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Collective locomotion of two-dimensional
lattices of flapping plates. Part 2. Lattice flows
and propulsive efficiency

Silas Alben†

Department of Mathematics, University of Michigan, Ann Arbor, MI 48109, USA

We study propulsion of rectangular and rhombic lattices of flapping plates at O(10–100)
Reynolds numbers in incompressible flow. The fluid dynamics often converges to time
periodic in 5–30 flapping periods, facilitating accurate computations of time-averaged
thrust force and input power. We classify the propulsive performances of the lattices
and the periodicities of the flows with respect to flapping amplitude and frequency,
horizontal and vertical spacings between plates, and oncoming flow velocity. Non-periodic
states are most common at small streamwise spacing, large lateral spacing and large
Reynolds number. Lattices that are closely spaced in the streamwise direction produce
intense vortex dipoles between adjacent plates. The flows transition sharply from drag-
to thrust-producing as these dipoles switch from upstream to downstream orientations
at critical flow speeds. Near these transitions the flows pass through a variety of
periodic and non-periodic states, with and without up–down symmetry, and multiple
stable self-propelled speeds can occur. As the streamwise spacing increases (and with
large lateral spacing), the plates may shed vortex streets that impinge on downstream
neighbours. The most efficient streamwise spacing increases with flapping amplitude.
With small lateral spacing, the rectangular lattices have Poiseuille-type flows that yield net
drag, while the rhombic lattices may shed vortices and generate net thrust, sometimes with
relatively high efficiency. As lateral spacing increases to one plate length and beyond, the
rectangular lattices begin to shed vortices and generate thrust, eventually with efficiencies
similar to the rhombic lattices’, as the two types of flows converge. At Re = 70, the
lattices’ maximum Froude efficiencies are approximately twice those of an isolated plate
(only considering nearly periodic lattice flows). As Re decreases, the lattices’ efficiency
advantage increases further.
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S. Alben

1. Introduction

We have reviewed the background literature on the propulsion of single and multiple
flapping plates and foils in Part 1 of the paper (Alben 2021). At the end of Part 1, we
discussed theoretical models for the input power needed to move a lattice vertically at a
given speed. Here in Part 2 we discuss the Froude efficiency and self-propelled speeds
of lattices, which are more difficult to model theoretically. They depend on how the mean
horizontal force varies with oncoming flow speed. For a single flapping foil, this behaviour
depends on the physics of vortex creation and shedding due to large amplitude flapping at a
given Reynolds number (Re). Optimal vortex creation for thrust occurs when the foil moves
at a certain angle of attack in the flow; this motion can be computed (Wang 2000) but is
difficult to describe with a simple analytical formula. The same phenomenon underlies
the prevalence and optimality of Strouhal numbers (St) = 0.2–0.4 for flapping locomotion
at high Re (Taylor, Nudds & Thomas 2003; Eloy 2012). For a lattice of flapping bodies,
the process is further complicated by the additional length scales of separation between
bodies, and the effects of vortices colliding with downstream bodies.

In figure 1, we repeat the schematic diagram of the rectangular and rhombic lattice
configurations from Part 1, for ease of reference. Each plate moves with the same velocity
−U(t) = (−U, −V(t)), constant in the horizontal direction, and sinusoidal in the vertical
direction. We solve the incompressible Navier–Stokes equations, non-dimensionalized, in
the rest frame of the lattice using the finite-difference method described in Part 1. The
basic dimensionless parameters are

A
L

, Ref = fL2

ν
, lx = Lx

L
, ly = Ly

L
, UL = U

fL
, (1.1a–e)

with A the amplitude and f the frequency of the vertical displacement corresponding
to V(t). We non-dimensionalize quantities using the plate length L as the characteristic
length, the flapping period 1/f as the characteristic time and the fluid mass density ρf as
the characteristic mass density. Here, ν is the kinematic viscosity of the fluid and Lx and
Ly are the lattice spacings in the x and y directions, respectively.

We refer to other important dimensionless parameters, combinations of those above

Re = 4AfL
ν

, ReU = UL
ν

, UA = U
fA

, St = 2
UA

. (1.2a–d)

Here, Re is the Reynolds number based on the mean vertical velocity of the foil on each
half-stroke, while Ref can be considered a dimensionless frequency, because ν and L are
assumed fixed.

Given the net horizontal force on each plate Fx (due to viscous shear) and the net vertical
force Fy (due to pressure), we define the input power Pin(t) and the Froude efficiency ηFr

Pin(t) = V(t)
fL

Fy; P̃in(t) = Re3
f Pin(t); ηFr = U〈Fx(t)〉

〈Pin(t)〉 . (1.3a–c)

Here, P̃in(t) is the input power non-dimensionalized with ν/L2 in place of f , for
comparison across cases with different f (since L and ν are assumed fixed). The
numerator and denominator of ηFr both acquire factors of Re3

f with the same change in
non-dimensionalization, resulting in no change for ηFr.

In Part 1, we established some of the main properties of an isolated flapping plate in
an oncoming flow. We now discuss flows in the much larger space of doubly periodic
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Collective locomotion of 2-D lattices of flapping plates

–Ly

–Lx LxL0 –LxLx L0
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(b)(a)

Figure 1. (a) A rectangular lattice of plates. The computational domain is an Lx-by-Ly unit cell, shown with
a dashed blue outline. (b) A rhombic lattice of plates. The computational domain is an Lx-by-2Ly double unit
cell, shown with a dashed blue outline.

lattices of flapping plates. We consider two types of lattices, rectangular and rhombic
(diamond), shown in figure 1, also considered by Weihs (1975); Daghooghi & Borazjani
(2015); Hemelrijk et al. (2015); Park & Sung (2018) and Oza, Ristroph & Shelley (2019).
Between these two lattices is the full range of two-dimensional (2-D) (oblique) lattices.
We focus only on the two endpoint lattice types (rectangular and rhombic) because the
remaining parameter space is already quite large (five-dimensional). For the rectangular
lattice, we solve the flow in a single unit cell (figure 1(a), blue dashed-line rectangle)
with periodic boundary conditions. For the rhombic case, we solve the flow in a domain
consisting of two unit cells (figure 1(b), blue dashed-line rectangle), to observe when flow
modes arise that are periodic on length scales longer than a single unit cell. We focus
on time-periodic dynamics for the most part, because such states are generally reached
within 5–30 flapping periods. The dynamics usually appears to be non-periodic at larger
Re values, and may therefore require much longer run times to compute long-time averages
with high accuracy. We generally avoid presenting time-averaged values for these cases
except where noted explicitly in the text (e.g. for the average input power).

