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The Weitzenböck machine

Uwe Semmelmann and Gregor Weingart

Abstract

Weitzenböck formulas are an important tool in relating local differential geometry to
global topological properties by means of the so-called Bochner method. In this article
we give a unified treatment of the construction of all possible Weitzenböck formulas
for all irreducible, non-symmetric holonomy groups. We explicitly construct a basis
of the space of Weitzenböck formulas. This classification allows us to find customized
Weitzenböck formulas for applications such as eigenvalue estimates or Betti number
estimates.

1. Introduction

Weitzenböck formulas are an important tool for linking differential geometry and topology of
compact Riemannian manifolds. They feature prominently in the Bochner method, where they
are used to prove the vanishing of Betti numbers under suitable curvature assumptions or the non-
existence of metrics of positive scalar curvature on spin manifolds with non-vanishing Â-genus.
Moreover, they are used to prove eigenvalue estimates for Laplace and Dirac type operators. In
these applications one tries to find a (positive) linear combination of hermitean squares D∗D
of first-order differential operators D, which sums to an expression in the curvature only. In
this approach one needs only to consider special first-order differential operators D known as
generalized gradients or Stein–Weiss operators, which are defined as projections of a covariant
derivative∇. Examples of generalized gradients include the exterior derivative d and its adjoint d∗

and the Dirac and twistor operator in spin geometry.
In this article we present a classification of all possible linear combinations of hermitean

squares D∗D of generalized gradients D, which sum to pure curvature expressions, if the
underlying connection is the Levi-Civita connection ∇ of an irreducible non-symmetric
Riemannian manifold M . We describe a recursive procedure to calculate a generating set of
Weitzenböck formulas. Full details are given in the cases of reduced holonomy SO(n), G2 and
Spin(7). Our approach can also be used for the reduced holonomies U(n), SU(n), Sp(n)
and Sp(n) · Sp(1). These cases slightly differ from the first three cases, since either the holonomy
algebra is not simple or the complexified holonomy representation is not irreducible (or both).
However, after suitable modifications again a complete classification of Weitzenböck formulas
is possible.

In order to describe the setup of the article in more detail we recall that every representation
G−→Aut V of the holonomy group G of a Riemannian manifold (M, g) on a complex vector
space V defines a complex vector bundle VM on M with a covariant derivative induced from
the Levi-Civita connection, in particular the complexified holonomy representation T of G
defines the complexified tangent bundle TM . The generalized gradients on VM are the parallel
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first-order differential operators Tε defined as the projection of ∇ : Γ(VM)−→ Γ(TM ⊗ VM)
to the parallel subbundles VεM ⊂ TM ⊗ VM arising from a decomposition T ⊗ V =⊕εVε into
irreducible sub-spaces. It will be convenient in this article to call every (finite) linear combination∑

ε cεT
∗
ε Tε of hermitean squares of generalized gradients a Weitzenböck formula.

Our first important observation is that the space W(V ) of all Weitzenböck formulas on a
vector bundle VM can be identified with the vector space Endg (T ⊗ V ) and thus is an algebra,
which is commutative for irreducible representations V . Moreover, it is easy to see that the
algebra W(V ) has a canonical involution, the twist τ : W(V )−→W(V ), such that a Weitzenböck
formula reduces to a pure curvature expression if and only if it is an eigenvector of τ of
eigenvalue −1. Of course, there are interesting Weitzenböck formulas, which are eigenvectors
of τ for the eigenvalue +1; perhaps the most prominent example is the connection Laplacian
∇∗∇. The classical examples of Weitzenböck formulas such as the original Weitzenböck formula,

∆ = dd∗ + d∗d=∇∗∇+ q(R),

or the Lichnerowicz–Weitzenböck formula in spin geometry,

D2 =∇∗∇+
scal

4
,

reduce in this setting to the statements that ∆−∇∗∇ and D2 −∇∗∇ respectively are
eigenvectors of τ for the eigenvalue −1 and thus pure curvature expressions.

Starting with the connection Laplacian ∇∗∇, corresponding to 1 ∈ Endg (T ⊗ V ), we will
describe a recursion procedure to construct a basis of the space W(Vλ) of Weitzenböck formulas
on an irreducible vector bundle VλM on M such that the base vectors are eigenvectors of τ with
alternating eigenvalues ±1. Interestingly, this recursive procedure makes essential use of a second
fundamental Weitzenböck formula B ∈W(V ), the so-called conformal weight operator, which was
considered for the first time in the work of Gauduchon on conformal geometry [Gau91].

Eventually we obtain a sequence of B-polynomials pi(B) such that p2i(B) is in the
(+1)- and p2i−1(B) is in the (−1)-eigenspace of τ . If bε are the B-eigenvalues on Vε ⊂
T ⊗ V , then the coefficient of T ∗ε Tε in the Weitzenböck formula corresponding to pi(B) is
given by pi(bε). An interesting feature appears for holonomy G2 and Spin(7). Here we
have the decomposition Homg (Λ2T, End V )∼= Homg(g, End V )⊕Homg (g⊥, End V ) and because
of the holonomy reduction any Weitzenböck formula in the second summand has a zero
curvature term.

Finally, we would like to mention that the problem of finding all possible Weitzenböck
formulas is also considered in the work of Homma (e.g. in [Hom06]). He gives a solution in the
case of Riemannian, Kählerian and hyper-Kählerian manifolds. Even if there are some similarities
in the results, it seems fair to say that our method is completely different. In particular, we
describe an recursive procedure for obtaining the coefficients of Weitzenböck formulas. The
main difference is of course that we give a unified approach including the case of exceptional
holonomies.

2. The holonomy representation

For the rest of this article we will essentially restrict ourselves to irreducible non-
symmetric holonomy algebras g, i.e. holonomy algebras of non-symmetric and irreducible
Riemannian manifolds. Moreover, g will always denote the complex Lie algebra obtained as
the complexification of the real holonomy algebra gR. Most of the statements easily generalize to
holonomy algebras g with no symmetric irreducible factor in their local de Rham decomposition,
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which could be called properly non-symmetric holonomy algebras. Some of the concepts
introduced are certainly interesting for symmetric holonomy algebras as well. Turning to
irreducible non-symmetric holonomy algebras g leaves us with seven different cases:

Algebra gR Holonomy representation TR T

General Riemannian son Defining representation Rn T

Kähler un ∼= iR⊕ sun Defining representation Cn Ē ⊕ E
Calabi–Yau sun Defining representation Cn Ē ⊕ E
Quaternionic Kähler sp(1)⊕ sp(n) Representation H1 ⊗H Hn H ⊗ E
Hyper-Kähler sp(n) Defining representation Hn C2 ⊗ E
Exceptional G2 g2 Standard representation R7 [7]
Exceptional Spin(7) spin 7 Spinor representation R8 [8]

(2.1)

as follows from a theorem of Berger, where T denotes the complexified holonomy representation
T := TR ⊗R C endowed with the C-bilinear extension 〈·, ·〉 of the scalar product. For simplicity,
we will work with the complexified holonomy representation T and the complexified holonomy
algebra g := gR ⊗R C throughout as well as with irreducible complex representations Vλ of g of
highest weight λ. The notation such as E or H in (2.1) fixes the nomenclature for particularly
important representations in special holonomy: in the Kähler and Calabi–Yau cases E and Ē
refer to the spaces of (1, 0)- and (0, 1)-vectors in T respectively, while [7] and [8] are the standard
seven-dimensional representation of G2 and eight-dimensional spinor representation of Spin(7)
respectively. In passing we note that the complexified holonomy representation T is not isotypical
in the Kähler and Calabi–Yau cases and this is precisely the reason why these two cases differ
significantly from the rest.

In order to understand Weitzenböck formulas or parallel second-order differential operators
it is a good idea to start with parallel first-order differential operators, usually called
generalized gradients or Stein–Weiss operators. Their representation theoretic background
is the decomposition of tensor products T ⊗ V of the holonomy representation T with an
arbitrary complex representation V . The general case immediately reduces to studying irreducible
representations V = Vλ of highest weight λ. In this section we will see that the isotypical
components of T ⊗ Vλ are always irreducible for a properly non-symmetric holonomy algebra g

and isomorphic to irreducible representations Vλ+ε of highest weight λ+ ε for some weight ε
of the holonomy representation T . Thus the decomposition of T ⊗ Vλ is completely described
by the subset of relevant weights ε.

Definition 2.1 (Relevant weights). A weight ε of the holonomy representation T is said to be
relevant for an irreducible representation Vλ of highest weight λ if the irreducible representation
Vλ+ε of highest weight λ+ ε occurs in the tensor product T ⊗ Vλ. We will write ε⊂ λ for a
relevant weight ε for a given irreducible representation Vλ.

Lemma 2.2 (Characterization of relevant weights). Consider the holonomy representation T of
an irreducible non-symmetric holonomy algebra g and an irreducible representation Vλ of highest
weight λ. The decomposition of the tensor product T ⊗ Vλ is multiplicity free in the sense that
all irreducible subspaces are pairwise non-isomorphic. The complete decomposition of T ⊗ Vλ is
thus the sum

T ⊗ Vλ ∼=
⊕
ε⊂λ

Vλ+ε
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over all relevant weights ε. A weight ε 6= 0 is relevant if and only if λ+ ε is dominant. The zero
weight ε= 0 only occurs for the holonomy algebras son with n odd and g2. In the so-case it is rele-
vant if λ− λΣ is still dominant, where λΣ is the highest weight of the spinor representation of son.
In the g2-case it is relevant if λ− λT is still relevant, where λT is the standard representation of g2.

Proof. The proof is essentially an exercise in Weyl’s character formula (cf. [Feg76]). 2

A particular consequence of Lemma 2.2 is that for sufficiently complicated representations Vλ
all weights ε of the holonomy representation T are relevant. Indeed, we will see below that this
is the case if the entries of the highest weight vector λ are large enough (we give explicit lower
bounds). With this motivation we will call a highest weight λ generic if λ+ ε is dominant for
all weights ε of the holonomy representation T . A simple consideration shows that λ is generic
if and only if λ− ρ is dominant, where ρ is the half sum of positive roots or equivalently the
sum of fundamental weights, unless we consider odd-dimensional generic holonomy g = so2r+1

or g = g2. In the latter holonomies the generic weights λ must have λ− ρ− λΣ or λ− ρ− λT
dominant respectively. In any case, the number of relevant weights for the representation Vλ,

N(G, λ) := ]{ε | ε is relevant for λ} 6 dim T,

is bounded above by dim T with equality if and only if λ is generic. In particular, there are at
most dim T summands in the decomposition of T ⊗ Vλ into irreducibles, with exactly one copy
of Vλ+ε for every relevant weight ε.

On the other hand, the number N(G, λ) of irreducible summands in the decomposition of T ⊗
Vλ agrees with the dimension of the algebra Endg (T ⊗ Vλ) of g-invariant endomorphisms of
T ⊗ Vλ, because all isotypical components are irreducible by Lemma 2.2. In the next section we
will study the identification Endg (T ⊗ Vλ) = Homg (T ⊗ T, End Vλ) extensively, which allows us
to break up Endg (T ⊗ Vλ) into interesting subspaces called Weitzenböck classes, whose dimension
can be calculated in the following way.
Lemma 2.3 (Dimension of Weitzenböck classes). Let us call the space W t := Homt (R, W )⊂W
of elements of a G-representation W invariant under a fixed Cartan subalgebra t⊂ g the zero
weight space of W . The dimension of the zero weight space provides an upper bound

dim Homg (W, End Vλ) 6 dimW t

for the dimension of the space Homg (W, End Vλ) for an irreducible representation Vλ. For
sufficiently dominant highest weights λ (depending on the weights of W ) this upper bound
is sharp.

The lemma follows again from the Weyl character formula, but it is also an elementary
consequence of Kostant’s Theorem 6.3 formulated below. We will mainly use Lemma 2.3 for
the subspaces Wα occurring in the decomposition T ⊗ T =⊕Wα into irreducible summands.
In the case of the holonomy algebras son, g2 and spin 7 we have the decomposition T ⊗ T =
C⊕ Sym2

0T ⊕ g⊕ g⊥ and the following dimensions of the zero weight spaces.

dim T dim[C]t dim[Sym2
0T ]t dim[g]t dim[g⊥]t

son n 1
⌊
n− 1

2

⌋ ⌊
n

2

⌋
—

g2 7 1 3 2 1
spin 7 8 1 3 3 1

(2.2)

Note, in particular, that the dimensions of the zero weight spaces sum up to dim T .
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Although complete the decision criterion given in Lemma 2.2 is not particularly
straightforward in general. At the end of this section we want to give a graphic interpretation
of this decision criterion for all irreducible holonomy groups in order to simplify the task of
finding the relevant weights. For a fixed holonomy algebra g the information necessary in
this graphic algorithm is encoded in a single diagram featuring the weights of the holonomy
representation T and labeled boxes. A weight ε is relevant for an irreducible representation Vλ
if and only if the highest weight λ= λ1ω1 + · · ·+ λrωr of Vλ, written as a linear combination
of fundamental weights ω1, . . . , ωr, satisfies all inequalities labeling the boxes containing ε. The
notation introduced for the weights of the holonomy representation T and the fundamental
weights will be used throughout this article.

To begin with let us consider even-dimensional Riemannian geometry with generic holonomy
g = so2r, r > 2. In this case the holonomy representation T is the defining representation, with
the weights ±ε1,±ε2, . . . ,±εr, such that ε1, . . . , εr forms an orthonormal basis for a suitable
scalar product 〈·, ·〉 on the dual t∗ of the maximal torus. The ordering of weights can be chosen
in such a way that the fundamental weights ω1, . . . , ωr are given by

ω1 = ε1 ±ε1 = ± ω1

ω2 = ε1 + ε2 ±ε2 = ±(ω2 − ω1)
...

...
...

...

ωr−2 = ε1 + · · ·+ εr−2 ±εr−2 = ±(ωr−2 − ωr−3)

ωr−1 = 1
2(ε1 + · · ·+ εr−1 + εr) ±εr−1 = ±(ωr−1 + ωr − ωr−2)

ωr = 1
2(ε1 + · · ·+ εr−1 − εr) ±εr = ±(ωr−1 − ωr).

Every dominant integral weight of so2r can be written as λ= λ1ω1 + · · ·+ λrωr with natural
numbers λ1, . . . , λr > 0 and the criterion of Lemma 2.2 is then as follows.

