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Abstract

In some recent investigations involving certain differential operators for a general family of
Lagrange polynomials, Chan el al. encountered and proved a certain summation identity
for the Lagrange polynomials in several variables. In the present paper, we derive some
generalizations of this summation identity for the Chan-Chyan-Srivastava polynomials in
several variables. We also discuss a number of interesting corollaries and consequences of
our main results.
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1. Introduction

The familiar (two-variable) polynomials g^afi\x, y) generated by

00

(1 -xtya{\ -yty0 = ^t8
l"-fi)(x,y)t" (1.1)

n=0

are known as the Lagrange polynomials which occur in certain problems in statistics
(see, for example, Erdelyi et al. [3, Page 267]; see also Srivastava and Manocha
[7, Pages 441-442]). In fact, in terms of the classical Jacobi polynomials P^"]fi)(x)
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defined by (see, for example, Szego [8, Chapter 4])

(1.2)

where 2F, denotes the classical hypergeometric function, it is known that [7, Page 442,
Equation 8.5(17)]

, y) = (y- x)n PB(—-•-/»-) (±±1) . (1.3)
\x y j

The relationship (1.3) can be used in order to deduce numerous properties and charac-
teristics of the (two-variable) Lagrange polynomials from those of the classical Jacobi
polynomials.

Recently, a multivariable extension of the Lagrange polynomials in (1.1), generated

by
r 00

(Izl < m i n { | a r , r 1 , - - - . K r 1 } ) , (1.4)

was introduced and investigated systematically by Chan et al. [1]. Here and subse-
quently we employ the abbreviations a and x for a\ -I- • • • + ar and x\ + • • • + xr,
respectively. Later we introduce also n for n\ H \-nr.

See also several further developments relating to the Chan-Chyan-Srivastava poly-
nomials by (for example) Altin et al. [4] and Erkus. et al. ([5] and [6]).

For the Chan-Chyan-Srivastava polynomials in (1.4), the following explicit repre-
sentation holds true [1, Page 140, Equation (6)]:

, •••<«r)JV"£, (1-5)

where

denotes the Pochhammer symbol (or the shifted factorial). It is known also that [1,
Page 146, Equation (34)]

? ^ ^ ) (1.6)

(|z| < m i n { I j c . r 1 , • • • , \xrr
]]; n e N o : = N U {0 } ; N : = { 1 , 2 , 3, • • • } ) ,
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which, for n = 0, corresponds obviously to the defining equation (1.4). Here, and in
what follows, S(n, k) denotes the Stirling numbers of the second kind, defined by

;=0

so that

S(n, 0) = 5n,0 =

1 (» = 0)

(1.7)

0

and ^

(— l)k(x)kS(n, k) = (—x)n, (1.8)

Smn being the Kronecker symbol.
The main object of this sequel to the aforementioned investigations is to derive a

number of generalizations of the summation identities for a family of Jacobi and related
hypergeometric polynomials, which were proven recently by (for example) Chen and
Srivastava [2]. We also present several interesting corollaries and consequences of
our main results.

2. A set of main results

We begin by stating and proving a number of useful identities involving the Chan-
Chyan-Srivastava polynomials in (1.4).

LEMMA 2.1. The following generating function holds true for n e No:

* = o

...nio-x,,)-'!.^^.-.^.-!). a.)

where

[ k ] m : = k ( k - l ) - - - ( k - m + \ ) ( m e N ) and [ k ] 0 = l .

PROOF. We introduce the closed contours

<af£ and <g; (0 < e < mind*, !" 1 , . . . . |jc,r'})
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in the complex £ -plane. These are circles of radius s (centred at £ = z and £ = 0
respectively), described in the positive (counterclockwise) direction. By Cauchy's
integral formula for the derivatives Dz := d/dz, we have

m\

' M (S - z)m+l j=

n iH

1.2)

The definition (1.4) can be used to observe further that

ir\zrf]\{i-x.Z)-"]\ = iy\zrfg{

Z I ; = i ' I Z I *=o J
00

(2.3)

which, in association with (2.2), yields the generating function (2.1) asserted by
Lemma 2.1. •

REMARK 1. By setting n = m and n = 0 in the assertion (2.1) of Lemma 2.1, we
obtain the following simpler generating functions:

jt=O j = \

and

x\

respectively.
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LEMMA 2.2. The following summation identity holds true:

*=o
r

= Sp,ni+...+nr Y\ {(-xj)"'} ( - l ) m ( a . + - - - + a r - n ) m + V , ( a ) (2.4)

(/n, p , n, « | , • • • , nr e Mo; nj >m- I (j = 1, • • • , r ) ; p > «i H 1- n r ) .