2. Examples of thrust–drag transitions and periodic flow states

Figure 2(a)–(d) shows the average horizontal force 〈Fx(t)〉 versus normalized horizontal
flow speed U/fA = 2/St for a rectangular lattice of plates at Re = 20 and various lx and
ly values. In the single-body case, the sidewall and upstream boundary conditions may
cause numerical instabilities when vortices collide with these boundaries, i.e. when the
oncoming flow speed is too small to advect vortices to the downstream boundary. This
issue does not arise with doubly periodic boundary conditions, and the flow computations
remain stable with small oncoming flow speeds, so unlike in figure 7(a) of Part 1, in
figure 2(a)–(d) the curves can be computed down to zero U/fA. Panel (a) shows four curves
with A/L = 0.2, ly = 1 and lx ranging from 1.2 to 1.5 (labelled at right). The vertical gap is
one plate length, but the horizontal gap is smaller, 0.2 to 0.5. Here, 〈Fx〉 initially increases
with U/fA, so unlike a single flapping plate at this Re, zero velocity is a stable equilibrium
here. After reaching a peak, each curve drops (sharply for lx = 1.2, then more smoothly as
lx increases), and then adopts a U-shape somewhat similar to that in the isolated-body case.
For lx = 1.2 to 1.4, there are three zero crossings (counting U/fA = 0), corresponding to
three equilibria, two stable and one unstable, while at lx = 1.5, the only equilibrium is the
zero-velocity state. Panel (b) shows the same data with ly increased to 1.5. The darkest blue
curve (lx = 1.2) now has two sharp drops, between which the curve increases with U/fA.
Near zero U/fA, the curve is dotted, indicating that the dynamics is non-periodic in this
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Figure 2. Average horizontal force 〈Fx(t)〉 versus normalized horizontal flow speed U/fA = 2/St for Re = 20
and various lx and ly values. In panels (a)–(d), each line plots 〈Fx(t)〉 versus U/fA for various lx, listed at right.
Specific values of A/L and ly are chosen for each of the panels; (a) A/L = 0.2, ly = 1, (b) A/L = 0.2, ly = 1.5,
(c) A/L = 0.5, ly = 2, (d) A/L = 0.5, ly = 3. (e–g) For various (lx, ly) pairs, the number of equilibrium states
(U/fA with 〈Fx(t)〉 = 0), for A/L = 0.2 (e), 0.5 ( f ) and 0.8 (g).

region, so for the averages on the dotted line there is some uncertainty (that we do not
quantify here). At the last of these non-periodic cases (highest circled point), the time
trace of Fx(t) is shown in a small inset panel, with tick marks every flapping period
along the horizontal axis. The graph of 〈Fx(t)〉 then drops sharply to the next point, also
circled, at which the time trace becomes periodic with period 1. The dynamics remains
1-periodic as 〈Fx(t)〉 increases to the next circled point. Then 〈Fx(t)〉 drops sharply again,
to a state that is 1/2-periodic, the fourth and final circled point on this curve. The curve
then increases smoothly with further increases in U/fA. In this case, the sharp drops
in the curve correspond to changes in periodicity, from non-periodic, to 1-periodic, to
1/2-periodic. We will discuss the corresponding flow structures below. The remaining
curves in this panel, for lx = 1.3 to 1.5, become increasingly smooth as lx increases,
eventually resembling those in panel (a), but with an additional equilibrium for lx = 1.4
and 1.5; zero velocity is unstable for these cases. Panel (c) shows the same quantities for
A/L increased to 0.5 and ly increased to 2, and a wider range of lx (labelled at right).
The two inset panels show another example of the change in dynamics (from 4-periodic to
1/2-periodic) that accompanies a sharp drop in 〈Fx〉 at a particular U/fA. Panel (d) (ly = 3)
shows three more examples of changes from a 1-periodic to a 1/2-periodic dynamics that
occur at sharp drops in 〈Fx〉. Panels (c,d) indicate a transition with respect to lx as well.
For lx near 1 (blue curves), the plates experience drag at small U/fA. At larger lx (green
and yellow curves), more complex variation of 〈Fx〉 is seen at small U/fA including thrust.
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Collective locomotion of 2-D lattices of flapping plates

By counting the numbers of zero crossings of these curves (including U/fA = 0), we
obtain the number of equilibrium states, and show the totals as coloured patches in
figure 2(e–g), for A/L = 0.2 (e), 0.5 ( f ) and 0.8 (g). In the dark blue regions U/fA = 0
is the only equilibrium, and there is no net locomotion. This is the case at smaller ly in
most cases, and some larger ly values at the largest A/L (panel (g)). The close vertical
stacking of adjacent bodies tends to suppress vortex formation and thrust generation, as
we will illustrate later. In the light blue regions, there are two equilibria: U/fA = 0 is
unstable and there is a stable self-propelled state, as in the isolated-body case. Examples
are given by the yellow lines in panels (c,d), which represent the closest approximation to
the isolated body among these cases (lx and ly are largest). However, the body might not
be well approximated as isolated in some cases; there can be significant flow interactions
across the periodic unit cell, particularly at A/L = 0.5 and 0.8. The yellow regions in
figure 2(e–g) have three or more equilibria, and these generally correspond to small lx and
large ly. The interactions between adjacent bodies’ edges are strongest here, and lead to
a variety of flow modes (and dynamics, indicated by the insets we have discussed) that
are sensitive to small changes in U/fA and the other parameters. At the largest A/L (panel
(g)), these states are suppressed by the larger amplitude of motion, which tends to suppress
interactions between vortices shed by horizontally adjacent plates.