+ε1

λ1 > 1

−ε1

+ε2

λ2 > 1

−ε2

+ε3
· · · · · · · · · · · · · ·

λr−2 > 1

−εr−2

+εr−1

λr > 1

−εr−1

+εr

λr−1 > 1−εr

A weight ε of the holonomy representation T of so2r is relevant for the irreducible representation
Vλ if and only if λ satisfies all the conditions labeling the boxes containing ε. Say the weights
−ε1 and +ε2 are relevant for all irreducible representations Vλ with λ1 > 1, whereas −εr−1 is
relevant for Vλ if and only if λr−1 > 1 and λr > 1.

Odd-dimensional Riemannian geometry g = so2r+1, r > 1, with generic holonomy is of course
closely related to g = so2r. The weights of the holonomy representation T are ±ε1,±ε2, . . . ,±εr
and the zero weight. Again ε1, . . . , εr form an orthonormal basis for a suitable scalar product
〈·, ·〉 on the dual t∗ of the maximal torus. With a suitable choice of ordering of weights the
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fundamental weights ω1, . . . , ωr and the weights of T relate via

ω1 = ε1 ±ε1 = ± ω1

ω2 = ε1 + ε2 ±ε2 = ±(ω2 − ω1)
...

...
...

...

ωr−1 = ε1 + · · ·+ εr−1 ±εr−2 = ±(ωr−1 − ωr−2)

ωr = 1
2(ε1 + · · ·+ εr−1 + εr) ±εr = ±(2ωr − ωr−1).

Writing a dominant integral weight λ= λ1ω1 + · · ·+ λrωr as a linear combination of fundamental
weights with integers λ1, . . . , λr > 0 the criterion of Lemma 2.2 is then as follows.

+ε1

λ1 > 1

−ε1

+ε2

λ2 > 1

−ε2

+ε3
· · · · · · · · · · · · · ·

λr−2 > 1

−εr−2

+εr−1

λr−1 > 1

−εr−1

+εr

λr > 1

−εr

0

λr > 2

Turning from the Riemannian case to the Kähler case g = un, we have the weights
±ε1, . . . ,±εn of the defining standard representation T = E ⊕ Ē and we observe that the
weights ε1, . . . , εn form an orthonormal basis for an invariant scalar product on the dual t∗

of a maximal torus t⊂ un, but they become linearly dependent when projected to the dual of a
maximal torus of the ideal sun ⊂ un. In any case, the fundamental weights and the weights of T
relate as

ω1 = ε1 ±ε1 = ± ω1

ω2 = ε1 + ε2 ±ε2 = ±(ω2 − ω1)
...

...
...

...
ωn = ε1 + · · ·+ εn ±εn = ±(ωn − ωn−1)

and the criterion of Lemma 2.2 is then as follows.

+ε1

λ1 > 1

−ε1

+ε2

λ2 > 1

−ε2

+ε3
· · · · · · · · · · · · · ·

λn−2 > 1

−εn−2

+εn−1

λn−1 > 1

−εn−1

+εn −εn

The quaternionic Kähler case is more complicated, because the condition of being relevant
has to be checked for both ideals sp(1) and sp(n) of g. For a single ideal, however, the condition
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becomes simple again. We denote by ±ε1, . . . ,±εn the weights of E and fix a suitable scalar
product 〈·, ·〉 on the dual t∗ of a maximal torus t⊂ sp(r) for r = 1 or r = n, such that ε1, . . . , εr
forms an orthonormal basis of t∗. The weights εi relate to the fundamental weights ωj by
the formulas

ω1 = ε1 ±ε1 = ± ω1

ω2 = ε1 + ε2 ±ε2 = ±(ω2 − ω1)
...

...
...

...
ωr = ε1 + · · ·+ εr ±εr = ±(ωr − ωr−1).

The graphical interpretation of Lemma 2.2 in the case g = sp(n) is given by the following diagram.

+ε1

λ1 > 1

−ε1

+ε2

λ2 > 1

−ε2

+ε3
· · · · · · · · · · · · · ·

λr−2 > 1

−εr−2

+εr−1

λr−1 > 1

−εr−1

+εr

λr > 1

−εr

Finally, we consider the two exceptional cases g2 and spin 7. Recall that the group G2 is the
group of automorphisms of the octonions O as an algebra over R. In this sense the holonomy
representation TR is the defining representation Im O of g2 with complexification T = [7]. There
are too many weights of the holonomy representation to be orthonormal for any scalar product
on the dual t∗ of a fixed maximal torus t⊂ g2, but at least we can choose an ordering of weights
for t∗ so that the weights of T become totally ordered +ε1 >+ε2 >+ε3 > 0>−ε3 >−ε2 >−ε1.
In this notation we have

ω1 = ε1 ±ε1 = ± ω1

ω2 = ε1 + ε2 ±ε2 = ±(ω2 − ω1)
±ε3 = ∓(ω2 − 2ω1).

The scalar product of choice on t∗ is specified by 〈ε1, ε1〉= 1 = 〈ε2, ε2〉 and 〈ε1, ε2〉= 1
2 . Writing

a dominant integral weight as λ= aω1 + bω2, a, b > 0, we read Lemma 2.2 as follows.

+ε1

a > 1

−ε1

+ε2

0

a > 2 −ε3

b > 1

−ε2

+ε3

The holonomy representation of the holonomy algebra g = spin 7 is the eight-dimensional
spinor representation T = [8]. It is convenient to write the weights ±ε1, . . . ,±ε4 of T and
the fundamental weights ω1, ω2 and ω3 in terms of the weights ±η1,±η2,±η3, 0 of the seven-
dimensional defining representation of spin 7, which form an orthonormal basis for a suitable
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scalar product on the dual t∗ of the maximal torus. With this proviso the weights ±ε1, . . . ,±ε4

of T and the fundamental weights ω1, ω2 and ω3 can be written as

ω1 = η1 ±ε1 = ±1
2(η1 + η2 + η3) = ± ω3

ω2 = η1 + η2 ±ε2 = ±1
2(η1 + η2 − η3) = ±(ω2 − ω3)

ω3 = 1
2(η1 + η2 + η3) ±ε3 = ±1

2(η1 − η2 + η3) = ±(ω3 − ω2 + ω1)
±ε4 = ±1

2(η1 − η2 − η3) = ±(ω1 − ω3),

and Lemma 2.2 for a dominant integral weight λ= aω1 + bω2 + cω3 translates into the following
diagram.

+ε1

c > 1

−ε1

+ε2

−ε3

+ε4

b > 1

−ε2

+ε3a > 1 −ε4

3. The space W(V ) of Weitzenböck formulas

In this section we will introduce generalized gradients, Weitzenböck formulas and the space of
Weitzenböck formulas with its different realizations. Then we will define the conformal weight
operator, which in many cases generates all possible Weitzenböck formulas. Finally, we define
the classifying endomorphism and study the corresponding eigenspace decomposition.

3.1 Weitzenböck formulas
We consider parallel second-order differential operators P on sections of a vector bundle VM over
a Riemannian manifold M with holonomy group G⊂ SO(n). By definition, these are differential
operators, which up to first-order differential operators can always be written as the composition

Γ(VM) ∇2

−−−→ Γ(T ∗M ⊗ T ∗M ⊗ VM)
∼=−−→ Γ(TM ⊗ TM ⊗ VM) F−−→ Γ(VM)

where F is a parallel section of the vector bundle Hom(TM ⊗ TM ⊗ VM, VM) corresponding
to a G-equivariant homomorphism F ∈HomG(T ⊗ T ⊗ V, V ). A particularly important example
is the connection Laplacian ∇∗∇ which arises from the linear map a⊗ b⊗ ψ 7−→ −〈a, b〉ψ. Note
that we are only considering reduced holonomy groups G, which are connected by definition,
so that G-equivariance is equivalent to g-equivariance. Taking advantage of this fact we describe
other parallel differential operators by means of the following identifications of spaces of invariant
homomorphisms:

Homg (T ⊗ T ⊗ V, V ) = Homg (T ⊗ T, End V ) = Endg (T ⊗ V ).

Of course, the identification Homg (T ⊗ T ⊗ V, V ) = Homg (T ⊗ T, End V ) is the usual tensor
shuffling F (a⊗ b⊗ v) = Fa⊗bv for all a, b ∈ T and v ∈ V . The second important identification
Homg (T ⊗ T ⊗ V, V ) = Endg (T ⊗ V ) depends on the existence of a g-invariant scalar product
on T or the musical isomorphism T ∼= T ∗ via a summation

F (b⊗ v) =
∑
µ

tµ ⊗ F (tµ ⊗ b⊗ v) F (a⊗ b⊗ v) = (〈a, ·〉y⊗ id)F (b⊗ v)
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over an orthonormal basis {tµ}. Under this identification the identity of T ⊗ V becomes the
homomorphism a⊗ b⊗ ψ 7−→ 〈a, b〉ψ corresponding to the connection Laplacian −∇∗∇.
The composition of endomorphisms turns Endg (T ⊗ V ) and thus Homg (T ⊗ T, End V ) into an
algebra; for F, F̃ ∈Homg (T ⊗ T, End V ) the resulting algebra structure reads

(F ◦ F̃ )a⊗b =
∑
µ

Fa⊗tµ ◦ F̃tµ⊗b. (3.3)

Last but not least we note that the invariance condition for F ∈Homg (T ⊗ T, End V ) is
equivalent to the identity [X, Fa⊗b] = FXa⊗b + Fa⊗Xb for all X ∈ g and a, b ∈ T .

Assuming that V = Vλ is irreducible of highest weight λ we know from Lemma 2.2 that the
isotypical components of T ⊗ Vλ are irreducible for non-symmetric holonomy groups. The algebra
Endg (T ⊗ Vλ) is thus commutative and spanned by the pairwise orthogonal idempotents prε
projecting onto the irreducible subspaces Vλ+ε of T ⊗ Vλ. In order to describe the corresponding
second-order differential operators we introduce first-order differential operators Tε known as
Stein–Weiss operators or generalized gradients by

Tε : Γ(VλM)−→ Γ(Vλ+εM), ψ 7−→ prε(∇ψ).

A typical example of a Stein–Weiss operator is the twistor operator of spin geometry, which
projects the covariant derivative of a spinor onto the kernel of the Clifford multiplication.
Straightforward calculations show that the second-order differential operator associated to the
idempotent prε is the composition of Tε with its formal adjoint operator T ∗ε : Γ(Vλ+εM)−→
Γ(VλM), i.e. prε(∇2) =−T ∗ε Tε; cf. [Sem06]. In consequence, we can write the second-order
differential operator F (∇2) associated to F ∈Homg (T ⊗ T, Vλ) as a linear combination of the
squares of Stein–Weiss operators:

F (∇2) =−
∑
ε

fεT
∗
ε Tε. (3.4)

In fact, with Endg (T ⊗ Vλ) = Homg (T ⊗ T, End Vλ) being spanned by the idempotents prε, every
F ∈ Endg (T ⊗ Vλ) expands as F =

∑
ε fε prε with coefficients fε determined by F |Vλ+ε

= fε id. A
particular instance of (3.4) is the identity ∇∗∇=

∑
ε T
∗
ε Tε associated to the expansion idT⊗Vλ =∑

ε prε. Motivated by this and other well-known identities of second-order differential operators
of the form (3.4), we will in general call all elements F ∈Homg (T ⊗ T ⊗ V, V ) = Endg (T ⊗ V )
Weitzenböck formulas.

Definition 3.1 (Space of Weitzenböck formulas on VM). The Weitzenböck formulas on a
vector bundle VM correspond bijectively to vectors in

W(V ) := Homg (T ⊗ T ⊗ V, V ) = Homg (T ⊗ T, End V ) = Endg (T ⊗ V ).

Of course, we are mainly interested in Weitzenböck formulas inducing differential operators
of zeroth order or equivalently ‘pure curvature terms’. Clearly a Weitzenböck formula given by
an invariant homomorphism F ∈Homg (T ⊗ T ⊗ V, V ) skew-symmetric in its two T -arguments
will induce a pure curvature term F (∇2), because we can then reshuffle the summation in the
calculation:

F (∇2v) =
1
2

∑
µν

F (tµ ⊗ tν ⊗ (∇2
tµ,tν −∇

2
tν ,tµ)v) =

1
2

∑
µν

Ftµ⊗tνRtµ,tνv. (3.5)

Here and in the following we will denote by {tν} an orthonormal basis of T and also a local
orthonormal basis of the tangent bundle. Conversely the principal symbol of the differential
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operator F (∇2) is easily computed to be σF (∇2)(ξ)v = Fξ[⊗ξ[v for every cotangent vector ξ and
every v ∈ VM . Hence the principal symbol vanishes identically exactly for the skew-symmetric
Weitzenböck formulas. Weitzenböck formulas F leading to a pure curvature term F (∇2) are thus
completely characterized by being eigenvectors of eigenvalue −1 for the involution

τ : W(V )−→W(V ), F 7−→ τ(F )

defined in the interpretation W(V ) = Homg (T ⊗ T ⊗ V, V ) as precomposition with the twist
τ : T ⊗ T ⊗ V −→ T ⊗ T ⊗ V, a⊗ b⊗ v 7−→ b⊗ a⊗ v, which reads in the description W(V ) =
Homg (T ⊗ T, End V ) as τ(F )a⊗b = Fb⊗a. In other words, a Weitzenböck formula F will reduce
to a pure curvature term if and only if τ(F ) := F ◦ τ =−F .

Considering the space of Weitzenböck formulas W(V ) as the algebra Endg (T ⊗ V ) we can
introduce additional structures on it: the unit 1 := idT⊗V ∈W(V ), the scalar product

〈F, F̃ 〉 :=
1

dim V
trT⊗V (FF̃ ) F, F̃ ∈W(V )

satisfying 〈FG, F̃ 〉= 〈F, GF̃ 〉 and the trace tr F := 〈F, 1〉. Clearly the trace of the unit is given
by tr 1 = dim T . The definition of the trace can be rewritten in the form

tr F =
1

dim V
trV

(
v 7−→

∑
µ

Ftµ⊗tµv

)
so that the trace is invariant under the twist τ . A slightly more complicated argument using (3.3)
shows that the scalar product is invariant under the twist, too. In particular, the eigenspaces
for τ for the eigenvalues ±1 are orthogonal and all eigenvectors in the (−1)-eigenspace of τ
have vanishing trace. From the definition of the trace we obtain that the trace of an element
F =

∑
fε prε of W(Vλ) in the irreducible case is given by

tr F =
∑
ε

fε
dim Vλ+ε

dim Vλ
; (3.6)

in particular, the idempotents prε form an orthogonal basis of W(Vλ):

〈prε, prε̃〉= δεε̃
dim Vλ+ε

dim Vλ
.