//ere and subsequently

^ ^ J
PROOF. First of all, by applying the generating functions (1.4) and (2.1), we have

p=0 \t=0 / \t=0

: l-xrz

where, for convenience,

p

i H\m 8k vV " Sp—k V

Thus, in view of the Cauchy integral formula again, we have

(2.5)

By a change of variable given by

(2.5) readily yields

Qp(x) -ml
k,

Z =

I

1

?
and dz

, , - . l n

1

xkl

) jA,!

xk;(-lY
Kr. S.
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where the closed contour ^*/e in the complex £ -plane is a circle (centred at £ = 0 ) of
radius 1/e, which is described in the positive (counterclockwise) direction.

Since, by hypothesis,

p > ri\ + • • • + nr and n;- > m — 1 (j — 1 , . . . , r ) ,

it is easy to see that

is a polynomial in £, and hence it is analytic under these constraints on the nonnegative
integers p, m, r,nu- • • , nr and/:!, • • • , kr. Thus, for convenience, if we put

it follows (by the Cauchy residue theorem) that

Qp(x) = 8p,ni+...+nm\
AC I . / C r . J .

r " B ) ( i . - " - 1 . i ) + ^ i (« ) . (2.6)

It is easily seen from the definition (1.4) that

, > (ct\ + • • • + ar + n — 1\ (CKI + • • • + a r ) n

which, upon setting* = 1, immediately yields

n\

By appropriately combining (2.6) and (2.8), we obtain the summation identity (2.4)

asserted by Lemma 2.2. •

Clearly, Lemma 2.2 is equivalent to the following result:

k=0 r

= Sp,ni+...+nry[ {(-*,)"'} ( - l ) n ( -a , otr - p - n)m + Vr,(-a - n)
;=' (2.9)

( m , p , n , n u • • • , n r € N o ; ni• > m - 1 (j = 1 , ••• , / • ) ; p > n , H f - / j f ) .
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Next, since (by definition) we have

( - * ) * = ( - ! )*[*]* ( * e N 0 ; x e C ) ,

it readily follows from (1.8) that (see also [9, Page 15])

249

(2.10)

Furthermore, it is easily seen by setting m = 0 in (2.9) that

xx°-n)(>o4-*(x)=«*».+-+«, n {(-*;)"'} (2-n)
*=0 j=\

(p, /I, , • • • , nr 6 Mo; P > nx -\ [- nr).

By making use of (1.7), (1.8) and (2.9)—(2.11), our main summation formula
involving the multivariable Lagrange polynomials g^a)(x) is given by Theorem 2.3
below.

THEOREM 2.3. For every polynomial ^m(x) of degree m in x,

£ m ( * ) g r a - n ) ( x ) £ ^ ( x ) = «,,«,+•••+«, f l { ( - x i V } ^ ( c t l + --- + ar + p)
k=0

ml
(2-12)

( m , p , n u ••• , H- € N o ; nj > m - 1 (j = 1 , ••• , r ) ; p > n x -\ \-nr).

PROOF. Upon setting
m

e=o

we have
p

-E
t=o

m II

;=1

=co&P,ni+...+nr

y=o

which precisely is the assertion (2.12) of Theorem 2.3. •
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REMARK 2. Theorem 2.3 can be proven alternatively by applying the generating
functions (1.4) and (1.6) appropriately. Furthermore, if we set

n}=m—\ (j = 1, ••• , r )

in Theorem 2.3, we deduce Corollary 2.4 below.

COROLLARY 2.4. For every polynomial £?m(x) of degree m in x,

*=0

= "p.r(m-l)

"~ ' m —1

m °(0)E
(-D

m!

(w 6 N; p e No; p > r(m - 1)).