Figure 3 shows examples of the flows near the sudden drops in 〈Fx〉. In figure 2(b),
four circled data points are shown, bracketing two sudden drops in 〈Fx〉. Corresponding
flows, at two instants spaced 1/2 of a flapping period apart, are shown by the four pairs of
panels in the purple box of figure 3. Panels (a,b) show the flow at U/fA slightly below the
first circled data point, in a quasi-periodic state giving drag. In panel (a), the upward flow
through the thin gap between adjacent plate edges produces an asymmetric vortex dipole.
In panel (b), a 1/2-period later, the downward flow produces a similar asymmetric dipole.
In both cases, although the net flow is rightward, the vortices on the leftward sides of the
dipoles are larger. Panels (c,d) show the corresponding flows at the second circled point
in figure 2(b), after the first sudden drop in 〈Fx〉, to a state of net thrust. Again, two vortex
dipoles are produced on each half-cycle, but now the upward dipole curves rightward
(downstream), and the rightward (blue) vortex is larger. However, the downward dipole
is still roughly symmetric. Panels (e,f ) show the corresponding flows at the third circled
point in figure 2(b). The downstream flow is larger, and net drag is obtained. In panel
(e), the upward dipole is more symmetric, similar to the downward dipole in panel (d),
and the downward dipole in panel ( f ) is curved downstream, like that in panel (c). Panels
(g,h) show the flows at the fourth circled point in figure 2(b), after the second sudden
transition from net drag to net thrust. Now both dipoles are curved rightward. Panels
(g,h) also show a flow state that is up–down symmetric after a 1/2-period. Consequently,
Fx(t) (inset next to fourth circle in figure 2b) is 1/2-periodic – the horizontal force is the
same on the up and down strokes. By contrast, the first, second and third flow states were
not up–down symmetric, and Fx(t) was 1-periodic in each case. A similar phenomenon
occurs at the sudden drop in 〈Fx〉 accompanied by the insets in figure 2C; Fx(t) transitions
from 4-periodic to 1/2-periodic in the insets. Flow snapshots are shown in the green
box of figure 3; panels (i)–(j) for the first inset of figure 2(c), and panels (k)–(l) for the
second. In panels (i–j), the vortex dipoles are not up–down symmetric after a 1/2-period,
and the upstream member of each vortex pair is larger. In panels (k–l), the dipoles are
up–down symmetric, and the downstream vortices are larger. A similar phenomenon also
occurs at each of the three sudden drops in 〈Fx〉 highlighted by circles in figure 2(d).
The corresponding flow transitions, from up–down asymmetric to symmetric, are shown
in figure 19 in appendix A. The general phenomenon then is that sudden changes from
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Figure 3. Flow states that accompany the sudden drops in 〈Fx〉 highlighted in figure 2(b) (purple box) and
(c) (green box). Panels (a)–(b) and (c)–(d) show vorticity snapshots 1/2-period apart, before and after the first
sudden drop in 〈Fx〉 shown by circles in figure 2(b). Panels (e)–( f ) and (g)–(h) correspond to the second drop
in figure 2(b). The green box (i)–(l) shows the flow state transition for the drop in figure 2(c). The colour bar
limits are ±ωs where ωs = 3 (a)–(h) or 3.5 (i)–(l).

drag to thrust can occur when lx is close to 1, when the dipole jets on each half-stroke
switch from upstream to downstream orientations. As lx increases to larger values, the
curves may become smoothed versions of those with sharp drops, e.g. in figure 2(a).
Eventually, at large enough lx, the vortex shedding pattern changes qualitatively, from
a dipole between adjacent leading and trailing edges to a single dominant vortex
that interacts with previously shed vortices in the wake, e.g. the reverse von Kármán
street.

Figures 2, 3 and 19 have shown that for lx near 1, Fx(t) can sharply change from
1-periodic (or 4-periodic) to 1/2-periodic at certain oncoming flow speeds. Figure 4 shows
further examples of the diversity of periodic Fx(t) that can occur when lx is near 1.
Panels (a,b) show 1/2-periodic Fx(t), the first roughly sinusoidal, the second far from
it. Panel (c) shows a 1-periodic state. Panels (d,e) show 1.5-periodic states, with repeated
features highlighted in red. Panel (e) can be regarded as a perturbation of a 1/2-periodic
state. Panels ( f ,g) are 2-periodic states with repeated features highlighted in green; panel
( f ) is nearly 1/2-periodic, while panel (g) is nearly 1-periodic. Panel (h) shows that the
dynamics can switch between different nearly periodic states over long periods of time.
The blue regions last for 2.5 periods, while the red regions are nearly 3-periodic, and their
recurrences (with slight changes) do not follow a simple pattern up to t = 30. Panel (i)
shows the 4-periodic state of figure 2(c), top inset, with repeated features highlighted in
orange; the state is nearly 1-periodic. Panel (j) shows a non-periodic state that nonetheless
has recurrent downward spikes (in red) near certain times that are spaced by multiples of
0.5: t = 3.2, 5.7, 7.2, 8.2, 10.2 and 11.7.

Figure 5 shows examples of flows for which Fx(t) has a period larger than unity. Panels
(a–d) show snapshots, a 1/2-period apart, that correspond to figure 4(d). Panel (a) shows
an upward dipole, followed in panel (b) by a downward dipole. Panel (c) shows a smaller
upward dipole, and then panel (d) is a mirror image of panel (a) (with opposite-signed
vorticity). The next two snapshots (not shown) would be mirror images of panels (b,c),
followed by a return to panel (a). Thus Fx(t) has period 1.5 and the flow has period 3.
Panels (e)–(i) show a flow with period 2, and with Fx(t) of period 2. The upward, rightward
curving dipole in panel (e) is followed by a straighter downward dipole in panel ( f ).
The dipole in panel (g) is more curved than in panel (e), while that in panel (h) is similar to
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Figure 4. Examples of Fx(t) exhibiting various types of periodicity when lx is close to unity. All occur for
rectangular lattices with Re = 20. (a) A/L = 0.2, lx = 1.2, ly = 1, U/fA = 1; (b) A/L = 0.5, lx = 1.2, ly =
1, U/fA = 1; (c) A/L = 0.5, lx = 1.2, ly = 3, U/fA = 1; (d) A/L = 0.8, lx = 1.1, ly = 2, U/fA = 0.5; (e)
A/L = 0.8, lx = 1.1, ly = 1, U/fA = 4.5; ( f ) A/L = 0.8, lx = 1.2, ly = 1, U/fA = 12; (g) A/L = 0.5, lx = 1.3,
ly = 2, U/fA = 3.5; (h) A/L = 0.2, lx = 1.2, ly = 2, U/fA = 1; (i) A/L = 0.5, lx = 1.2, ly = 2, U/fA = 1; (j)
A/L = 0.8, lx = 1.1, ly = 2, U/fA = 10.
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–ωscale

0

(e)
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( f ) (h)(g) (i)

Figure 5. Flows exhibiting different periodicities. (a)–(d) Snapshots spaced by a half-period corresponding
to Fx(t) in figure 4(d). Panel (d) is essentially a mirror image of panel (a). (e)–(i) Snapshots spaced by a
half-period for a 2-periodic flow (Re = 20, A/L = 0.5, lx = 1.3, ly = 2 and U/fA = 3). The colour bar limits
are ±ωscale where ωscale = 300 (a–d) or 100 (e–i).

that in panel ( f ). With panel (i), the flow returns to panel (e). This flow is a more slightly
perturbed version of a 1-periodic flow than the flow in panels (a)–(d), as are many of the
n-periodic flows we have observed.
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Figure 6. Circles show parameter values where a measure of the deviation of Fx(t) from time-periodicity unity
(described in the main text) exceeds 0.01, for a rectangular lattice of plates with Re = 20. Values of A/L are
0.2 (a), 0.5 (b) and 0.8 (c). Values of St (note U/fA = 2/St) are labelled by circle size and colour (key listed at
right). Circles are centred at the corresponding values of lx and ly.