A different way to interpret the trace is to note that for every Weitzenböck formula F ∈W(V )
considered as an equivariant homomorphism F : T ⊗ T −→ EndV the trace endomorphism∑

µ Ftµ⊗tµ ∈ Endg V is invariant under the action of g. For an irreducible representation Vλ it is
thus by Schur’s lemma a multiple of the identity idVλ and the definition above can be rewritten
as
∑

µ Ftµ⊗tµ = (tr F ) idVλ .

3.2 The conformal weight operator

In order to study the fine structure of the algebra W(V ) = Endg (T ⊗ V ) of Weitzenböck formulas
it is convenient to introduce the conformal weight operator B ∈W(V ) of the holonomy algebra g

and its variations Bh ∈W(V ) associated to the non-trivial ideals h⊂ g of g. All these conformal
weight operators commute and the commutative subalgebra of W(V ) generated by them in the
irreducible case V = Vλ is actually all of W(V ) for generic highest weight λ. In this subsection
we work out some direct consequences of the description of Weitzenböck formulas as polynomials
in the conformal weight operators.
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Recall that the scalar product 〈·, ·〉 on T induces a scalar product on all exterior powers
ΛkT of T via Gram’s determinant. Using this scalar product on Λ2T we can identify the adjoint
representation so T of SO(n) with Λ2T through 〈X, a ∧ b〉= 〈Xa, b〉 and hence think of the
holonomy algebra g⊂ so T as a subspace of the euclidean vector space Λ2T .

Definition 3.2 (Conformal weight operator). Consider an ideal hR ⊂ gR in the real holonomy
algebra. Its complexification h := hR ⊗R C is an ideal in g and a regular subspace h⊂ g⊂ Λ2T
in Λ2T with associated orthogonal projection prh : Λ2T −→ h. The conformal weight operator
Bh ∈W(V ) is defined by

Bh
a⊗bv := prh (a ∧ b)v

in the interpretation of Weitzenböck formulas as linear maps T ⊗ T −→ End V . Under the
identification Homg (T ⊗ T, End V ) = Endg (T ⊗ V ) the conformal weight operator Bh becomes
the following sum over an orthonormal basis {tµ} of T :

Bh (b⊗ v) =
∑
µ

tµ ⊗ prh (tµ ∧ b)v.

The notation B :=Bg will be used for the conformal weight operator of the algebra g.

Most of the irreducible non-symmetric holonomy algebras g are simple and hence there is
only one ideal h = g and only one weight operator B =Bg (cf. Table (2.1)). The exceptions
are the Kähler geometry gR = iR⊕ sun with a one-dimensional center in dimension 2n and
two commuting weight operators BiR and Bsu , and the quaternionic Kähler geometry gR =
sp(1)⊕ sp(n) in dimension 4n, n > 2 with two commuting weight operators BH and BE .

Lemma 3.3 (Fegan’s lemma [Feg76]). The conformal weight operator Bh ∈W(V ) of an ideal
h⊂ g⊂ Λ2T can be written as

Bh =−
∑
α

Xα ⊗Xα ∈ Endg (T ⊗ V )

where {Xα} is an orthonormal basis of h for the scalar product on Λ2T induced from T .

Proof. Let {tµ} and {Xα} be orthonormal bases of T and h respectively. Using the
characterization 〈X, a ∧ b〉= 〈Xa, b〉 of the identification so T = Λ2T we find that

Bh (b⊗ v) =
∑
µ

tµ ⊗ prh (tµ ∧ b)v

=
∑
µα

tµ ⊗ 〈Xα, tµ ∧ b〉Xαv =−
∑
α

Xαb⊗Xαv. 2

A particularly nice consequence of Fegan’s lemma is that the conformal weight operators Bh

and Bh̃ associated to two ideals h, h̃⊂ g always commute. In fact, two disjoint ideals h ∩ h̃ = {0}
of g commute by definition and the general case follows easily. Hence the algebra structure on
W(V ) allows us to use the evaluation homomorphism

Φ : C[{Bh | h irreducible ideal of g}]−→W(V ) (3.7)

from the polynomial algebra on abstract symbols {Bh } to the algebra Endg (T ⊗ V ) for studying
the fine structure of the space W(V ) of Weitzenböck formulas.

In order to turn Fegan’s lemma into an effective formula for the eigenvalues of the conformal
weight operator Bh of an ideal h⊂ g we need to calculate the Casimir operator in the
normalization given by the scalar product on Λ2T . Recall that the Casimir operator is an element
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in the center of the universal enveloping algebra Uh of h (for more details cf. § 6). It is defined as
the sum Cas :=

∑
α X

2
α ∈ Uh over an orthonormal basis {Xα} of h and is thus determined only

up to a constant, depending on the chosen scalar product. Usually it is much more convenient
to calculate the Casimir Cas with respect to a scalar product of choice and later normalize it to
the Casimir CasΛ2

defined with vectors Xα orthonormal for the invariant scalar product induced
from Λ2T .

For a given irreducible ideal h⊂ g in an irreducible holonomy algebra g the Casimir operator
Cas for h is real, symmetric and g-invariant. Although the holonomy representation T of g may
not be irreducible itself, it is the complexification of the irreducible real representation TR so that
we can still conclude that Cas acts as the scalar multiple cT idT of the identity on T . The Casimir
eigenvalue cΛ2

Vλ
of the Casimir operator CasΛ2

acting on a general irreducible representation Vλ
of g of highest weight λ can then be calculated from the Casimir eigenvalues cVλ and cT of any
other Casimir Cas using the normalization formula

cΛ2

Vλ
=−2

dim h

dim T

cVλ
cT

. (3.8)

Here the ambiguity in the choice of the normalization cancels out in the quotient (cVλ/cT ). In
fact, the normalization (3.8) is readily checked for the holonomy representation V = T ,

trT CasΛ2
= dim T · cΛ2

T =
∑
α

trT X2
α =−2 dim h,

since the scalar product induced from T on Λ2T satisfies 〈X, Y 〉= 1
2 trT XY (cf. [Sem06]). 2

Corollary 3.4 (Explicit formula for conformal weights). Consider the tensor product T ⊗
Vλ =

⊕
ε⊂λ Vλ+ε of the holonomy representation T with the irreducible representation Vλ of

highest weight λ. For an ideal h⊂ g let εmax be the highest weight of T and ρ be the half sum
of positive weights of h in the dual t∗ of a maximal torus t. With respect to the basis {prε} of

idempotents the conformal weight operator Bh of the ideal h can be expanded Bh =
∑

ε⊂λ b
h
ε prε

with conformal weights

bhε = 2
dim h

dim T

〈λ+ ρ, ε〉 − 〈ρ, εmax〉+ 1
2(|ε|2 − |εmax|2)

〈εmax + 2ρ, εmax〉
,

where 〈·, ·〉 is an arbitrary scalar product on t∗ invariant under the Weyl group of h.

Proof. According to Lemma 3.3 the conformal weight operator can be written as a
difference Bh =−1

2(CasΛ2 − CasΛ2 ⊗ id− id⊗CasΛ2
) of properly normalized Casimir operators.

In particular, its restriction to the irreducible summand Vλ+ε ⊂ T ⊗ Vλ acts by multiplication
with the B-eigenvalue bhε :=−1

2(cΛ2

Vλ+ε
− cΛ2

T − cΛ2

Vλ
). The B-eigenvalues or conformal weights bhε

can thus be calculated using Freudenthal’s formula cVλ = 〈λ+ 2ρ, λ〉 for the Casimir eigenvalues
of irreducible representations Vλ and the normalization (3.8). 2

It is clear from the definition that the conformal weight operator Bh ∈W(V ) of an ideal
h⊂ g of the holonomy algebra g is in the (−1)-eigenspace of the involution τ and thus induces a
pure curvature term Bh (∇2) on every vector bundle VM associated to the holonomy reduction
of M . Explicitly we can describe this curvature term using an orthonormal basis {Xα} of the
ideal h for the scalar product induced on h⊂ Λ2T . Namely the curvature operator

R : Λ2TM −→ gM ⊂ Λ2TM, a ∧ b 7−→Ra,b,
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associated to the Riemannian curvature tensor R of M allows us to write down a well-defined
global section

qh (R) :=
∑
α

XαR(Xα) ∈ Γ(U62gM) (3.9)

of the universal enveloping algebra bundle associated to the holonomy reduction. Fixing a
representation G−→Aut(V ) of the holonomy group the section qh (R) in turn induces an
endomorphism on the vector bundle VM associated to V and the holonomy reduction.

A particularly important and well-known example of a Weitzenböck formula is the classical
formula of Weitzenböck for the Laplace operator ∆ = d∗d+ dd∗ acting on differential forms, i.e.

∆ =∇∗∇+ q(R). (3.10)

The curvature term in this formula is precisely the curvature endomorphism for the full holonomy
algebra g, in particular q(R) = Ric on the bundle of 1-forms on M . We recall that the curvature
term in the Weitzenböck formula (3.10) is known to be the Casimir operator of the holonomy
algebra g on a symmetric space M = G̃/G; more precisely, for every ideal h⊂ g the curvature
term qh (R) acts as the Casimir operator of the ideal h on every homogeneous vector bundle VM
over a symmetric space M (cf. [SW02]).

It is now easy to check that the curvature endomorphism q(R)h is indeed the curvature term
defined by the conformal weight operator Bh .

Lemma 3.5. Bh (∇2) = qh (R).

Proof. Expanding the second covariant derivative ∇2ψ =
∑
tµ ⊗ tν ⊗∇2

tµ,tνψ of the section ψ
with an orthonormal basis {tµ} of T and using the same resummation as in the derivation of (3.5),
we find for an orthonormal basis {Xα} of the ideal h,

Bh (∇2ψ) =
1
2

∑
µν

prh (tµ ∧ tν)RVtµ,tνψ

=
1
2

∑
αµν

〈tµ ∧ tν , Xα〉XαR
V
tµ,tνψ = qh (R). 2

On the other hand, Corollary 3.4 tells us how to write the conformal weight operator Bh in
terms of the basis {prε} of projections onto the irreducible summands Vλ+ε ⊂ T ⊗ Vλ. Using the
identification of Bh (∇2) with the universal curvature terms qh (R) proved above we obtain
the first general examples of Weitzenböck formulas.

Proposition 3.6 (Universal Weitzenböck formula). Consider a Riemannian manifold M of
dimension n with holonomy group G⊂ SO(n) and the vector bundle VλM over M associated to
the holonomy reduction of M and the irreducible representation Vλ of G of highest weight λ. In
terms of the Stein–Weiss operators

Tε : Γ(VλM)−→ Γ(Vλ+εM)

arising from the decomposition T ⊗ Vλ =
⊕

ε⊂λ Vλ+ε the action of the curvature endomorphisms

qh (R) can be written as

qh (R) =−
∑
ε⊂λ

bhε T
∗
ε Tε,

where the bhε are the eigenvalues of the conformal weight operator Bh ∈ Endg (T ⊗ Vλ).
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As a direct consequence of Proposition 3.6 and the classical Weitzenböck formula (3.10) for
the Laplace operator ∆ = dd∗ + d∗d on the bundle of differential forms we obtain

∆ =
∑
ε⊂λ

(1− bε)T ∗ε Tε.

In the case of the Riemannian holonomy group G= SO(n) the universal Weitzenböck formula
stated in Proposition 3.6 was considered in [Gau91] for the first time. The definition of the
conformal weight operator and its expression in terms of the Casimir is taken from the same
article. The conformal weight operator B has been used for other purposes as well, see for
example [CGH00]. Similar results can be found in [Hom04].

Considering B as an element of the algebra W(V ), all powers of B are g-invariant
endomorphisms. In the interpretation W(V ) = Homg (T ⊗ T, End V ) these powers read

Bk
a⊗b =

∑
µ1,...,µk−1

prg (a ∧ tµ1)prg (tµ1 ∧ tµ2) · · · prg (tµk−2
∧ tµk−1

)prg (tµk−1
∧ b). (3.11)

Recall now that in the irreducible case the trace endomorphism
∑
Ftµ⊗tµ = (tr F ) idVλ of an

element F ∈W(Vλ) is a multiple of the identity of Vλ. Evidently the traces of the powers Bk

of B correspond to the action of the elements

Cas[k] :=
∑

µ0,...,µk−1

prg (tµ0 ∧ tµ1)prg (tµ1 ∧ tµ2) · · · prg (tµk−2
∧ tµk−1

)prg (tµk−1
∧ tµ0) (3.12)

of the universal enveloping algebra Ug on V . The elements Cas[k], k > 2, all belong to the center of
the universal enveloping algebra Ug and are called higher Casimirs since Cas[2] =−2CasΛ2

(cf. [CGH00]). A straightforward calculation shows that

Cas[k] = tr(Bk) idVλ =
(∑

ε

bkε
dim Vλ+ε

dim Vλ

)
idVλ , (3.13)

for an irreducible representation V = Vλ, where we use equation (3.6) for computing the trace
of Bk =

∑
bkε prε. Note that using the Weyl dimension formula (3.13) enables us to explicitly

calculate the action of the higher Casimirs. For the algebras g2 and spin 7 all eigenvalues of the
higher Casimirs Cas[k] are given in Appendix A.

As an example we consider the equation Cas[3] =−1
2cΛ2

g CasΛ2
, which follows from the

recursion formula of Corollary 4.2 or by direct calculation. Indeed, B2 − 1
4cΛ2

g B is an eigenvector
of the involution τ for the eigenvalue +1. Thus it is orthogonal to the eigenvector B for the
eigenvalue −1 and so

0 = 〈B2 − 1
4cΛ2

g B, B〉= tr(B3)− 1
4cΛ2

g tr(B2) = tr(B3) + 1
2cΛ2

g CasΛ2
.

