, introducing a second system of inheritance called the ecological
inheritance system (Odling-Smee et al., 2003).

In other words, one way to compare human populations is regarding the variety of
behavioural ecological niches available to individuals as avenues to social or material
diversity. This is a similar point made by Schimmelpfennig and Muthukrishna (2023)
that behavioural science should engage with cultural evolutionary thinking, consider-
ing population diversity, among other things. In ecological biogeography, a niche
generally describes the fit of a species to particular environmental conditions
(Odling-Smee et al., 2003). For our purposes, a niche refers to a particular way of
extracting resources from the environment and/or from other individuals and thus
is situated with respect to the socioecological features of the local surroundings.
Theoretically, niches define a context for doing certain things or behaving in certain
ways that penalise or reward given behavioural strategies. Different niches create dif-
ferent payoffs to particular behavioural strategies.

In Figure 9, we tentatively illustrate this point. Whenever we are in mode A of
behavioural research, the case of identifying the determinants of a given behaviour
or decision-making outcome, the exploitation of these complex methods to identify
local variations of our models can enrich us in formulating a more robust version
of our final model. In other words, Models 1, 2 and 3 in the diagram will help us

(@)

| Niche 1, Model 1
Niche 2, Model 2
Niche 3, Model 3

[Behavioul '—'[._ perimental detection of inants

identified behavioural determinats

| Socioecological contexts covariates I

(b)

Niche 1, LATE 1

Behaviour Treatment
il Lbealttli bl

Post-treatment behaviour

Niche 2, LATE 2
Niche 3, LATE 3

| Socioecological contexts covariates

Figure 9. The ecological use of heterogeneity: behavioural niches.
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to rethink our general model. If we are in case B of Figure 9, the common situation of
testing a behavioural intervention, we find ourselves in the context discussed in this
paper. One important aspect is the selection of covariates; this topic would require a
detailed discussion. However, if we accept the notion of ecological use of these meth-
ods, then covariates should be descriptors of socioecological context. If we have such
covariates, then the identification of LATE can be treated as evidence of behavioural
niches. In other words, the initial and tentative definition of a behavioural niche is the
set of LATEs identifying using socioecological covariates. In turn, this could be a
starting point to investigate each niche or develop specific interventions tailored to
each niche if required. The selection of the socioecological covariates will be theoret-
ical, but their importance will be data-driven if we use the partitioning methods
described earlier. In conclusion, in this paper, we have introduced and explained
how the application of computational social science methods, namely causal trees
and forests, could be beneficial for behavioural research and, perhaps, provide an
answer to some of the challenges that this field is currently facing in terms of a
more sophisticated investigation of the heterogeneity in treatment -effects.
Moreover, such methods might open new lines of enquiries and theoretical thinking
as outlined by the notion of behavioural niches.
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