3. Transitions from periodic to non-periodic flows as parameters are varied

We have studied examples of Fx(t) and flows with different periods, mainly for lx close
to 1. More broadly, there is a gradual trend towards non-periodicity at certain parameter
values. For Re = 20, and three different A/L (0.2 (a), 0.5 (b) and 0.8 (c)), we plot circles
in figure 6 where Fx(t) deviates from 1-periodicity by the following measure. We compute
the averages of Fx(t) over the last eight half-periods of V(t), during t = 11 to 15. We split
the eight values into two sets of four, one for the first half-period of V(t) and the other for
the second half-period. We sum the standard deviations over the two sets and normalize
by 1

4

∫ 15
11 |Fx(t)| dt (an average magnitude of Fx). Where the resulting value is greater than

0.01, we plot circles in figure 6. The 0.01 threshold is somewhat arbitrary, but is chosen
with certain considerations in mind. The flapping motion imposes a strong 1-periodic
component in all flows, so a threshold of 0.1, say, would classify some non-periodic Fx(t)
as periodic. A threshold much smaller than 0.01 would miss some Fx(t) that have almost
but not completely converged to periodic near t = 15. The circles occur predominantly at
large ly, and more often at small lx, though they are also found at large lx. The reason is that
the close spacing of plates at small ly tends to suppress complex vortical structures, and
leads to more laminar, periodic flows. As we have seen, small lx leads to formation of thin
dipole jets with sharp concentration of vorticity, and complicated non-periodic dynamics
can result. Many of these cases occur at small oncoming velocity (large St), reflected in
the larger number of small blue circles across the panels. As we have seen for the isolated
body, above a certain flow speed, a reverse von Kármán street tends to form, in many
cases due to merging or other regular interactions between the leading and trailing edge
vortices. The larger number of yellow circles at A/L = 0.2 (panel (a)) is perhaps because
at a given U/fA, U/fL is smaller in panel (a), so in a given flapping period, vortices do
not move as far downstream relative to the plate length in this case, leading to a more
complicated dynamics. Also, Re is constant (20) in all three panels, so Ref decreases from
left to right. To the extent that viscous regularizing effects are more controlled by Ref ,
they are increased moving from left to right. The corresponding data for the rhombic
lattice are shown in figure 20 in the appendix, and shows similar trends but with additional
non-periodic states at smaller ly.

Figure 7 shows information about the types of periodic states that occur in parameter
space, some corresponding to the Fx(t) and flows shown in figures 2–5. The panels again
show states at A/L = 0.2 (a), 0.5 (b) and 0.8 (c). Within each panel are a set of boxes
(black outlines), each centred at the corresponding (lx, ly) pair. Each box contains a set of
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Figure 7. Flows at Re = 20 for a rectangular lattice, classified by type of periodicity, with A/L = 0.2 (a), 0.5
(b) and 0.8 (c). Each box shows data for a certain (lx, ly) pair that is located at the box centre, and contains a set
of smaller squares, each for a different value of St ranging from 0.17 to 4 (listed at right, note U/fA = 2/St).
The grey boxes correspond to Fx(t) with period 0.5. The coloured boxes correspond to period 1 but not period
0.5, i.e. flows that are not up–down symmetric. For these flows only, we use the colours to label the St value.
The black boxes denote non-periodic Fx(t).

smaller squares, each for a different value of St ranging from 0.17 to 4 (listed at lower
right, note U/fA = 2/St). The grey squares correspond to Fx(t) with period 0.5. The
coloured squares correspond to period 1 but not period 0.5, i.e. flows that are not up–down
symmetric. For these flows only, we use the colours to label the St value. The black squares
are for non-periodic Fx(t), the cases shown by circles in figure 6. White spaces lie within
some of the boxes because not all parameter combinations were computed, but the overall
pattern is not altered by these omissions. At Re = 20, most squares are grey, so most flows
are up–down symmetric. The coloured squares (1-periodic states) occur mainly at smaller
lx and larger ly. They are most prevalent at the intermediate A/L (panel (b)), and there they
occur at large St, i.e. smaller U/fA. We have also noted a few cases of Fx(t) with longer
periods: 1.5 (red crosses), 2 (red circles) and 4 (red square), all of which occur at small
lx. In general, the period-1 and longer-period states occur near the non-periodic states
(black squares), so the former may be intermediaries in the transition from 1/2-periodic to
non-periodic states as the parameters are varied to allow more disordered flows.

Figure 8 shows the same quantities when the lattice is changed from rectangular to
rhombic. The general trend of Fx(t) with increasing period or non-periodic at smaller lx
and larger ly is basically preserved. Compared to the rectangular lattice data, there are
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Figure 8. Flows at Re = 20 for a rhombic lattice, classified by type of periodicity, with A/L = 0.2 (a), 0.5
(b) and 0.8 (c). Each box shows data for a certain (lx, ly) pair (at the box centre), and contains a set of smaller
squares, each for a different value of St ranging from 0.17 to 4 (listed at right, note U/fA = 2/St). The grey boxes
correspond to Fx(t) with period 0.5. The coloured boxes correspond to periodicity unity but not periodicity 0.5,
i.e. flows that are not up–down symmetric. For these flows only, we use the colours to label the St value. The
black boxes denote non-periodic Fx(t).

more 1-periodic and non-periodic Fx(t) at small ly. This is perhaps because there is more
y-distance between adjacent bodies for the rhombic lattice than for a rectangular lattice at
the same ly, allowing for more complex flows.

4. Large ly : approximately 1-D tandem lattices

One important limiting case is the large-ly limit. Here the configuration consists of
well-separated 1-D arrays of flapping plates. The flows around the 1-D arrays are
essentially the same for the rectangular and rhombic lattices. Figure 9 presents an example
of such a flow, at lx = 2 and ly = 3. Figure 9(a–f ) is a sequence of vorticity snapshots
during the half-period of upward flow relative to the plates, for a rectangular lattice. The
six snapshots are spaced apart by 0.1 in t. The positive (red) vortices below the plates
in the first panel, shed from the leading edge on the previous half-period, now merge
with positive vorticity shed from the trailing edge during this half period. This is a case
of relatively high Froude efficiency. The main difference from an isolated plate is the
close interaction between the vortices shed at the leading and trailing edges of adjacent
bodies, and the blue vortices are above the orange vortices, the opposite of the reverse
von Kármán streets of figure 4 and 5 of Part 1, and more similar to a regular von Kármán
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Collective locomotion of 2-D lattices of flapping plates

(a) (b) (c) (d ) (e) ( f )

(g) (h) (i) ( j) (k) (l )

Figure 9. Six vorticity snapshots spaced by 0.1 in t during the half-period of upward flow, for rectangular
(a–f ) and rhombic (g–l) lattices. The parameters are A/L = 0.5, lx = 2, ly = 3, Re = 70 and U/fA = 7.

street (albeit with plates among the vortices). The lower row shows the same flow for a
rhombic lattice of plates. The flow is almost the same, because there is little interaction
between vertically adjacent rows. A double layer of weak vorticity (yellow–green region)
separates the vortex arrays of each row. In this region, the flow velocity is approximately
uniform, with vertical flow speed equal to the average vertical flow speed, and horizontal
flow speed approximately twice the average horizontal flow speed. The horizontal flow
speed in the plate/vortex array is both positive and negative, and much smaller in
magnitude.