From a slightly more general point of view the evaluation at the conformal weight operator
defines an algebra homomorphism Φ : C[B]−→ Endg (T ⊗ V ), whose kernel is generated by
the minimal polynomial of B as an endomorphism on T ⊗ V . With B being diagonalizable
its minimal polynomial is the product min(B) =

∏
b∈{bε}(B − b) over all different conformal

weights. In consequence, the injective algebra homomorphism

Φ : C[B]/〈min(B)〉 −→ Endg (T ⊗ V )

is an isomorphism as soon as all conformal weights are pairwise different. Indeed, the dimension
of Endg (T ⊗ V ) is the number N(G, λ) of relevant weights or the number of conformal weights
counted with multiplicity, while the number of different conformal weights determines the degree
of min(B) and so the dimension of C[B]/〈min(B)〉.
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In § 4.2 we compute the B-eigenvalues in the cases g = son, g2 and spin 7. It follows that they
are pairwise different unless the highest weight λ belongs to one of the following two exceptional
families. The first for g = so2r and a representation of highest weight λ= λ1ω1 + · · ·+ λrωr, with
λr = λr−1, which is equivalent to bεr = b−εr . The second for g = spin 7 and a representation
with highest weight λ= aω1 + bω2 + cω3 with c= 2a+ 1, which is equivalent to b−ε4 = bε4 . In
these cases the degree of the minimal polynomial is reduced by one and hence the image of Φ
has codimension one. Thus, we have proved the following.

Proposition 3.7 (Structure of the algebra of Weitzenböck formulas). Let G be one of the
holonomy groups SOn,G2 or Spin(7) of non-symmetric manifolds. If Vλ is irreducible, then Φ
is an isomorphism

Φ : C[B]/〈min(B)〉
∼=−−→ Endg (T ⊗ Vλ),

with the only exception being the cases G= SO2r and a highest weight λ with λr−1 = λr,
or G= Spin(7) and a highest weight λ= aω1 + bω2 + cω3 with c= 2a+ 1. In both cases the
homomorphism Φ is not surjective and its image has codimension one.

3.3 The classifying endomorphism
The decomposition of the space W(V ) = Homg (T ⊗ T, End V ) of Weitzenböck formulas into the
(±1)-eigenspaces of the involution τ can be written as

Homg (T ⊗ T, End V )∼= Homg (Λ2T, End V )⊕Homg (Sym2T, End V ).

However, in general we have a further splitting of T ⊗ T leading to a further decomposition of the
τ -eigenspaces. The aim of the present subsection is to introduce an endomorphism K on W(V )
whose eigenspaces correspond to this finer decomposition.

Definition 3.8 (The classifying endomorphism). The classifying endomorphism Kh of an ideal
hR ⊂ gR of the real holonomy algebra gR is the endomorphism Kh : W(V )−→W(V ) on the
space of Weitzenböck formulas defined in the interpretation W(V ) = Homg (T ⊗ T, End V ) by
the formula

Kh (F )a⊗bv :=−
∑
α

FXαa⊗Xαbv

where {Xα} is an orthonormal basis for the scalar product induced on the ideal h⊂ Λ2T . As
before we denote the classifying endomorphism of the ideal g simply by K :=Kg .

Note that for every g-equivariant map F : T ⊗ T −→ End V the map Kh (F ) : T ⊗ T −→
End V is again g-equivariant, because we sum over an orthonormal basis {Xα} of the ideal h⊂ g
for a g-invariant scalar product. In the interpretation W(V ) = Endg (T ⊗ V ) the definition of Kh

reads

Kh (F )(b⊗ v) =−
∑
µα

tµ ⊗ FXαtµ⊗Xαbv =
∑
µα

Xαtµ ⊗ Ftµ⊗Xαbv

or more succinctly

Kh (F ) =
∑
α

(Xα ⊗ id)F (Xα ⊗ id). (3.14)

In consequence, the classifying endomorphisms Kh and K h̃ for two ideals h, h̃⊂ g commute
on the space W(V ) of Weitzenböck formulas similar to the conformal weight operators. The
classifying endomorphisms can also be used to find an explicit form of the matrix corresponding
to the twist τ : W(V )−→W(V ) in the basis of W(V ) given by the orthogonal idempotents prε.
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In all cases considered below, i.e. for the holonomies son, g2 and spin 7, we have only one ideal
and thus only one classifying endomorphism K =Kg .

Lemma 3.9 (Eigenvalues of the classifying endomorphism). Consider the decomposition of the
tensor product T ⊗ T =

⊕
αWα into irreducible summands. The classifying endomorphisms Kh

are diagonalizable on Homg (T ⊗ T, End V ) with eigenspaces Homg (Wα, End V )⊂Homg (T ⊗
T, End V ) and with eigenvalues

κWα = 1
2cΛ2

Wα
− cΛ2

T .

In particular, the classifying endomorphisms Kh act as Kh (F ) =
∑

α κWαF |Wα on the space of
Weitzenböck formulas W(V ) = Homg (T ⊗ T, End V ).

Proof. For a given ideal h it follows immediately from the definition of Kh that it acts by
precomposition with the map −

∑
Xα ⊗Xα in the interpretation W(V ) = Homg (T ⊗ T, End V )

of the space of Weitzenböck formulas. The argument used in the proof of Corollary 3.4 shows that
Kh is actually a difference of Casimir operators leading to the stated formula for its eigenspaces
and eigenvalues. 2

In the case of the holonomies son, g2 and spin 7 we have T ⊗ T = C⊕ Sym2
0T ⊕ g⊕ g⊥ and

using Lemma 3.9 we find the following K-eigenvalues.

κC κSym2
0T

κg κg⊥

son −(n− 1) 1 −1 —

g2 −4 2
3 0 −2

spin 7 −21
4

3
4 −1

4 −9
4

(3.15)

Note that all these K-eigenvalues are different and consequently the twist τ is a polynomial in
the classifying endomorphism K, for example for g = so(n) we find

Kg (F ) = τ(F )− tr(F )1.

Moreover, a given invariant homomorphism F ∈Homg (T ⊗ T, End V ) is an eigenvector of K if
and only if F is different from zero on precisely one summand Wα ⊂ T ⊗ T , i.e. 1 and B are
clearly K-eigenvectors.

Lemma 3.10 (Properties of the classifying endomorphism). The classifying endomorphism K :
W(V )−→W(V ) is a symmetric endomorphism commuting with the twist map τ on the space
W(V ) of Weitzenböck formulas equipped with the scalar product 〈F, F̃ 〉 := (1/dim V ) trT⊗V FF̃ .
The special endomorphisms 1 and B for the same ideal h⊂ g are K-eigenvectors:

K(1) = cΛ2

T 1 K(B) = (cΛ2

T − 1
2cΛ2

h )B.

Proof. The symmetry of K is a trivial consequence of (3.14) in the form

〈K(F ), F̃ 〉=
1

dim V

∑
ν

trT⊗V ((Xν ⊗ id)F (Xν ⊗ id)F̃ )

and the cyclic invariance of the trace, moreover K commutes with τ by definition. Coming to the
explicit determination of K(1) and K(B) we observe that the unit of Endg (T ⊗ V ) becomes
the equivariant map 1(a⊗ b) = 〈a, b〉 idV in Homg (T ⊗ T, End V ) and so

(K1)(a⊗ b) =−
∑
ν

〈Xνa, Xνb〉 idV =
∑
ν

〈a, X2
ν b〉 idV = cΛ2

T 1(a⊗ b).
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The conformal weight operator B considered as an element of Homg (T ⊗ T, End V ) lives by
definition in the eigenspace Homg (g, End V ) for the eigenvalue −1

2cΛ2

g + cΛ2

T of K, where cΛ2

g is
the Casimir eigenvalue of the adjoint representation. 2

On a manifold with holonomy algebra g⊂ son ∼= Λ2T , the Riemannian curvature tensor, takes
values in g, i.e. it can be considered as an element of Sym2g. This fact has the following important
consequence.

Proposition 3.11 (Bochner identities). Suppose F ∈W(V ) is an invariant homomorphism
T ⊗ T −→ End V , which factors through the projection onto the orthogonal complement g⊥ ⊂
Λ2T ⊂ T ⊗ T of the holonomy algebra g⊂ Λ2T . Then the curvature expression F (∇2) vanishes
for any curvature tensor R.

Note that by Schur’s lemma an invariant homomorphism F : T ⊗ T −→ End V which factors
through g⊥ ⊂ Λ2T is different from zero only on the summand g⊥ of T ⊗ T and thus automatically
satisfies τF =−F , i.e. defines a pure curvature Weitzenböck formula. We will call such a
Weitzenböck formula a Bochner identity.

Writing the corresponding invariant homomorphism F in terms of the basis {prε} as a linear
combination F =

∑
fε prε we get the following explicit form of the Bochner identity:∑

ε

fεT
∗
ε Tε = 0.

The Bochner identities of G2- and Spin(7)-holonomies correspond to eigenvectors of the
classifying endomorphism K for the eigenvalues −2 and −9

4 respectively. Since the zero weight
space of g⊥ is in both cases one-dimensional, it follows from Lemma 2.3 that

dim Homg (g⊥, End Vλ) 6 1, (3.16)

i.e. there is at most one Bochner identity. Moreover, the K-eigenvector 1 ∈ Endg (T ⊗ Vλ) spans
the K-eigenspace Homg (C, End Vλ)∼= C. Finally, we note that because the zero weight space of g

itself is the fixed Cartan subalgebra t⊂ g, an application of Lemma 2.3 results in the estimates

dim Homg 2
(g2, End Vλ) 6 2, dim Homspin 7

(spin 7, End Vλ) 6 3.

4. The recursion procedure for SO(n), G2 and Spin(7)

The definitions of the conformal weight operator B and the classifying endomorphism K given
in the previous section are very similar. With this similarity it should not come as a surprise
that the actions of B and K on the space W(V ) of Weitzenböck formulas obey a simple relation,
which is the corner stone of the treatment of Weitzenböck formulas proposed in this article. In
the present section we first prove this relation and then use it to construct recursively a basis of
K-eigenvectors of W(Vλ) for the holonomy groups SO(n), G2 and Spin(7).

4.1 The basic recursion procedure
Recall that the twist τ is defined in the interpretation W(V ) = Homg (T ⊗ T ⊗ V, V ) of
the space of Weitzenböck formulas as linear maps T ⊗ T ⊗ V −→ V by precomposition with the
endomorphism τ : a⊗ b⊗ v 7−→ b⊗ a⊗ v. Generalizing this precomposition we observe that
W(V ) is a right module over the algebra Endg (T ⊗ T ⊗ V ) containing τ . Interestingly, both the
classifying endomorphism K and the (right) multiplication by the conformal weight operator B
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are induced by precomposition with elements in Endg (T ⊗ T ⊗ V ), too: K is the precomposition
with the g-invariant endomorphism

K : T ⊗ T ⊗ V −→ T ⊗ T ⊗ V, a⊗ b⊗ v 7−→ −
∑
ν

Xνa⊗Xνb⊗ v

while (right) multiplication by B is precomposition with the g-invariant endomorphism

B : T ⊗ T ⊗ V −→ T ⊗ T ⊗ V, a⊗ b⊗ v 7−→ −
∑
ν

a⊗Xνb⊗Xνv

by Fegan’s Lemma 3.3. From this description of the action of the classifying endomorphism K
and right multiplication of B on W(V ) we immediately conclude on T ⊗ T ⊗ Vλ that

K +B + τBτ =−1
2(CasΛ2 − 2cΛ2

T − cΛ2

Vλ
).

However, since CasΛ2
acts as multiplication with cΛ2

T on the T -factors and as multiplication with
cΛ2

Vλ
on the Vλ-factor, we obtain the following basic recursion formula.

Theorem 4.1 (Recursion formula). Let Vλ be an irreducible representation of the holonomy
algebra g. Then the action of K, B and τ on W(Vλ) = Homg (T ⊗ T ⊗ Vλ, Vλ) by precomposition
satisfies

K +B + τBτ = cΛ2

T =−2
dim h

dim T
.

We will now explain how this theorem yields a recursion formula for K-eigenvectors. In
fact, given an eigenvector F ∈W(V ) for the twist τ and the classifying endomorphism K with
eigenvalues t and κ, i.e. τF = tF and KF = κF , the recursion formula allows us to produce a
new τ -eigenvector Fnew with eigenvalue −t. This simple prescription suffices to obtain a complete
eigenbasis for W(V ) of τ - and actually K-eigenvectors in the generic case g = son and, with some
modifications, also for the exceptional holonomies g = g2 and g = spin 7. The quaternionic Kähler
case can be dealt with similarly, whereas for Kähler manifolds an easier and more direct approach
is possible.

Corollary 4.2 (Basic recursion procedure). Let F ∈W(V ) be an eigenvector for the
involution τ and the classifying endomorphism K of an ideal h⊂ g, i.e. K(F ) = κF and
τ(F ) =±F . Then the new Weitzenböck formula

Fnew :=
(
B −

cΛ2

T − κ
2

)
◦ F

is again a τ -eigenvector in W(V ) with τ(Fnew) =∓Fnew. In particular, we find that

1new =B and Bnew =B2 − 1
4cΛ2

g B.

Proof. We observe that the recursion formula in Theorem 4.1 in the form τBτ = cΛ2

T −K −B
implies under the assumptions K(F ) = κF and τ(F ) =±F that

±τ(BF ) = (cΛ2

T − κ)F −BF

and consequently

±τ
(
BF −

cΛ2

T − κ
2

F

)
=−

(
BF −

cΛ2

T − κ
2

F

)
.

The formulas for 1new and Bnew are immediate consequences of Lemma 3.10. 2
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Recall that a K-eigenvector is automatically a τ -eigenvector. In general, however, the
Weitzenböck formula Fnew ∈W(V ) does not need to be an eigenvector for K again and it is then
not possible to iterate the recursion. Nevertheless, we may avoid the termination of the recursion
procedure for most of the irreducible non-symmetric holonomy algebras by using appropriate
projections.

We note that any +1-eigenvector of τ orthogonal to 1 is already a K-eigenvector in the
space Homg (Sym2

0T, End Vλ). This is due to the fact that 1 spans the second summand
of the +1-eigenspace of τ . In particular, the orthogonal projection of Bnew onto the
orthogonal complement of 1, i.e. the polynomial B2 − 1

4cΛ2

g B + (2/n)cΛ2

Vλ
, is a K-eigenvector

in Homg (Sym2
0T, End Vλ). More generally, we have the following corollary.

Corollary 4.3 (Orthogonal recursion procedure). Let p0(B), . . . , pk(B) be a sequence of
polynomials obtained by applying the Gram–Schmidt orthonormalization procedure to the
powers 1, B, B2, . . . , Bk of the conformal weight operator B. If all these polynomials are
τ -eigenvectors and pk(B) is moreover a K-eigenvector, then the orthogonal projection pk+1(B)
of Bk+1 onto the orthogonal complement of the span of 1, B, . . . , Bk is a again a τ -eigenvector.