Xjl-=i

REMARK 3. In view of the relationship (1.3), the assertion (2.12) of Theorem 2.3
(with r = 2) yields the following summation formula for the classical Jacobi polyno-
mials defined by (1.2).

COROLLARY 2.5. For every polynomial &m{x) of degree m in x,

&m{k) p / ( x ) P_

"' I'X 1\"2

2 / V 2 / • ' - • « - / • m ,

^ + i\"""2 . ... n-x^"""
)» ("D

(m, p , n\, n2 € No; n\,n2> m — \; p > n\ + n2).

PROOF. Applying the relationship (1.3) in the form

we find that
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(x + y \ -a-p+k,-p-p+k) ( x

7k=0
 mW k \~y) Pp~

l#\x, y).
k=0

By means of (2.12), the right-hand side equals

(y - x)-p I V-.+-2(-*)"'(-y)"2^»m(a + P + P)

(2.14)

Finally, the assertion (2.13) of Corollary 2.5 follows immediately upon setting
= x(x- l)/(jc + l)in(2.14).
Alternatively, since [7, Page 441, Equation 8.5(16)]

it is easily seen that

= t ^)d~-
which, in light of (2.12), readily yields the assertion (2.13) of Corollary 2.5. D

REMARK 4. It is not difficult to verify that the relationships (1.3) and (2.15) are
equivalent. It is known also that [7, Page 452, Problem 25]

, y) = fp^-^-n) (j^j , (2.16)

which, upon setting y = 2x/(x + 1), yields

jw ^ J^j (2 17)

Thus, by making use of the relationship (2.17), we obtain

k=0

k=Q x - - . - y v A ~ f i
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Consequently, by applying (2.12), we arrive at the following summation formula
analogous to (2.13):

p

k=0

4-

(<* +a
x + IV (x- 1

)
"2

^m )(0)

1 -x
(2.18)

&• / \ •& ~x~ l / \ ^

(w, p , n\, n2 e No; nu n2 > m - 1; p > «i + n 2 ) .

REMARK 5. By setting

a i—>• —a — 0 — r, yS i—>• ^ — n + r + 1,

n\ i—• r — 1 and « 2 ' — * n — r — \,

and considering the special case when p > nx + n2 + 1, (2.18) would yield the
following known result for the classical Jacobi polynomials P^"'P)(x) [2, Page 3301,
Theorem 3]:

m\

\-xY - i

+Sr_m(a + 0 + 1),,

(j,l,m,n,r e No; / - y + l > n

REMARK 6. In its special case when r\\ = n2

(2.13) of Corollary 2.5 that

m + r; r > m).

m, we find from the assertion

k=0

- \
o; P > 2m), (2.19)

which, upon setting m = 0, yields the following interesting sum:

J Pla-k'p-k)(x)P(-_a
k-

p+k^-p+k)(x) = 0 (p e M). (2.20)
k=0
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3. Further results and consequences

For a nonnegative integer n, the Laguerre polynomials L^'OO of index a and
degree n in x are defined by

The Laguerre polynomials L^]{x) and the Jacobi polynomials Pftf>)(x) are indeed
related by means of the following familiar limit relationship [7, Page 131, Equa-
tion 2.5(1)]:

Making use of (3.1), we find from (2.19) with

2x
x i—> 1 and |p| —> oo

that

^ y (0) (m e No; /> > 2m),

which, upon setting m = 0, yields the following companion of (2.20):

tk\x)L{;XP+k\-x) = 0 (p 6 N).

REMARK 7. By setting

and using (2.7), (2.12) would yield the following result:

P n, , ,A ( - " i <xr - 7i, nr)k{ai H \- ar)p-k p

= <5p.ni+...+n,(-;cr+"-+n'^m(a1 + • • • +ar + p) (3.2)
(in, p , /I,, • • • , nr e No; n ; > m - 1 (y = 1, • • • , r ) ; /> > n, H h nr).

Thus, by equating the coefficients of xp, we find from (3.2) that

W , ^ i ^ ( P p ) (3.3)

and
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k=0
k\(p-k)l

[12]

)• (3.4)

Furthermore, if we set a = 1 in (3.3) and (3.4), we get

S " 1 ) t ( " l V ' " W = 0 {m,p,neN0; p>n>m)

and

<t=o

Next, in order to find a summation formula involving two Lagrange polynomials
with different indices, one of which is independent of the degree n and the other of
which is dependent on the degree n, we first derive the following relationship.