We now show examples of how the large-ly flows change as lx and A/L are varied,
in figure 10. We choose Re = 20 and U/fA = 3 (large enough that regular vortex arrays
may be generated, and small enough that thrust may occur). In figure 10(a–d), A/L = 0.2.
Moving left to right, as the gap between adjacent plates increases, the flow changes from
a dipole to a vortex street. At far right, the trailing edge vortices interact more with the
previously shed trailing edge vortex than with that shed at the leading edge of the adjacent
plate. There is mean thrust for the flows in panels (a,b), approximately zero thrust in panel
(c), and small net drag in panel (d). In figure 10(e–h), A/L = 0.5, there is again a transition
from dipole jets to a vortex street, with larger vortices now. Now there is also small but
noticeable coupling between adjacent rows of plates. Instead of uniform flow, in the first
three panels there are bands of nearly constant non-zero vorticity above and below the
vortex arrays (yellow–green region in panel (e) that becomes blue–green in panels ( f ,g)).
These are shear flows with u nearly linear with respect to y and v nearly constant. They
differ from those that would be seen with an isolated flapping body, and therefore, unlike
the flows in the first row, they would be altered for larger ly values. In the second row, only
the third column corresponds to a state of mean thrust. In the third row, A/L = 0.8, only
the first column is a state of mean thrust. It is not obvious from the form of the vortex
dipole why mean thrust occurs, but there are noticeable differences with the orientation
of the dipole in the second panel. Again there are linear shear zones above and below the
dipole jets. In the fourth column, same-signed vortices are almost linked vertically now
in contiguous bands of same-signed (but very non-uniform) vorticity. Now the plates are
coupled strongly to both vertical and horizontal neighbours through the flow.
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(e)

(i) ( j) (k) (l)

(g) (h)

(b)(a) (c) (d ) ωs

–ωs

0

( f )

Figure 10. Flow snapshots with lx = 1.2, 1.5, 2 and 3 (left to right columns) and A/L = 0.2, 0.5 and 0.8 (top
to bottom rows). The other parameters are: Re = 20, U/fA = 3, ly = 3. The colour bar limits are ±ωs where
ωs = 30 (a), 20 (b), 10 (c,d), 100 (e), 50 ( f ), 30 (g), 10 (h), 150 (i), 50 (j), 30 (k) and 10 (l).

5. From small to large ly at lx = 2

We have shown examples of flows with ly fixed and lx from small to large. We now
reverse the parameters, i.e. hold lx fixed at 2 (an intermediate value), and vary ly from
small to large. Figure 11 shows examples of vorticity fields at instants of upward (and
as usual, rightward) flow. Since ly may be small, there can be significant differences
between rectangular and rhombic lattice flows and we show both. The differences are
most pronounced at the smallest ly. In panels (a) and (c) (ly = 0.2 and U/fA = 3 and
7, respectively), the flow through the rectangular lattice is approximately horizontal
Poiseuille flow between the vertical neighbours (away from the plate end regions), and
unidirectional vertical flow in the space between horizontal neighbours. Most of the
vertical mass flux occurs in these vertical channels, and the flow past the plate edges is
relatively weak. These small-ly flows result in a net drag force, almost constant in time, that
of the Poiseuille flow between the plates. The corresponding rhombic lattice flows (b,d)
are much more complex. The plates now cover the full horizontal extent of the flow field,
so the entire flow is forced through the small gaps between the interleaving plate edges.
Consequently, much stronger vorticity is generated at the plate edges. This flow results in a
net thrust force, is not temporally periodic but Fx(t) has a strong 1/2-periodic component,
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Collective locomotion of 2-D lattices of flapping plates

and is also not spatially periodic on the scale of a single unit cell (i.e. containing a single
plate), but of course is periodic on the scale of a double unit cell by the definition of
the periodic boundaries (the blue dashed-line rectangle in figure 1b). This can be seen
by examining the flows below the right edges of the plates. There is a small blue vortex
below the top plates’ right edges, but larger blue regions in (b,d) (displaced rightward in
d) below the middle plates’ right edges. Increasing ly to 0.5, the rectangular lattice flows
(e,g) deviate more from Poiseuille flow, while the rhombic lattice flows ( f ,h) become
smoother. Panel ( f ), at lower U/fA, is still a temporally non-periodic flow, but closer to
spatially periodic on the scale of the unit cell than panels (b) or (d). The flow in panel
(h) is both temporally periodic and spatially periodic on the unit cell scale. Again, both
rectangular lattice flows generate net drag, while the rhombic lattice flows generate net
thrust. Increasing ly to 1, both rectangular flows (i,k) again generate drag, although (i), at
lower U/fA, is close to zero net drag. Of the rhombic lattice flows (j,l), only j generates
thrust, but with relatively high Froude efficiency (0.04), much higher than in panel ( f )
due both to increased thrust and decreased input power. Unlike the rectangular lattice,
the rhombic lattice geometry allows a strong vortex dipole to form at this ly (panel (j)),
involving a positive (red) vortex at the right edges of the middle plates and a negative
vortex (blue) at the left edges of the bottom plates, which probably underlies efficient thrust
generation. Increasing ly to 2, the rectangular lattice has the first occurrence of a state of
net thrust in this figure, at low U/fA (m) but not high U/fA (o). The rhombic lattice has
a state of net thrust at both speeds ((n,p)). At the largest ly = 3, the rectangular (q,s) and
rhombic (r,t) flows are similar as discussed below figure 9; both pairs generate net thrust
with only small differences in their magnitudes and the corresponding Froude efficiencies.
To summarize, for the rectangular lattice, only net drag occurs below a moderate ly. For
the rhombic lattice, by contrast, thrust can occur at very small ly, although the flows are
non-periodic and the Froude efficiency is low. We can also see that the rhombic lattice
flows converge to spatially periodic on the unit cell scale as ly becomes large, which
correlates with the convergence to temporal periodicity. By computing the relative error
in unit cell periodicity for a number of other flows (76 in all) at various parameters, we
find that unit cell periodicity correlates with temporal periodicity in general. Both are
more prevalent when Re is small, and when lx − 1 is not very small. However, there are
examples of one without the other and vice versa. Therefore, in a large lattice of plates
of plates at sufficiently large Re, the flow would be expected to deviate from the periodic
lattice model with unit cell periodicity. However, in most cases considered in this paper,
the deviation is not very large.