Proof. By assumption span(1, . . . , Bk) = span(p0(B), . . . , pk(B)) is τ -invariant. Moreover, since
pk(B) is a K-eigenvector the basic recursion procedure shows the existence of a polynomial
in B of degree k + 1, which is a τ -eigenvector, so that span(1, B, . . . , Bk+1) is τ -invariant as
well. Clearly the orthogonal projection pk+1(B) of Bk+1 onto the orthogonal complement of
span{1, B, . . . , Bk} is a polynomial in B of degree k + 1 with

span{1, B, B2, . . . , Bk} ⊕ Cpk+1(B) = span{1, B, B2, . . . , Bk, Bk+1}.

Now the involution τ is symmetric with respect to the scalar product on Endg (T ⊗ V ) and so
the orthogonal complement of a τ -invariant space is again τ -invariant. 2

4.2 Computation of B-eigenvalues for SO(n), G2 and Spin(7)
In this subsection we will compute the B-eigenvalues for the holonomies SO(n),G2 and Spin(7)
by applying the explicit formula of Corollary 3.4. In particular, we will see that with only two
exceptions all B-eigenvalues of a given irreducible representation are pairwise different. This
information was relevant in the proof of Proposition 3.7.

The SO(n) case. Recall that in § 2 we fixed the notation for the fundamental weights ω1, . . . , ωr
and the weights ±ε1, . . . ,±εr of the defining representation Rn of SO(n) with r := bn/2c.
Moreover, the scalar product 〈·, ·〉 on the dual of a maximal torus was chosen so that the weights
ε1, . . . , εr are an orthonormal basis. A highest weight can be written λ= λ1ω1 + · · ·+ λrωr =
µ1ε1 + · · ·+ µrεr with integral coefficients λ1, . . . , λr > 0 and coefficients µ1, . . . , µr, which are
either all integral or all half-integral and decreasing. Independent of the parity of n the conformal
weights are

b+εk = µk − k + 1, b−εk =−µk − n+ k + 1, b0 =−r
according to Corollary 3.4, where the zero weight only appears for n odd. With only a few
exceptions the conformal weights are totally ordered and thus pairwise different. In the case n
odd the coefficients µ1, . . . , µr are decreasing in the sense µ1 > µ2 > · · · > µr > 0 so that we find
strict inequalities

b−ε1 < b−ε2 < · · ·< b−εr 6 b0 < b+εr < · · ·< b+ε1
unless µr = 0 or equivalently λr = 0. In the latter case b−εr 6 b0 happens to be an equality.
However, Lemma 2.2 tells us that the zero weight is irrelevant for highest weights λ with λr = 0.
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Without loss of generality, we may thus assume all conformal weights to be different for n odd.
Similar considerations in the case of even n based on the inequalities µ1 > µ2 > · · · > µr−1 > |µr|
satisfied by the coefficients µ1, . . . , µr of λ lead to

b−ε1 < b−ε2 < · · ·< b−εr−1 < {b−εr , b+εr}< b+εr−1 < · · ·< b+ε2 < b+ε1

where nothing specific can be said about the relation between b−εr and b+εr due to b+εr − b−εr =
2µr. This should not be too surprising as the outer automorphism of SO(n) with n even acts
on t∗ as a reflection along the hyperplane µr = 0.

The G2 case. We write the highest weight as λ= aω1 + bω2 with integers a, b > 0 and use
the scalar product defined in § 2 by setting 〈ε1, ε1〉= 1 = 〈ε2, ε2〉 and 〈ε1, ε2〉= 1

2 , equivalently
〈ω1, ω1〉= 1, 〈ω2, ω2〉= 3 and 〈ω1, ω2〉= 3

2 . According to Corollary 3.4 the B eigenvalue for the
zero weight is given by b0 =−2, and similarly

b±ε1 =−(5
3 ∓

5
3)± (2

3a+ b), b±ε2 =−(5
3 ∓

4
3)± (1

3a+ b), b±ε3 =−(5
3 ∓

1
3)± 1

3a.

Again all conformal weights or B-eigenvalues are pairwise different and totally ordered:

b−ε1 < b−ε2 < b−ε3 < b0 < b+ε3 < b+ε2 < b+ε1 .

The Spin(7) case. Using the fundamental weights ω1, ω2, ω3 and the scalar product 〈·, ·〉
introduced in § 2 in terms of the weights ±η1,±η2,±η3 of the representation R7 we write the
highest weight λ= aω1 + bω2 + cω3 with integers a, b, c > 0 and compute

b±ε1 =−(9
4 ∓

9
4)± (1

2a+ b+ 3
4c), b±ε2 =−(9

4 ∓
7
4)± (1

2a+ b+ 1
4c),

b±ε3 =−(9
4 ∓

3
4)± (1

2a+ 1
4c), b±ε4 =−(9

4 ∓
1
4)± (1

2a−
1
4c).

In this case we obtain the inequalities

b−ε1 < b−ε2 < b−ε3 < {b−ε4 , b+ε4}< b+ε3 < b+ε2 < b+ε3 .

However, the difference b+ε4 − b−ε4 = a− 1
2c+ 1

2 does not allow us to draw conclusions about
the relation between b−ε4 and b+ε4 . In particular, for a highest weight λ with c= 2a+ 1 the two
conformal weights b−ε4 = b+ε4 agree.

4.3 Basic Weitzenböck formulas for SO(n), G2 and Spin(7)
In this section we make the recursion procedure of Corollary 4.2 explicit for the holonomy groups
SO(n),G2 and Spin(7). Let us start with the generic Riemannian holonomy algebra g = son
with only a single non-trivial ideal h = g. According to (3.15) its classifying endomorphism K
has eigenvalues (1− n), 1 and −1 with eigenspaces C1, the orthogonal complement of 1 in
the τ -eigenspace for the eigenvalue 1 and the τ -eigenspace for the eigenvalue −1 respectively.
The orthogonal projection of every τ -eigenvector to the orthogonal complement of 1 is thus a
K-eigenvector. Consequently, we can modify the recursion procedure such that it associates to
an eigenvector F for τ of eigenvalue −1 the K-eigenvector

Fnew :=
(
B +

n− 2
2

)
F − 1

n
〈BF, 1〉1

for the eigenvalue 1, while a τ -eigenvector F for the eigenvalue +1 orthogonal to 1 is mapped to
the K-eigenvector

Fnew :=
(
B +

n

2

)
F

526

https://doi.org/10.1112/S0010437X09004333 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X09004333


The Weitzenböck machine

for the eigenvalue −1. For an irreducible son-representation Vλ we thus get a sequence of
polynomials p0(B), p1(B), . . . of K-eigenvectors in W(Vλ). They are defined recursively by

p0(B) := 1, p1(B) :=B and pk+1(B) := (pk(B))new for k > 1.

Evidently, the different pk(B) are polynomials of degree k in B and so the eigenvectors
p0(B), . . . , pd−1(B) ∈W(Vλ) with d := deg minB are necessarily linearly independent.
According to Proposition 3.7 we always get a complete basis of τ -eigenvectors with the exception
of the case g = so2r and a representation Vλ with λr−1 = λr. Here we still have to add a
K-eigenvector Fspin spanning the orthogonal complement of the image of C[B] in W(Vλ).

Note that the polynomials p2k+1(B), k = 0, 1, . . . , are in the −1-eigenspace of τ . Hence
the corresponding Weitzenböck formulas give a pure curvature term. Let N be the number
of irreducible components of T ⊗ Vλ; then there are bN/2c linearly independent equations of this
type. This result, which is clear from our construction, was proved for the first time in [BH02].
The first eigenvectors in this sequence are p0(B) = 1 and p1(B) =B as well as

p2(B) =B2 +
n− 2

2
B +

2
n

cΛ2

Vλ
, (4.17)

p3(B) =B3 + (n− 1)B2 +
(

2
n

cΛ2

Vλ
+
n(n− 2)

4

)
B + cΛ2

Vλ
. (4.18)

Essentially the same procedure can be used in the case g = g2 to compute a completeK-eigenbasis
for the space W(Vλ) for an irreducible g2-representation Vλ. Again there is only one non-trivial
ideal h = g2 and hence only a single classifying endomorphism K. However, the τ -eigenspace in
W(Vλ) for the eigenvalue −1 decomposes into two K-eigenspaces. The recursion procedure gives
the K-eigenvectors

p0(B) = 1, p1(B) =B, p2(B) =B2 + 2B + 2
7cΛ2

Vλ
. (4.19)

Using the recursion procedure again gives a polynomial of degree three in B. Projecting it onto
the orthogonal complement of B we obtain

p3(B) =B3 + 13
3 B

2 + (1
2cΛ2

Vλ
+ 4)B + 2

3cΛ2

Vλ
. (4.20)

We will see in Theorem 6.6 that p3(B) is in fact a K-eigenvector for the eigenvalue −2, in other
words p3(B) ∈Homg 2

(g⊥2 , Vλ) is a Bochner identity. Due to the estimate (3.16) any τ -eigenvector
orthogonal to 1 and p3(B) is a K-eigenvector and so we may obtain a complete eigenbasis
p0(B), . . . , p6(B) in the G2 case by applying the Gram–Schmidt orthogonalization to the powers
of B and using Corollary 4.3.

In order to make the generalized Bochner identity corresponding to the polynomial p3(B)
explicit we recall that its coefficients as a linear combination of the basis projections prε are
the values of the polynomial p3 at the corresponding B-eigenvalues bε. Substituting the explicit
formulas for bε and for cΛ2

Vλ
(cf. Remark A.5) we obtain

FBochner := 27p3(B) = +a(a+ 3b+ 3)(2a+ 3b+ 4)pr+ε1

− (a+ 2)(a+ 3b+ 5)(2a+ 3b+ 6)pr−ε1
− (a+ 2)(a+ 3b+ 3)(2a+ 3b+ 4)pr+ε2

+ a(a+ 3b+ 5)(2a+ 3b+ 6)pr−ε2
− a(a+ 3b+ 5)(2a+ 3b+ 4)pr+ε3

+ (a+ 2)(a+ 3b+ 3)(2a+ 3b+ 6)pr−ε3
+ 6(a2 + 3b2 + 3ab+ 5a+ 9b+ 6)pr0. (4.21)
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Eventually let us discuss the example of g = spin 7. Here the modified recursion procedure gives
the three K-eigenvectors

p0(B) = 1, p1(B) =B, p2(B) =B2 + 5
2B + 1

4cΛ2

Vλ
(4.22)

and a τ -eigenvector for the eigenvalue −1, which is of third order as a polynomial in B. After
projecting it onto the orthogonal complement of B we obtain

p3(B) =B3 +
11
2
B2 +

1
2cΛ2

Vλ

(
c[4]
Vλ

+
55
2

cΛ2

Vλ

)
B +

3
4

cΛ2

Vλ
, (4.23)

where c[4]
Vλ

is the eigenvalue of the higher Casimir Cas[4] on the irreducible representation Vλ. Its
explicit value is given in Appendix A in Remark A.6.

However, different to the g2 case this is no K-eigenvector. Indeed, in § 6 we will see that the
space of polynomials in B of degree at most three is not invariant under K. Hence there cannot
be a further K-eigenvector expressible as a polynomial of order three in B. In general, the other
K-eigenvectors are polynomials of degree seven in B. They are too complicated to be written
down, but surprisingly the K-eigenvector for the eigenvalue −9

4 , i.e. the Bochner identity, for a
representation of highest weight λ= aω1 + bω2 + cω3 has the following simple explicit expression:

FBochner = +c(2b+ c+ 2)(2a+ 2b+ c+ 4)pr+ε1

− (c+ 2)(2b+ c+ 4)(2a+ 2b+ c+ 6)pr−ε1
− (c+ 2)(2b+ c+ 2)(2a+ 2b+ c+ 4)pr+ε2

+ c(2b+ c+ 4)(2a+ 2b+ c+ 6)pr−ε2
− c(2b+ c+ 4)(2a+ 2b+ c+ 4)pr+ε3

+ (c+ 2)(2b+ c+ 2)(2a+ 2b+ c+ 6)pr−ε3
+ (c+ 2)(2b+ c+ 4)(2a+ 2b+ c+ 4)pr+ε4

− c(2b+ c+ 2)(2a+ 2b+ c+ 6)pr−ε4 . (4.24)

This formula is proved in Theorem 6.7. Note that the coefficients of pr+ε4 and pr−ε4 are different.
Hence in the critical case with c= 2a+ 1, i.e. where b+ε4 = b−ε4 , this K-eigenvector FBochner

spans the space orthogonal to C[B] in Endg (T ⊗ Vλ).

5. Examples of Weitzenböck formulas

In this section we will present a few examples of how to obtain for a given representation Vλ all
possible Weitzenböck formulas on sections of the associated bundle VλM . The general procedure
is as follows: we first determine the relevant weights ε using the diagrams of § 2. This gives the
decomposition of T ⊗ Vλ into irreducible summands and defines the generalized gradients Tε.
Next we compute the B-eigenvalues bε, for example using the general formula of Corollary 3.4,
and obtain the universal Weitzenböck formulas of Proposition 3.6. Other Weitzenböck formulas
correspond to the B-polynomials constructed in the preceding section. If F = F (B) is such a
polynomial then the coefficient of T ∗ε Tε is given as −F (bε).

As a first example we consider the bundle of p-forms on a Riemannian manifold (Mn, g). For
simplicity, we assume n= 2r + 1 and p 6 r − 1, i.e. g = so2r+1 and λ= ωp. The relevant weights
according to the tables of § 4.2 are ε1,−εp and εp+1 with the decomposition

T ⊗ Vλ = Vλ+ε1 ⊕ Vλ−εp ⊕ Vλ+εp+1
∼= Vλ+ε1 ⊕ Λp−1 ⊕ Λp+1

and generalized gradients Tε1 , T−εp and Tεp+1 . To compare these operators with differential and
codifferential d, d∗ we have to embed Λp−1 respectively Λp+1 into the tensor product T ⊗ Λp.
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This leads to the following formula:

T ∗−εpT−εp =
1

n− p+ 1
dd∗, T ∗+εp+1

T+εp+1
=

1
p+ 1

d∗d.

Next we take the relevant B-eigenvalues from § 4.2; they are

b+ε1 = 1, b−εp =−n+ p, bεp+1 =−p.

Since we have only three summands in the decomposition of T ⊗ Vλ we obtain only one
Weitzenböck formula with a pure curvature term, which is the formula given in Proposition 3.6:

q(R) = −T ∗+ε1T+ε1 + (n− p)T ∗−εpT−εp + pT ∗+εp+1
T+εp+1

= −T ∗+ε1T+ε1 +
n− p

n− p+ 1
dd∗ +

p

p+ 1
d∗d.