LEMMA 3.1. For the two-variable Lagrange polynomials g{"'^(x, y),

( o r , - o r -
6\ ( (3.5)

PROOF. We have

1 + y: 1 +yz

- i

= 1 -
yz

1 - yz

1 +

n=()

where the closed contour tf* (0 < e < min{|x|"', |.y|~'}) m the complex £-plane
is a circle of radius e (centred at ^ = 0), which is described in the positive (counter-
clockwise) direction and we have tacitly assumed that

Izl < min \\x\-\\y

on the contour ff*. By equating the coefficients of z" in the preceding generating-

function relationship, we immediately obtain the assertion (3.5) of Lemma 3.1. D
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REMARK 8. Since

/>„<"•»(-*) = (-1)" P?-a)(x) (3.6)

and

g™(x, y) = 8™(y, x), (3.7)

by suitably combining (1.3), (2.16), (3.6) and (3.7), we can also obtain (3.5).

We now apply the relationship (3.5) to derive some further consequences of The-
orem 2.3. Indeed, in light of (3.5), the assertion (2.12) of Theorem 2.3 assumes the
following form in the two-variable case.

COROLLARY 3.2. For every polynomial ^m{x) of degree m inx,

cy)
k=0

ml
m-i(P)mxniyp-'"] (3.8)

(m, p , nu n2 6 No; nu n2 > m - 1; p > nx + n2).

REMARK 9. By setting nx = n-i = m in (3.8), we deduce the following summation
identity for every polynomial £?m(x) of degree minjc:

k (•*> y)
k=0

= &p,2m(y2 - xy)m&m{oi + P + P) (m, p e No; p > 2m).

By successively applying the relationships (3.5), (1.3) and (3.6), we find that

gf?~n\x, y) — g{"'~a~^+x\x - y, -y) = ( -*)" pi-a-l><a+P-'>-u I I
\ x j

„ (a+e-n-x,-a-n)(}y-±

which, upon setting y = x(x + l)/2, would yield

»—i.—«)(X) = x-"gy-* U XiX^l)) (3-9)
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REMARK 10. In light of the relationship (3.9), the assertion (3.8) of Corollary 3.2
can be used to derive the following consequence for every polynomial <^m(jc) of
degree m \nx:

k=0

x 9~''Cr — \Y' (x 4- 1"l"2 ty (a 4- ft A- ri\ 4- - - < 2̂̂ mV(

P-"2 / I _L v \ />-"!•i — x\—J
(m, p e No; nitn2 > m - 1; /? > «i +n2),

which, upon setting n\ = «2 = m, leads us at once to (2.19).
If we define

^•••-'(x) : = lim \gy(X-i,X2,...,Xr)\,

then it is easily observed from (1.4), (1.5) and (1.6) that

(Izl

and
00

*=0

/ V_ V \

z*

(|z| < min {iJCzT1, • • • , | j c r | - ' } ; n € NQ).

We thus arrive at the following immediate consequence of Theorem 2.3.

THEOREM 3.3. For every polynomial &m{x) of degree m in x,

p

k=0

^:\o)X

( m , p , n 2 , - - - , n r e N 0 ; it; > m - I (j = 2 , • • • , r ) ; p > n 2 - \ h n r + m ) .
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Finally, if we define

<J)[ai)(x) = lim
min{|a2|,---,|or,|)-»oo

then (1.4), (1.5) and (1.6) would readily yield the following properties:

(a ) \—^ *̂ 1 ^r

* L—i jfci' it ' '
k,+-+k,=k '• r -

00

and
00

k=0

*! • S(n,

( | z | < | j c , r ' ; n 6 N o ) .

Thus, by making use of the assertion (2.12) of Theorem 2.3 once again, we can
immediately deduce Theorem 3.4 below.

THEOREM 3.4. For every polynomial &m(x) of degree in in x,

(r = 2)

( r > 3 )

(m, /J,n e No; n > ffi - 1; p >m +n; r e N \ {1}).

Numerous further corollaries and consequences of the results presented in this

paper can be derived similarly.
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