6. Froude efficiencies and self-propelled speeds across parameters

We have discussed some examples of plate–plate interactions that lead to thrust generation
in certain 1-D slices through parameter space: small to large lx at intermediate and large
ly (figures 3, 10 and 19), and small to large ly at intermediate lx (figure 11). In the lx–ly
plane, we present in figure 12 contour plots of Froude efficiency at Re = 20, small enough
that most flows are time periodic. Contours are plotted for rectangular (a–c) and rhombic
lattices (d–f ), with A/L = 0.2 (a,d), 0.5 (b,e) and 0.8 (c, f ). Comparing panels (a) and
(d), the contour lines are very similar for ly above 2. At this A/L and large ly, there is
little interaction between different horizontal rows of plates, so the lattice type makes little
difference, as in figure 9. Below ly = 2, the contour lines in A bend sharply leftward, and
efficient thrust is only obtained by the rectangular lattice for lx near 1, if at all. At smaller
ly, the rhombic lattice is more efficient, and yields net thrust down to ly = 0.2 (orange
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Figure 11. Flow snapshots with lx = 2 and various ly: 0.2 (a–d), 0.5 (e–h), 1 (i–l), 2 (m–p) and 3 (q–t). Within
each group of four consecutive panels, the first two are for U/fA = 3 (a–b, e–f, i–j, etc.) and the second are
for U/fA = 7. Within each of these two pairs of panels, the first is a rectangular lattice (a, c, e, g, etc.) and the
second is a rhombic lattice. In all cases, Re = 70 and A/L = 0.5. The values of vorticity on the contours are
labelled on the colour bar at lower right. The colour bar limits are ±ωs where ωs = 1000 (bd), 150 ( f ,h) and
50 in all other cases (including all rectangular lattices).

line in panel (d)), as noted previously for Re = 70. Increasing A/L to 0.5 (b,e), there is an
overall decrease in peak Froude efficiency by about a factor of 2 for both lattice types. The
contour lines in B deviate more at larger ly from those in (e) now, as the increased A/L
results in more interaction between different horizontal rows of plates. For both lattice
types, the peak Froude efficiency occurs at much larger lx. For larger A/L, the vorticity
has a larger vertical extent. For an isolated plate, figure 8(a) of Part 1 shows that U/fA
should be kept roughly constant as A/L increases, for peak efficiency. This means that
U/fL increases. Thus the vortices are more spread out horizontally, and it is reasonable
that the plates should be more spread out to interact with vortices efficiently. The trends
continue in panels (c,f ) of figure 12: further reductions in peak Froude efficiency, that
occur at still larger lx. In all cases, net thrust is obtained down to lower ly by the rhombic
lattice. This is shown by the zero contours, extending lower in the bottom row than in the
top row.

Another measure of performance is the maximum self-propelled speed USPS/fA
achieved by the lattice. These data are presented in figure 13 for the rectangular (a–c)
and rhombic (d–f ) lattices, at A/L = 0.2, 0.5, and 0.8 (left to right columns). In all panels,
the highest speeds are obtained at the smallest lx, where vortex dipole formation leads
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Figure 12. Contours of Froude efficiency for rectangular (a–c) and rhombic lattices (d–f ) at A/L = 0.2 (a,d),
0.5 (b,e) and 0.8 (c, f ).

to strong forces on the plates. The much smaller speeds at larger lx may be partly due
to the relatively small Re, which leads to substantial diffusion of vortices as they move
over a larger lattice length scale. As in figure 12, the two lattices’ speeds agree better at
larger ly; the rhombic lattice achieves propulsion at smaller ly than the rectangular lattice,
with moderate to large lx. An example is the local maximum in panel (d) at lx = 2.5 and
ly = 0.5, close to the parameters for the flow in figure 11( f ) but at lower Re. In panels
(b,e), there is a small band where lx = 1.3 and ly = 2.5 and 3 where the speed is greatly
reduced or zero. The reason is not obvious, but may reflect a particular aspect of dipole
formation at this value of Re.

When we increase Re much above 20, more flows are non-periodic up to t = 30, and
a contour plot of Froude efficiency like figure 12 would require much longer simulations
to achieve reliable long-time averages. Therefore, for higher Re, we present data only for
cases that meet a threshold for periodicity. We use the same criterion described in figure 6,
but increase the threshold from 0.01 to 0.08. Even at this larger threshold, Fx(t) is close to
periodic. The larger threshold allows us to present more values, and observe the general
trends more easily. These trends are not very sensitive to the particular threshold chosen
(0.08). Figure 14 expands upon figure 13 by presenting peak Froude efficiency values for
three Re: 70 (a–c), 40 (d–f ) and 10 (g–i), with the same A/L: 0.2, 0.5 and 0.8 (left to right
columns). We do not use contours now because in many cases, Fx(t) is non-periodic for
all U/fA, and these are shown by grey boxes. If at a given choice of parameters there are
U/fA such that Fx(t) meets the criterion for periodicity, the colour of the corresponding
box denotes the peak Froude efficiency among the periodic cases, and the values are shown
by the colour bars at right. The box colouring is solid or dotted if the peak value is obtained
with a rectangular or rhombic lattice, respectively. The white boxes are cases where there
are periodic flows, but all such flows yield net drag. One basic trend is the increasing
non-periodicity of flows with Re: there are no grey boxes at Re = 10, some at Re = 40
and more at Re = 70. Non-periodicity is most common at small lx, where the most intense
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Figure 13. Comparison of self-propelled speeds for rectangular (a–c) and rhombic (d–f ) lattices at Re = 20
and A/L = 0.2 (a,d), 0.5 (b,e) and 0.8 (c, f ).

vortex dipoles are created. At Re = 70, non-periodicity is more common at smaller A/L,
where Ref is larger. At Re = 10 (figure 14g–i), the highest efficiency states are found at the
smallest lx, which are taken as small as 1.02; periodic flows are obtained nonetheless due
to the small Re. Consistent with figure 12, efficiency usually drops as A/L increases (from
left to right). This is particularly true in figure 14(g–i), and can be seen in the change of
green boxes to blue or white moving from (g) to (h) and then to (i). In figure 14(d–f ) the
same trend is shown by the decrease in the number of yellow boxes from (d) to (e) and
then to ( f ). There are exceptions, however. For example, at Re = 40 and (lx, ly) = (2.5, 1),
peak efficiency is larger at A/L = 0.8 than A/L = 0.2. At Re = 40 (figure 14d–f ), the
most efficient periodic flows are obtained at much larger lx than for Re = 10. This is partly
because many flows at smaller lx are non-periodic at Re = 40, however. At Re = 40 and 70
(figure 14a–c), the basic trends of figure 12 are mostly preserved: rhombic lattice flows are
most efficient at small ly, rectangular lattice flows are usually more efficient at large ly, and
peak efficiencies move to larger lx as A/L becomes larger (moving rightward). Where the
boxes are solid (typically at larger ly), the peak efficiencies of the rectangular lattices are
higher than those of the rhombic lattices, but only slightly. A possible reason for the slight
advantage is that the plates in the rectangular lattice are vertically aligned, so they do not
block the flow as much as the rhombic lattice does. Thus the input power is somewhat less,
but the thrust forces are similar assuming the shear stresses on the plates are similar at large
ly. Previous models and computations (Weihs 1975; Hemelrijk et al. 2015; Oza et al. 2019)
have reported an efficiency advantage for rhombic lattices, which we also find, at smaller
ly typically. In general, as Re increases in figure 14, so does peak Froude efficiency, from
about 0.007 at Re = 10 to 0.033 at Re = 20 (from data in figure 12) to 0.055 at Re = 40,
to 0.07 at Re = 70. As Re increases above 10, fewer and fewer states are periodic, so these
should be regarded as conservative lower bounds for the true peak Froude efficiencies,
ones that include long-time averages of non-periodic flows.