If we add the Weitzenböck formula (3.4) for ∇∗∇ to this expression for q(R) we obtain the
classical Weitzenböck formula for the Laplacian on p-forms:

∆ =∇∗∇+ q(R) = (n− p+ 1)T ∗−εpT−εp + (p+ 1)T ∗+εp+1
T+εp+1

= dd∗ + d∗d.

Let (M2r, g) be a Riemannian spin manifold with spinor bundle S = S+ ⊕ S−. We consider the
two bundles Vλ± defined by the Cartan summand in S± ⊗ T with highest weights λ+ = ω1 + ωr−1

and λ− = ω1 + ωr. Using the tables of § 2 we find the relevant weights +ε1,−ε1 and +ε2 for both
λ± and in addition −εr or +εr for λ+ or λ− respectively. The corresponding tensor product
decomposition is

T ⊗ Vλ± = Vλ±+ε1 ⊕ Vλ±−ε1 ⊕ Vλ±+ε2 ⊕ Vλ±∓εr .
Note that λ± − ε1 is the defining representation for the bundles S± and that λ± ∓ εr = λ∓.
Projecting the covariant derivative of a section of T ⊗ Vλ± onto one of these summands defines
four generalized gradients. The fourth operator T∓εr : Γ(Vλ±)−→ Γ(Vλ∓) is usually called the
Rarita–Schwinger operator. A solution of the Rarita–Schwinger equation is by definition a section
of ψ ∈ Γ(Vλ±) with both T∓εrψ = 0 and T−ε1ψ = 0.

The B-eigenvalues for son-representations were computed in § 4.2 and in particular

b+ε1 = 3
2 , b−ε1 =−2r + 1

2 , b+ε2 =−1
2 , b±εr =−r + 1

2 .

Since the decomposition of T ⊗ Vλ± has four summands we will obtain two Weitzenböck formulas
with a pure curvature term. The first one is again the universal Weitzenböck formula of
Proposition 3.6 corresponding to B, whereas the second corresponds to p3(B), the degree three
polynomial of the recursion procedure defined in (4.18). Its coefficients are the values p3(bε) for
the relevant weights ε. The Casimir operator of an irreducible son-representation Vλ with highest
weight λ is computed as cVλ =−〈λ+ 2ρ, λ〉, where 〈·, ·〉 is the standard scalar product on Rr.
In particular, we have cVλ± =−1

4r(2r + 7). Eventually we obtain the following two Weitzenböck
formulas on sections of Vλ± :

q(R) =−3
2T
∗
+ε1T+ε1 + (2r − 1

2)T ∗−ε1T−ε1 + 1
2T
∗
+ε2T+ε2 + (r − 1

2)T ∗±εrT±εr ,

p3(B)(∇2) =−(3
2 + r)(r − 1)T ∗+ε1T+ε1 + (2r − 1)(r2 − 1)T ∗−ε1T−ε1

+ (r − 1
2)(r + 1)T ∗+ε2T+ε2 + T±εr .

Note that similar Weitzenböck formulas were obtained in [BH02]. More precisely their curvature
terms Z1 and Z2 are related to B and p3(B) by the following equations:

Z1 =
(2r + 3)(r − 1)
r(2r + 1)

B − 3
r(2r + 1)

p3(B), Z2 =−(2r − 1)(r + 1)
r(2r + 1)

B +
1

r(2r + 1)
p3(B),
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whereas the operators are related by

T+ε1 =GZ , T−ε1 =GΣ, T+ε2 =GY , T∓εr =GT .

In the last part of this section we want to describe for G2- and Spin(7)-holonomies all pure
curvature Weitzenböck formulas on parallel subbundles of the form bundle. In particular, we
will present the form Laplacian ∆ = d∗d+ dd∗ =∇∗∇+ q(R) as a linear combination of the
operators T ∗ε Tε and discuss the existence of harmonic forms.

We start with the case of G2-holonomy. Let Γa,b be the irreducible G2-representation with
highest weight aω1 + bω2, a, b > 0, for example Γ0,0 = C is the trivial representation, Γ1,0 = T
and Γ0,1 = Λ2

14
∼= g2. Recall that up to dimension 77 irreducible G2-representations are uniquely

determined by their dimension. However, there are two different irreducible representations in
dimension 77: one of them is [77]− := Γ3,0, the other is Γ0,2, the space of G2-curvature tensors.
Moreover,

dim Γ2,0 = 27, dim Γ1,1 = 64.
The spaces of 2- and 3-forms have the following decompositions:

Λ2T ∼= Λ5T ∼= T ⊕ Λ2
14, Λ3T ∼= Λ4T ∼= C⊕ T ⊕ Λ3

27, (5.25)

where the subscripts denote the dimension of the representation. Next we give the relevant
weights for the representations Γ1,0, Γ0,1 and Γ2,0. We start with λ= ω2, i.e. the representation
Vλ = Γ0,1 = Λ2

14; here the relevant weights are ε=−ε2, ε3, ε1 with λ+ ε= ω1, 2ω1, ω1 + ω2 and
the corresponding decomposition reads

T ⊗ Γ0,1 = Γ1,0 ⊕ Γ2,0 ⊕ Γ1,1 = T ∗ ⊕ Λ3
27T
∗ ⊕ [64].

In this case the universal Weitzenböck formula of Proposition 3.6 is the only pure curvature
Weitzenböck formula. With the explicit B-eigenvalues given in § 4.2 we find on sections of
Λ2

14T
∗M ,

q(R) = 4T ∗−ε2T−ε2 + 4
3T
∗
+ε3T+ε3 − T

∗
+ε1T+ε1 ,

∆ = 5T ∗−ε2T−ε2 + 7
3T
∗
+ε3T+ε3 .

Hence a form ψ in Λ2
14 ⊂ Λ2T is harmonic if and only if T−ε2ψ = 0 = T+ε3ψ (the manifold is

assumed to be compact), i.e. if and only if ∇ψ = T+ε1ψ or equivalently if and only if ∇ψ is a
section of Γ11 = [64]. This statement corresponds to the fact that on a compact manifold a form
is harmonic if and only if it is closed and coclosed.

For λ= ω1, i.e. the representation Vλ = Γ1,0 = T , the relevant weights are determined as
ε=−ε1, 0,+ε2,+ε1 with λ+ ε= 0, ω1, ω2, 2ω1 leading to the decomposition

T ⊗ Γ1,0 = Γ0,0 ⊕ Γ1,0 ⊕ Γ0,1 ⊕ Γ2,0 = C⊕ T ∗ ⊕ Λ2
14T
∗ ⊕ Λ3

27T
∗.

Here we have two pure curvature Weitzenböck formulas. In fact, both curvature terms are
zero, since q(R) = Ric = 0 on Γ1,0 = T . In addition to the universal Weitzenböck formula of
Proposition 3.6 we have the equation corresponding to the polynomial 27p3(B) given in (4.21)
with a= 1, b= 0. After substituting the B-eigenvalues we obtain the following Weitzenböck
formulas on 1-forms:

0 = 4T ∗−ε1T−ε1 + 2T ∗0 T0 − 2
3T
∗
+ε1T+ε1 ,

0 =−16
3 T
∗
−ε1T−ε1 + 8

3T
∗
0 T0 − 8

3T
∗
+ε2T+ε2 + 8

9T
∗
+ε1T+ε1 ,

∆ = 5T ∗−ε1T−ε1 + 3T ∗0 T0 + T ∗+ε2T+ε2 + 1
3T
∗
+ε1T+ε1 .
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It follows that ∆ > 1
3∇
∗∇, i.e. there are no non-parallel harmonic 1-forms, which is of course

Bochner’s theorem in the case of G2-manifolds.
Next we consider the case λ= 2ω1, i.e. the representation Vλ = Γ2,0 = Λ3

27. Here the
relevant weights are ε=−ε1, 0,−ε3, ε2, ε1 with λ+ ε= ω1, 2ω1, ω2, ω1 + ω2, 3ω1 and with
the decomposition

T ⊗ Γ2,0 = Γ1,0 ⊕ Γ2,0 ⊕ Γ0,1 ⊕ Γ1,1 ⊕ Γ3,0

= T ∗ ⊕ Λ3
27T
∗ ⊕ Λ2

14 ⊕ [64]⊕ [77]−.

Hence we have two pure curvature Weitzenböck formulas on sections of Λ3
27. The first

one is the formula for q(R) corresponding to B, while the second corresponds to − 27
240 p3(B):

q(R) = 14
3 T
∗
−ε1T−ε1 + 2T ∗0 T0 + 8

3T
∗
−ε3T−ε3 −

1
3T
∗
+ε2T+ε2 −

4
3T
∗
+ε1T+ε1 ,

0 =−7
6T
∗
−ε1T−ε1 + 1

2T
∗
0 T0 + 5

6T
∗
−ε3T−ε3 −

2
3T
∗
+ε2T+ε2 + 1

3T
∗
+ε1T+ε1 ,

∆ = 9
2T
∗
−ε1T−ε1 + 7

2T
∗
0 T0 + 9

2T
∗
−ε3T−ε3 .

It follows that a form ψ in Λ3
27 ⊂ Λ3T is harmonic if and only if ∇ψ is a section of Γ1,1 ⊕ Γ3,0.

Note that the expression for ∆ was obtained by adding the Bochner identity, i.e. the second
Weitzenböck formula, to the equation for ∇∗∇+ q(R).

Finally, we turn to the case of Spin(7)-holonomy. Irreducible Spin(7)-representations
are parametrized as Γa,b,c = aω1 + bω2 + cω2. Again Γ0,0,0 = C is the trivial representation
and Γ0,0,1 = T denotes the eight-dimensional holonomy representation. We want to describe
the generalized gradients for the parallel subbundles of the form bundle. For this we need the
following representations, which are also uniquely determined by their dimension:

dim Γ1,0,0 = 7, dim Γ0,1,0 = 21, dim Γ1,0,1 = 48, dim Γ1,1,0 = 105,
dim Γ2,0,0 = 27, dim Γ0,0,2 = 35, dim Γ2,0,1 = 168, dim Γ1,0,2 = 189.

In dimension 112 there are two different irreducible representations denoted by [112]a := Γ0,1,1

and [112]b := Γ0,0,3. As in the case of G2-holonomy, we decompose the spaces of differential
forms as

Λ2T ∗ ∼= Λ2
7T
∗ ⊕ Λ2

21T
∗ ∼= Λ6T ∗,

Λ3T ∗ ∼= T ∗ ⊕ Λ3
48T
∗ ∼= Λ5T ∗,

Λ4T ∗ ∼= C⊕ Λ4
7T
∗ ⊕ Λ4

27T
∗ ⊕ Λ4

35T
∗

(5.26)

into irreducible subspaces, where again the subscripts refer to the dimension.
We start with the representation Vλ = Γ1,0,0 = Λ2

7 of highest weight λ= ω1. The relevant
weights are +ε1 and −ε4 with B-eigenvalues b+ε1 = 1

2 and b−ε4 =−3 leading to the decomposition

T ⊗ Γ1,0,0 = Γ1,0,1 ⊕ Γ0,0,1 = Λ3
48 ⊕ T.

Because the bundle defined by Γ1,0,0 can be considered as the subbundle of the spinor bundle
orthogonal to the parallel spinor, the curvature endomorphism q(R) is a multiple of the scalar
curvature and hence vanishes. Thus we obtain on sections of Λ2

7 the only Weitzenböck formula:

0 =−1
2T
∗
+ε1T+ε1 + 3T ∗−ε4T−ε4 .

It follows that ∆ > 1
2 ∇

∗∇, i.e. there are no non-parallel harmonic forms in Λ2
7.

For the second component of the space of 2-forms Λ2
21 = Γ0,1,0 we have the following relevant

weights: +ε1,−ε2, e3 with B-eigenvalues 1,−5,−3
2 in the decomposition

T ⊗ Γ0,1,0 = Γ0,1,1 ⊕ Γ0,0,1 ⊕ Γ1,0,1 = [112]a ⊕ T ⊕ Λ3
48.
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On sections of Λ2
21 we have the Weitzenböck formula

q(R) =−T ∗+ε1T+ε1 + 5T ∗−ε2T−ε2 + 3
2T
∗
+ε3T+ε3 .

Hence a form ψ in Λ2
21 is harmonic if and only if ∇ψ is a section of Γ0,1,1.

The last parallel subbundle of the form bundle with only one pure curvature Weitzenböck
formula is Vλ = Γ2,0,0 = Λ4

27. The relevant weights are +ε1,−ε4 with B-eigenvalues 1,−7
2 and

the decomposition

T ⊗ Γ2,0,0 = Γ2,0,1 ⊕ Γ1,0,1 = [168]⊕ Λ3
48,

with [168] := Γ2,0,1. On sections of Λ4
27 we have the Weitzenböck formula

q(R) =−T ∗+ε1T+ε1 + 7
2T
∗
−ε2T−ε2 .

Hence a form ψ in Λ4
27 is harmonic if and only if ∇ψ is a section of Γ2,0,1.

For the remaining subbundles we have at least two pure curvature Weitzenböck formulas, one
of which is a Bochner identity, i.e. with a zero curvature term. We first consider the representation
T = Γ0,0,1 describing 1- and 6-forms onM . The relevant weights are +ε1,−ε1,+ε2,+ε4 conformal
weights or B-eigenvalues 3

4 ,−
21
4 ,−

1
4 and −9

4 respectively. The corresponding decomposition of
the representation T ⊗ T reads

T ⊗ Γ0,0,1 = Γ0,0,2 ⊕ Γ0,0,0 ⊕ Γ0,1,0 ⊕ Γ1,0,0 = Λ4
35T
∗ ⊕ C⊕ Λ2

21T
∗ ⊕ Λ2

7T
∗.

In this case we have the universal Weitzenböck formula and the Bochner identity (4.24)
for (a, b, c) = (0, 0, 1). Since q(R) = Ric on the tangent bundle we obtain two zero curvature
Weitzenböck formulas on sections of T :

0 =−3
4T
∗
+ε1T+ε1 + 21

4 T
∗
−ε1T−ε1 + 1

4T
∗
+ε2T+ε2 + 9

4T
∗
+ε4T+ε4 ,

0 = +15T ∗+ε1T+ε1 − 105T ∗−ε1T−ε1 − 45T ∗+ε2T+ε2 + 75T ∗+ε4T+ε4 .

Evidently the first equation tells us that ∆ > 1
4∇
∗∇ so that every harmonic 1-form is necessarily

parallel. Of course, this is Bochner’s theorem reproved in the case of Spin(7)-manifolds. Another
direct consequence is the well-known fact that any Killing vector field on a compact Spin(7)-
manifold has to be parallel. Indeed, Killing vector fields are vector fields X ∈ Γ(TM), for which
∇X] ∈ Γ(T ∗M ⊗ T ∗M) is skew and thus a 2-form. On Spin(7)-manifolds this implies that
T+ε1X = 0 = T−ε1X and so all generalized gradients vanish on X.

Next we consider the representation Λ4
35T
∗ = Γ0,0,2 with relevant weights ε1,−ε1, ε2, ε4,

conformal weights or B-eigenvalues 3
2 ,−6, 0,−5

2 and decomposition

T ⊗ Γ0,0,2 = Γ0,0,3 ⊕ Γ0,0,1 ⊕ Γ0,1,1 ⊕ Γ1,0,1 = [112]b ⊕ T ∗ ⊕ [112]a ⊕ Λ3
48T
∗.

Thus there are two pure curvature Weitzenböck formulas on sections of Λ4
35. For the second we

take 1
96FBochner and obtain

q(R) =−3
2T
∗
+ε1T+ε1 + 6T ∗−ε1T−ε1 + 5

2T
∗
+ε4T+ε4 ,

0 = 1
2T
∗
+ε1T+ε1 − 2T ∗−ε1T−ε1 − T ∗+ε2T+ε2 + 3

2T
∗
+ε4T+ε4 ,

∆ = 5T ∗−ε1T−ε1 + 5T ∗+ε4T+ε4 .

Note that in order to obtain the optimal expression for the operator ∆ it was not sufficient to
take its definition ∆ =∇∗∇+ q(R), we still had to add a multiple of the Bochner identity.

Finally, we consider the representation Λ3
48T
∗ = Γ1,0,1. According to the table at the end of

§ 2 the relevant weights are +ε1,−ε1,+ε2,−ε3, ε4,−ε4 with conformal weights or B-eigenvalues
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5
4 ,−

23
4 ,

1
4 ,−

15
4 ,−

7
4 and −11

4 respectively leading to

T ⊗ Γ1,0,1 = Γ1,0,2 ⊕ Γ1,0,0 ⊕ Γ1,1,0 ⊕ Γ0,1,0 ⊕ Γ2,0,0 ⊕ Γ0,0,2

= [189]⊕ Λ2
7T
∗ ⊕ [105]⊕ Λ2

21T
∗ ⊕ Λ4

27T
∗ ⊕ Λ4

35T
∗.

On sections of the associated bundle Λ3
48T
∗M ⊂ Λ3T ∗M one has three curvature Weitzenböck

formulas, the formula corresponding to B and the Bochner identity 1
84FBochner:

q(R) =−5
4T
∗
ε1Tε1 + 23

4 T
∗
−ε1T−ε1 −

1
4T
∗
ε2Tε2 + 15

4 T
∗
−ε3T−ε3 + 7

4T
∗
ε4Tε4 + 11

4 T
∗
−ε4T−ε4 ,

0 = 1
4T
∗
ε1Tε1 −

45
28T

∗
−ε1T−ε1 −

3
4T
∗
ε2Tε2 + 27

28T
∗
−ε3T−ε3 + 5

4T
∗
ε4Tε4 −

9
28T

∗
−ε4T−ε4 ,

∆ = 36
7 T
∗
−ε1T−ε1 + 40

7 T
∗
−ε3T−ε3 + 4T ∗ε4Tε4 + 24

7 T
∗
−ε4T−ε4 .

Consequently, a 3-form ψ ∈ Γ(Λ3
48T
∗M) is harmonic if and only if its covariant derivative ∇ψ

takes values in ([189]⊕ [105])M ⊂ T ∗M ⊗ Λ3
48T
∗M everywhere. Recall that we denote by VM

the vector bundle associated to the representation V of the holonomy group G.

6. Bochner identities in G2- and Spin(7)-holonomies

The aim of this section is to provide a proof of the Bochner identities for the holonomies g2 and
spin 7 and thus to complete the description of the space of Weitzenböck formulas in these cases.
Interestingly, it seems necessary to introduce a fairly more abstract point of view of Weitzenböck
formulas in order to get to this point.

6.1 Universal Weitzenböck classes and the Kostant theorem

The essential additional twist we will employ in this section is that we will base the study of
Weitzenböck formulas on the study of the action of central elements of the universal enveloping
algebra. As a byproduct we get a explicit formula for a central element of order four in the
universal enveloping algebra of spin 7 and a central element of order four in the universal
enveloping algebra Ug2.

The universal enveloping algebra Ug of a Lie algebra g is the associative algebra with 1
generated freely by the vector space g subject only to the commutator relation XY − Y X =
[X, Y ]. Thus Ug is spanned by monomials of the form X1 . . . Xr in elements X1, . . . , Xr of g
and the filtration U6•g by the degree r of these monomials makes Ug a filtered algebra. Even
more important for our purposes is the Hopf algebra structure of Ug with the cocommutative
comultiplication

∆ : Ug−→Ug⊗ Ug, Q 7−→
∑

∆LQ⊗∆RQ (6.27)

defined as the unique algebra homomorphism sending X ∈ g to ∆X :=X ⊗ 1 + 1⊗X in
Ug⊗ Ug. Defining ∆ in this way clearly implies that, for all d, r > 0,

∆(U6d+rg)⊂ U<dg⊗ Ug + Ug⊗ U6rg. (6.28)

An integral part of the structure of the universal enveloping algebra Ug is the algebra
homomorphism Ug−→ End V associated to a representation V of g. For finite-dimensional
representations V the images of these algebra homomorphisms are easily characterized.

Lemma 6.1 (Bicommutant theorem). Consider a finite-dimensional representation V of a
semisimple Lie algebra g over C and the induced representation Ug−→ End V of Ug. The image
of this algebra homomorphism is precisely the commutant of the algebra Endg V of g-invariant
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endomorphisms

im(Ug−→ End V ) = {A ∈ End V | [A, F ] = 0 for all F ∈ Endg V }.

In particular, the map Zent Ug−→ Zent Endg V is surjective for V finite dimensional.

The Bicommutant theorem is actually a special motivating example of von Neumann’s
bicommutant theorem. Observe that every ∗-subalgebra of End V is necessarily von Neumann
for a finite-dimensional vector space V . The image of Ug in End V is the subalgebra generated
by the ∗-closed subspace g of End V and thus von Neumann with commutant Endg V .

Coming back to Weitzenböck formulas, we conclude by Schur’s lemma that for irreducible
representations Vλ the algebra homomorphism Ug−→ End Vλ is surjective and hence the same
is true for the algebra homomorphism

Φ : Homg (T ⊗ T, Ug)−→Homg (T ⊗ T, End Vλ) = W(Vλ)

where Homg (T ⊗ T, End Vλ) is one of the interpretation of the space W(Vλ) of Weitzenböck
formulas on VλM . Motivated by this surjection we will call Homg (T ⊗ T, Ug) the space of
universal Weitzenböck formulas. With the universal enveloping algebra Ug being a module over
its center the space Homg (T ⊗ T, Ug) of universal Weitzenböck formulas is naturally a module
for Zent Ug, too, and the filtration Homg (T ⊗ T, U6•g) turns it into a filtered module for the
filtration Zent 6•Ug := Zent Ug ∩ U6•g of the center.

Definition 6.2 (Universal Weitzenböck classes). The space of universal Weitzenböck formulas
W6• := Homg (T ⊗ T, U6•g) is a filtered module over the center Zent 6•Ug of the universal
enveloping algebra Ug. It splits into the direct sum of filtered Zent Ug-submodules called
universal Weitzenböck classes:

W6• =
⊕
α

W6•
Wα

:=
⊕
α

Homg (Wα, U6•g).

It is clear from the definition that with F ∈W6k also F |Wα ∈W6k
Wα

. Moreover, the powers Bk

of the conformal weight operator B are in the image of W6k under the surjection Φ. Indeed,
Bk is the image of the invariant map pk : T ⊗ T −→U6kg defined by

pk(a⊗ b) =
∑

µ1,...,µk−1

prg (a ∧ tµ1)pr(tµ1 ∧ tµ2) · · · prg (tµk−1
∧ b),

where prg : T ⊗ T −→ g⊂ Λ2T is the same orthogonal projection used before in the definition
of B. Under the vector space identification Ug∼= Sym g we may consider pk(a⊗ b) as the
polynomial pk(a⊗ b)[X] = 〈Xka, b〉 on g. It is important for our considerations below that
the space of universal Weitzenböck formulas is a free module over Zent Ug.

Theorem 6.3 (Kostant’s theorem). For every finite-dimensional representation V the space
Homg (V, Ug) is a free Zent Ug-module, whose rank over Zent Ug agrees with the multiplicity of
the zero weight in V :

Hom6•
g (V, Ug)∼= Zent Ug⊗Hom•t (V, C).

In particular, the module

Hom6•
g (g, Ug)∼= Zent Ug⊗ Prim•+1g

is generated freely as a filtered Zent Ug-module by the primitive elements of Zent Ug with degrees
shifted by −1.
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As an example we consider holonomy g2 and the spaces which are mapped under Φ onto the
K-eigenspaces. We refer to Appendix A for the other holonomies. Then

Homg 2
(C, Ug2)∼= Zent Ug2,

Homg 2
(Sym2

0T, Ug2)∼= Zent Ug2〈F2, F4, F6〉,
Homg 2

(g2, Ug2)∼= Zent Ug2〈F1, F5〉,
Homg 2

(g⊥2 , Ug2)∼= Zent Ug2〈G3〉,

where F1, F2, G3, F4, F5 and F6 are free generators of degree 1, 2, . . . , 6. The numbers of
generators, i.e. the dimension of the corresponding zero weight space, can be read off from
the table in (2.2). The degree of the generators, also called generalized exponents, can be
obtained by decomposing Symkg2 into irreducible components (e.g. using the program LiE)
and by determining the multiplicity of Wα in this decomposition for sufficiently many k. As
mentioned in the theorem, the degrees of the generators F1, F5 are the degrees of the generators
C2, C6 of Zent Ug2 shifted by one.

It follows from Kostant’s theorem that a basis in the eigenspace WWα(Vλ) of the classifying
endomorphism K may be obtained as the image under the surjective representation map
WWα −→WWα(Vλ) of certain free generators for the universal Weitzenböck classes WWα . Indeed,
the module multiplication with Q∈ Zent Ug in W turns in W(Vλ) into multiplication with the
value of the central character for λ on Q, because

Q|Vλ =: χλ(Q) idVλ , χλ(Q) =
1

dim Vλ
trVλ Q.

In general, the value of the central character on Q∈ Zent Ug is a polynomial in the highest
weight λ invariant under the Weyl group of g. At least in principle we know the central
characters of the higher Casimirs Cas[k] ∈ Zent 6kUg defined in (3.12) as traces of the powers of
the conformal weight operator, since (3.13) implies that

χλ(Cas[k]) =
∑
ε

bkε
dim Vλ+ε

dim Vλ
. (6.29)

In order to proceed we use the diagonal ∆ of the Hopf algebra Ug together with the representation
of Ug on the euclidean vector space T to define an algebra homomorphism

∆ : Zent Ug
∆−−→ (Ug⊗ Ug)g −→Homg (T ⊗ T, Ug) = W

by

(∆Q)a⊗b =
∑
〈a, (∆LQ)b〉∆RQ for all Q∈ Zent Ug.

A particularly nice property of ∆ is that the image of ∆Q∈W under the representation map
Φ : W−→W(Vλ) can be written in the following way:

∆Q=
∑
ε⊂λ

χλ+ε(Q)prε ∈W(Vλ). (6.30)

In fact, working our way through the identification Homg (T ⊗ T, End Vλ) = Endg (T ⊗ Vλ) we
find the usual tensor product action of Q∈ Zent Ug on T ⊗ Vλ:

Φ(∆Q)(b⊗ v) =
∑
µ

tµ ⊗ (∆Q)tµ⊗bv =
∑
µ

tµ ⊗ 〈tµ, (∆LQ)b〉∆RQv

=
∑

(∆LQ)b⊗ (∆RQ)v = ∆Q(b⊗ v) =Q(b⊗ v).
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The last ∆ is the restriction of the comultiplication to Zent Ug⊂ Ug, which is precisely the action
of Q∈ Zent Ug on T ⊗ V . Hence we have the commutative diagram

Zent Ug
∆ //

∆
��

Homg (T ⊗ T, Ug)

Φ
��

∼=
⊕

α Homg (Wα, Ug)

��
Endg (T ⊗ Vλ)

∼= // Homg (T ⊗ T, End Vλ) ∼=
⊕

α Homg (Wα, End Vλ)

where the right vertical arrow is the restriction of the representation map Φ onto WWα . Recall
that the left square consists of algebra and the right square of Zent Ug-module homomorphisms,
and that moreover all vertical arrows are surjective maps.

Example 6.4 (Conformal weight operator). A special case of this construction is the relation
between the conformal weight operator B and the Casimir. The image of the Casimir CasΛ2 ∈
Zent Ug becomes

∆(CasΛ2
) =−2B + (CasΛ2

T + CasΛ2

Vλ
)

because ∆(X2) =X2 ⊗ 1 + 2X ⊗X + 1⊗X2 for everyX ∈ g and Fegan’s Lemma 3.3. Moreover,
since ∆ is an algebra homomorphism we conclude that

p(B) = ∆p(−1
2CasΛ2

+ 1
2(CasΛ2

T + CasΛ2

Vλ
))

for every polynomial p(B) in the conformal weight operator B. In particular, the space of
polynomials in B is in the image under ∆ of the subalgebra generated by CasΛ2

.

The crucial additional information we get from introducing the universal Weitzenböck classes
is the filtration degree of the generators of the Zent Ug-modules WWα . In order to prove the
Bochner identities for holonomy spin 7 we still need the following lemma.

Lemma 6.5 (Filtration property of ∆). Consider the Weitzenböck class WWα associated to an
irreducible subspace Wα ⊂ T ⊗ T . If there is no non-trivial, g-equivariant map from Wα to U<dg
for some d > 1, i.e. if W<d

Wα
= {0}, then the composition of ∆ with the restriction resWα to Wα

is filtered

resWα ◦∆ : Zent 6d+•Ug−→W6•
Wα
, Q 7−→∆Q|Wα

of degree −d. In particular, the restriction ∆Q|Wα = 0 vanishes for all Q∈ Zent <2dUg.