We have shown in figure 14 how the maximum of the Froude efficiency over U/fA varies
with respect to Re, A/L, lx and ly for flows that are periodic or almost periodic. In figure 15
we replot the data from figure 14, adding the Re = 20 case, and showing both 〈P̃in〉 and
ηFr simultaneously. Thus, the four rows from top to bottom correspond to Re = 70, 40, 20
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Figure 14. Peak Froude efficiencies at Re = 70 (a–c), 40 (d–f ) and 10 (g–i), for A/L = 0.2 (a,d,g), 0.5 (b,e,h)
and 0.8 (c, f,i). Grey boxes indicate that flows were non-periodic across U/fA. White boxes indicate that flows
were periodic at some U/fA, but these only produced net drag. Coloured boxes indicate peak Froude efficiency
magnitude (shown by colour bars at right) where periodic flow(s) that produced net thrust occurred. The
colour field is solid or dotted if the peak was obtained with a rectangular or rhombic lattice, respectively.
Each box is centred at the corresponding (lx, ly) value, except the boundary boxes, where the value is given at
the corresponding boundary edge.

and 10, while the three columns from left to right have A/L = 0.2, 0.5 and 0.8. This figure
allows us to identify which configurations are effective at different input power budgets,
and describe the Pareto frontier for this set of data. In each panel we plot the data for
rectangular lattices with small squares, with convex hull shown as a solid black line. The
data for rhombic lattices are small diamonds with convex hull shown as a dashed black
line. For each data point, the outline colour gives the value of lx and the interior colour
gives the value of ly (listed at right). In each panel we also plot, at the panel’s values of
Re and A/L, 〈P̃in〉 and ηFr for an isolated body. This is shown with a red cross, or if there
is no thrust for the isolated body at any of the U/fA tested, the panel has a red outline. At
the lowest two Re (figure 15g–l), ηFr for the isolated body is zero or much smaller than
for the lattices. The value of 〈P̃in〉 for the isolated body is at the lower end of the range of
lattice values, near the values for the largest lx and ly. Panel (j) is a somewhat special case,
as the large-lx lattice values did not yield thrust, but the isolated body did yield a very
small net thrust – with ηFr and 〈P̃in〉 both much smaller than for the lattice values shown.
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Figure 15. Peak values of ηFr versus 〈P̃in〉 for rectangular (coloured squares) and rhombic lattices (coloured
diamonds), at various lx and ly (colours at right). The values for isolated flapping plates are shown by red
crosses (where ηFr > 0). From the top to bottom rows, Re = 70, 40, 20 and 10. From the left to right columns,
A/L = 0.2, 0.5 and 0.8.

For Re increased to 40 (figure 15d–f ), there are lattice flows with 〈P̃in〉 lower than that of
the isolated body, and some of these – rectangular lattices with large lx and ly – yield much
higher efficiency. Moving to figure 15(a–c) (Re = 70), the isolated body’s performance is
relatively improved, lying near the middle of the range of lattice values. That is, the best
periodic lattice flows have efficiencies about twice that of the isolated body. However, this
should be regarded as only a lower bound on the efficiency advantage of the lattice flows.
Many lattice flows were not counted due to non-periodicity. These plots also show that
input power for the rhombic lattices is generally larger than for the rectangular lattices,
because the rhombic lattices cover more of the flow domain horizontally, forcing the fluid
through smaller constrictions between the plates. Nonetheless, the largest ηFr values here,
in panel (a), are for rhombic lattices. We also see that 〈P̃in〉 is generally largest for smaller
lx and ly (blue symbols) due to increased flow constriction, except that many of these cases
are omitted because they have non-periodic flows (especially in figure 15a–c).

Figure 16 shows the analogous plots when self-propelled speed (the maximum if there
are multiple values) is substituted for Froude efficiency as the measure of performance
on the horizontal axes. The speeds are found by interpolating between the largest flow
speed at which thrust is obtained and the next higher flow speed, which yields drag. The
self-propelled speeds of the isolated bodies are less, but sometimes not much less, than the
peak speeds of the lattices in the same panel. In some cases (panels a, f,g,j), there is not a
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Figure 16. Values of ReU,SPS versus 〈P̃in〉 for rectangular (coloured squares) and rhombic lattices (coloured
diamonds), at various lx and ly (colours at right). The values for isolated flapping plates are shown by red
crosses (where self-propelled states occur). From the top to bottom rows, Re = 70, 40, 20 and 10. From the left
to right columns, A/L = 0.2, 0.5 and 0.8.

lattice flow that has larger ReU,SPS and smaller 〈P̃in〉 simultaneously. However, this would
probably change if temporally non-periodic lattice flows were included.

An alternative measure of performance for self-propelled swimmers, proposed by
Maertens, Triantafyllou & Yue (2015), is the quasi-propulsive efficiency

ηQP = USPSR
〈Pin〉 . (6.1)

Here, R is the time-averaged drag force on a body towed at the self-propelled speed in
its minimum drag position. For the present problem, R is the drag on a flat plate aligned
with a steady flow at speed USPS. One would expect that for each plate in the lattice, 〈Pin〉
would be at least USPSR, the power expended to overcome this drag (except for special
cases mentioned by Maertens et al. 2015). In figure 17 we plot ηQP for the self-propelled
states with velocities shown in figure 16. We find peak values slightly above 20 % (panels
(d) and (g)), and values that far exceed those of a single flapping body in most cases. As Re
increases (bottom to top), the peak ηQP increase, except in moving from panel (d) (Re =
40) to panel (a) (Re = 70) at A/L = 0.2. In panel (a), the peak ηQP is slightly smaller, most
likely because the set of periodic flows in panel (a) is very small (and decreases further as
Re increases).
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Figure 17. Values of ηQP versus 〈P̃in〉 for rectangular (coloured squares) and rhombic lattices (coloured
diamonds), at various lx and ly (colours at right). The values for isolated flapping plates are shown by red
crosses (where self-propelled states occur). From the top to bottom rows, Re = 70, 40, 20 and 10. From the left
to right columns, A/L = 0.2, 0.5 and 0.8.