Proof. By the filtration property (6.28) of the comultiplication we can write the diagonal ∆Q
of an element Q∈ Zent 6d+rUg in a not necessarily unique way as a sum of two terms
∆Q= ∆Q<d + ∆Q6r satisfying ∆Q<d ∈ (U<dg⊗ Ug)g and ∆Q6r ∈ (Ug⊗ U6rg)g respectively.
Both these summands give rise to g-equivariant, linear maps T ⊗ T −→Ug through the pairing
of T ⊗ T with the left Ug-factor, explicitly

(∆Q<d)a⊗b :=
∑
〈a,∆Q<dL b〉∆Q<dR

with essentially the same formula for ∆Q6r. By construction the map T ⊗ T −→Ug associated
to ∆Q6r maps into U6rg, while the map associated to ∆Q<d vanishes upon restriction to
Wα ⊂ T ⊗ T , because by assumption there is no non-trivial, g-invariant, pairing of Wα with the
left image of ∆Q<d defined by

span{∆Q<dL |∆Q
<d =

∑
∆Q<dL ⊗∆Q<dR } ⊂ U

<dg.

For the second statement we note that ∆Q|Wα ∈W<d
α = {0} for all Q∈ Zent 62d−1Ug. 2
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6.2 Proof of the Bochner identities in holonomies g2 and spin7

Let us now discuss the details of the proof of the additional Bochner identity in G2-holonomy.
Applying the Gram–Schmidt orthogonalization process of Corollary 4.3 to the powers 1, B, B2

and B3 of the conformal weight operator, we obtained in (4.19) and (4.20) a sequence
p0(B), p1(B), p2(B), p3(B) of τ -eigenvectors. In order to proceed with the recursion procedure
it remains to be shown that p3(B) is a K-eigenvector.

We know that p3(B) is a −1 eigenvector of τ , orthogonal to B and expressible as a polynomial
in B of degree three. Thus p3(B) is an element in the image of W63 in W(Vλ) and can be written
as a sum p3(B) = p3(B)g 2

+ p3(B)g⊥2 of two vectors p3(B)g 2
and p3(B)g⊥2 in the image of W63

g 2

and W63
g⊥2

in W(Vλ) respectively. However, the image of W63
g 2

in W(Vλ) is spanned by B, because
the filtered Zent Ug2-module Wg 2

is generated by two elements in degrees one and five and the
representation Wg 2

−→Wg 2
(Vλ) turns module multiplication into multiplication by the central

character χλ. Consequently, the vector p3(B) is orthogonal to the image of W63
g 2

in W(Vλ) and
lies in the eigenspace Wg⊥2

(Vλ) of the classifying endomorphism K.

Theorem 6.6 (Bochner identity in G2-holonomy). The following cubic polynomial in the
conformal weight operator B defines an eigenvector for the classifying endomorphisms K of
eigenvalue −2:

p3(B) :=B3 + 13
3 B

2 + (1
2cΛ2

Vλ
+ 4)B + 2

3cΛ2

Vλ
.

Inserting the eigenvalues or conformal weights bε of B we arrive at (4.21).

In the last part of this section we will prove the Bochner identity for holonomy spin 7.
As in the g2 case we apply the Gram–Schmidt orthogonalization process of Corollary 4.3
to the powers 1, B, B2 and B3 and obtain in (4.22) and (4.23) a sequence p0(B), p1(B),
p2(B), p3(B) of τ -eigenvectors. Again p3(B) is a (−1)-eigenvector of τ , orthogonal to B and
expressible as a polynomial in B of degree three so that the summands in the decomposition
p3(B) = p3(B)spin 7

+ p3(B)spin⊥7 are in the image of W63
spin 7

and W63

spin⊥7
in W(Vλ) respectively.

Of course, we want to extract the Bochner identity p3(B)spin⊥7 from p3(B). At this point the
argument in the Spin(7) case becomes more complicated, because the Zent Uspin 7-module
Wspin 7

has generators in degree one, three and five so that the image of W63
spin 7

in Wspin 7
(Vλ) has

dimension two. Even with p3(B) orthogonal to B we may thus not conclude that the component
p3(B)spin 7

= 0 vanishes. The idea to cope with this complication is to construct an element
Qλ ∈ Zent Uspin 7 depending polynomially on the highest weight λ such that ∆Qλ ∈Wspin 7

(Vλ)
is orthogonal to B. The Bochner identity is then the projection of p3(B) onto the orthogonal
complement of ∆Qλ.

In the four-dimensional space Zent 64Uspin 7 we look for an element Qλ as a linear
combination of the base vectors 1, Cas, Cas2 and Cas[4] with unknown coefficients. We know
∆Cas and ∆Cas2 from Example 6.4 and ∆Cas[4] from (6.29) and (6.30) so that the conditions

〈∆Qλ, 1〉= 0, 〈∆Qλ, B〉= 0, 〈∆Qλ, B2〉= 0

turn into three linear independent equations for the four unknown coefficients. Using a computer
algebra system to do the necessary calculations, we find the convenient solution

Qλ = 2cΛ2

Vλ
Cas[4] − 160cΛ2

Vλ
(CasΛ2

)2 + (320(cΛ2

Vλ
)2 − 1184cΛ2

Vλ
− 4c[4]

Vλ
)CasΛ2

+ (−160(cΛ2

Vλ
)3 + 2cΛ2

Vλ
c[4]
Vλ

+ 1712(cΛ2

Vλ
)2 − 9408cΛ2

Vλ
− 21c[4]

Vλ
)
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in Zent 64Uspin 7. We denote the eigenvalue of the central element Cas[4] ∈ Uspin 7 on the
irreducible representation Vλ by c[4]

Vλ
in analogy with the eigenvalues of CasΛ2

.

By construction ∆Qλ is orthogonal to 1, B and B2 and we conclude that ∆Qλ is indeed an
eigenvector for the classifying endomorphism K. In fact, the component ∆Qλ|spin⊥7 = 0 vanishes
according to Lemma 6.5, because Qλ has degree four and there is no non-trivial equivariant map
spin⊥7 −→U<3spin 7. Similarly the components ∆Qλ|Sym2

◦T
= 0 and ∆Qλ|C = 0 are trivial, since

the image of W62
Sym2

◦T
in W(Vλ) has dimension one and is spanned by p2(B), while WC(Vλ) is

spanned by p0(B). With ∆Qλ = ∆Qλ|spin 7
being an eigenvector of K orthogonal to p1(B) =B

the problematic component p3(B)spin 7
of p3(B) must be a multiple of ∆Qλ. In consequence, the

complementary component p3(B)spin⊥7 of p3(B) is the projection of p3(B) onto the orthogonal
complement of ∆Qλ and may serve as the spin 7-Bochner identity. Using again a computer algebra
system for the necessary calculations we find that this projection of p3(B) to the orthogonal
complement of ∆Qλ agrees with the endomorphism FBochner ∈W(Vλ) specified in (4.24).

Theorem 6.7 (Bochner identity in Spin(7)-holonomy). The endomorphism FBochner ∈W(Vλ)
defined in (4.24) with components

FBochner = +c(2b+ c+ 2)(2a+ 2b+ c+ 4)pr+ε1

− (c+ 2)(2b+ c+ 4)(2a+ 2b+ c+ 6)pr−ε1
− (c+ 2)(2b+ c+ 2)(2a+ 2b+ c+ 4)pr+ε2

+ c(2b+ c+ 4)(2a+ 2b+ c+ 6)pr−ε2
− c(2b+ c+ 4)(2a+ 2b+ c+ 4)pr+ε3

+ (c+ 2)(2b+ c+ 2)(2a+ 2b+ c+ 6)pr−ε3
+ (c+ 2)(2b+ c+ 4)(2a+ 2b+ c+ 4)pr+ε4

− c(2b+ c+ 2)(2a+ 2b+ c+ 6)pr−ε4

is an eigenvector of the classifying endomorphism K for the eigenvalue −9
4 .

Appendix A. Module generators and higher Casimirs

Remark A.1 (Module generators for Zent Uso2r+1). The center of the universal enveloping
algebra of so2r+1, r > 1, is a free polynomial algebra Zent Uso2r+1 = C[P [2], P [4], . . . , P [2r]] in
r generators of degree 2, 4, . . . , 2r. Moreover,

Homso 2r+1(C, Uso2r+1)∼= Zent Uso2r+1,

Homso 2r+1(Sym2
0T, Uso2r+1)∼= Zent Uso2r+1〈F2, F4, . . . , F2r〉,

Homso 2r+1(so2r+1, Uso2r+1)∼= Zent Uso2r+1〈F1, F3, . . . , F2r−1〉.

Remark A.2 (Module generators for Zent Uso2r). The center of the universal enveloping algebra
Uso2r of so2r, r > 2, is a free polynomial algebra Zent Uso2r = C[P [2], P [4], . . . , P [2r−2], E[r]] in
r − 1 generators of degree 2, 4, . . . , 2r − 2 respectively and one additional generator in degree r.
Moreover,

Homso 2r(C, Uso2r)∼= Zent Uso2r,

Homso 2r(Sym2
0T, Uso2r)∼= Zent Uso2r〈F2, F4, . . . , F2r−2〉,

Homso 2r(so2r, Uso2r)∼= Zent Uso2r〈F1, F3, . . . , F2r−3, Gr−1〉.
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Remark A.3 (Module generators for Zent Ug2). The center of the universal enveloping algebra
Ug2 of g2 is a free polynomial algebra Zent Ug2 = C[Cas[2], Cas[6]] in two generators of degree
two and six. Moreover,

Homg 2
(C, Ug2)∼= Zent Ug2,

Homg 2
(Sym2

0T, Ug2)∼= Zent Ug2〈F2, F4, F6〉,
Homg 2

(g2, Ug2)∼= Zent Ug2〈F1, F5〉,
Homg 2

(g⊥2, Ug2)∼= Zent Ug2〈G3〉.

Remark A.4 (Module generators for Zent Uspin 7). The center of the universal enveloping
algebra Uspin 7 of spin 7 is a free polynomial algebra Zent Uspin 7 = C[Cas[2], Cas[4], Cas[6]] in
three generators of degree two, four and six. Moreover,

Homspin 7
(C, Uspin 7)∼= Zent Uspin 7,

Homspin 7
(Sym2

0T, Uspin 7)∼= Zent Uspin 7〈F2, F4, F6〉,
Homspin 7

(spin 7, Uspin 7)∼= Zent Uspin 7〈F1, F3, F5〉,
Homspin 7

(spin⊥7 , Uspin 7)∼= Zent Uspin 7〈G3〉.

Remark A.5 (Higher Casimirs for G2). The eigenvalues of the generators Cas[2] and Cas[6] of
Zent Ug2 of degrees two and six respectively on the irreducible representation Vλ of highest
weight λ= aω1 + bω2 are given by

3
4c[2]
Vλ

= a2 + 3ab+ 3b2 + 5a+ 9b,
243
11 c[6]

Vλ
= 4a6 + 36a5b+ 117a4b2 + 162a3b3 + 81a2b4 + 60a5 + 414a4b+ 954a3b2

+ 810a2b3 + 162ab4 − 408a4 − 2808a3b− 8829a2b2 − 12 636ab3 − 6804b4

− 6580a3 − 33 174a2b− 61 362ab2 − 40 824b3 − 6396a2 − 32 508ab
− 27 756b2 + 56 520a+ 100 440b.

Remark A.6 (Higher Casimirs for Spin(7)). The eigenvalues of the generators Cas[2], Cas[4]

and Cas[6] of Zent Uspin 7 of degrees two, four and six respectively on the irreducible
representation Vλ of highest weight λ= aω1 + bω2 + cω3 are

2c[2]
Vλ

= 4a2 + 8b2 + 3c2 + 8ab+ 4ac+ 8bc+ 20a+ 32b+ 18c,

32c[4]
Vλ

= 16a4 + 128b4 + 21c4 + 192a2b2 + 72a2c2 + 240b2c2 + 32a3c+ 64a3b+ 256b3c

+ 256b3a+ 56c3a+ 112c3b+ 192a2bc+ 384b2ac+ 240c2ab+ 160a3 + 1024b3

+ 252c3 + 768a2b+ 432a2c+ 1536b2a+ 1632b2c+ 1056c2b+ 552c2a

+ 1632abc+ 800a2 + 1152c2 + 3040b2 + 3040ab+ 1760ac+ 3424bc
+ 2000a+ 3968b+ 2376c,

512c[6]
Vλ

= 64a6 + 2048b6 + 183c6 + 384a5b+ 192a5c+ 6144b5c+ 6144b5a+ 732c5a

+ 1464c5b+ 1920a4b2 + 720a4c2 + 7680b4a2 + 9600b4c2 + 1260c4a2 + 4920c4b2

+ 1920a4bc+ 15 360b4ac+ 4920c4ab+ 5120a3b3 + 1120a3c3 + 8960b3c3

+ 7680a3b2c+ 4800a3c2b+ 15 360b3a2c+ 19 200b3c2a+ 6720c3a2b+ 13 440c3b2a

+ 14 400a2b2c2 + 960a5 + 24 576b5 + 3294c5 + 7680a4b+ 4320a4c+ 61 440b4a
+ 65 280b4c+ 11 100c4a+ 22 080c4b+ 30 720a3b2 + 11 040a3c2 + 61 440b3a2
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+ 84 480b3c2 + 15 120c3a2 + 60 000c3b2 + 32 640a3bc+ 130 560b3ac+ 60 000c3ab

+ 97 920a2b2c+ 63 360a2c2b+ 126 720b2c2a+ 9600a4 + 167 424b4 + 32592c4

+ 67 200a3b+ 38 400a3c+ 334 848b3a+ 365 568b3c+ 88 032c3a+ 175 584c3b

+ 234 624a2b2 + 92 832a2c2 + 364 128b2c2 + 257 664a2bc+ 548 352b2ac
+ 364 128c2ab+ 56 000a3 + 684 032b3 + 193 464c3 + 413 952a2b+ 251 808a2c

+ 993 024b2a+ 1158 912b2c+ 397 968c2a+ 790 656c2b+ 1125 888abc+ 160 000a2

+ 1321 856b2 + 562 848c2 + 1189 760ab+ 759 040ac+ 1607 552bc+ 200 000a
+ 863 744b+ 606 240c.
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