We also consider the ‘schooling number’ defined by Becker et al. (2015) as the number
of flapping periods that occur while a plate covers the distance that separates its leading
edge from the trailing edge of its upstream neighbour. In the present notation the quantity
is

S = (Lx − L)f
U

. (6.2)

Thus S measures the distance between plates in units of the horizontal distance the
plate travels in a flapping period. Neglecting viscous diffusion, and assuming the flow
is 1-periodic, we might expect the interaction between the plates and the oncoming flow
(e.g. the vortex wake of the upstream neighbour) to be strongly influenced by S. Good
evidence for this was found in recent experimental and theoretical studies of flapping plates
(Becker et al. 2015; Ramananarivo et al. 2016; Newbolt, Zhang & Ristroph 2019; Oza et al.
2019); tandem formations of plates naturally adopted a discrete set of S values separated
approximately by half-integers or integers. In figure 18 we have plotted S both for the
self-propelled states (left column) and for the states that maximize Froude efficiency over
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Figure 18. Values of ηQP (a,c,e,g) and ηFr (b,d, f,h) versus schooling number S for Re = 70 (a,b), 40, (c,d), 20
(e, f ) and 10 (g,h). The schooling number is S = (lx − 1)f /U. The values of ηQP are given for S that correspond
to self-propelled states, while the values of ηFr are for S that maximize Froude efficiency with respect to changes
in U. The coloured squares and diamonds correspond to rectangular and rhombic lattices at various ly (colours
at right). In each panel, the data for A/L = 0.2, 0.5, 0.8 and lx = 0.5–3 are combined.

UL (right column) in this work. The horizontal axes give S and the vertical axes give ηQP
for the self-propelled states and ηFr for the Froude-efficiency maximizing states. From
top to bottom, the panels give data for Re = 70, 40, 20 and 10. Within each panel, data are
given for states with both lattice types and various ly distinguished by marker type (listed at
right), and various lx and A/L shown in each panel (not distinguished by marker type). We
find that values of S are spread over many orders of magnitude, without obvious clustering
near particular values. One explanation is that viscous effects are generally much stronger
here than in the previous studies (Becker et al. 2015; Ramananarivo et al. 2016; Newbolt
et al. 2019; Oza et al. 2019), so viscous diffusion has a strong (and varying) effect that is
not taken into account by S. The spread of S is largest at Re = 10 (figure 18g,h), near the
lowest Re for self-propulsion in many cases. Here vorticity is very diffuse, quite different
from the high-Re limit. S is less than 0.01 in some cases with very small gaps between
the plates (lx − 1 is as small as 0.02), where viscous effects are pronounced. Viscosity
is strong and highly variable in the thin-gap flows between plates at higher Re also (e.g.
figures 2 and 10). Another explanation is that unlike the previous works, lx = Lx/L is at
most 3 here, and often much smaller (close to 1), in which case lx should have a strong
effect separate from that of S, due to the effect of the plate length scale on the evolution of
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flow structures. At larger Re (figure 18a–d), the data in figure 18 tend to cluster near the S
range 0.1–1, indicating the possible emergence of typical values of S at larger Re.

7. Summary and conclusions

We have studied propulsive properties of flapping lattices of plates at Re = 10–70, where
the flows often become time periodic within 5–30 flapping periods. This Re range is
typical for submillimetre- to centimetre-scale flying and swimming organisms (Childress
& Dudley 2004; Miller & Peskin 2004, 2009; Jones et al. 2015; Santhanakrishnan et al.
2018; Skipper, Murphy & Webster 2019), and is relevant to the increasing number of
robotic flying and swimming vehicles that inhabit this size range (Chen et al. 2017; Hu
et al. 2018; Zhang & Diller 2018; Chen et al. 2019; Ren et al. 2019). Froude efficiency
is typically much lower in this Re range than in the higher Re range typical of most fish
and birds (Shyy, Berg & Ljungqvist 1999; Triantafyllou, Triantafyllou & Yue 2000; Fish
& Lauder 2006), so collective locomotion may be relatively more important for achieving
locomotion (efficiently, or at all, at very low Re where it is no longer possible for an
isolated flapping body).

We have focused on rectangular and rhombic lattices of flapping plates. Not surprisingly,
there is a much wider range of flows here than for an isolated body (which can also
be regarded as the solution in the limit of large lattice spacing). When the plates are
closely spaced in the streamwise direction (lx close to 1), there are sharp transitions
from drag to thrust with slight increases in the oncoming flow speed (U/fA). These
correspond to changes in flow modes, characterized by vortex dipoles switching from
upstream to downstream directions. Some of these flows have Fx(t) with periods that
are various multiples of half the flapping period, and others are non-periodic. In general,
non-periodicity is more common at large Re, small lx, large ly and small U/fA, for both
rectangular and rhombic lattices, with more non-periodicity at small ly in the rhombic
case.

As lx − 1 increases to unity and higher, with large ly (akin to a 1-D tandem array), the
vortex dipoles transition to vortex-street wakes like those of isolated bodies, but which
collide with the leading edges of plates downstream. Varying ly from small to large with
intermediate lx (fixed at 2), the flows in rectangular and rhombic lattices are initially
very different, with drag-producing Poiseuille-type flows in the rectangular case, and
less periodic, thrust-producing flows in the rhombic case. Interactions between vorticity
at laterally adjacent leading and trailing edges in the rhombic lattices produced thrust
efficiently at small ly. As ly increased, the rectangular lattice flows eventually shed discrete
vortices and produced thrust, with slightly higher efficiencies than the rhombic lattices in
many cases.

We produced maps of maximum Froude efficiency and self-propelled speeds in different
portions of the 4-D (Re, A/L, lx, ly) parameter space where the dynamics is close to
periodic in time. At fixed Re, Froude efficiency is higher at A/L = 0.2 than at 0.5 and
0.8, and the peak occurs at gradually increasing lx (and moderately large ly, ≈ 2) as A/L
increases. The rhombic lattice is more efficient at small ly, and the rectangular lattice
is slightly more efficient in most cases at large ly. The highest self-propelled speeds
occurred at small lx and large ly for both lattice types. As Re was increased from 10
to 70, the peak Froude efficiency increased from 0.007 to 0.07. The isolated flapping
body had a much lower Froude efficiency at Re = 10, eventually rising to about half
that of the optimal lattices at Re = 70. However, many lattice flows are non-periodic at
Re = 70, and including these would increase the advantage over the isolated flapping body.
The lattices showed similarly sized advantages over the isolated bodies in the maximum
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Figure 19. Flow states that accompany each of the three sudden drops in 〈Fx〉 shown in figure 2(d). In each
case the flows transition from up–down asymmetric (panels a–b, e–f and i–j) to symmetric (panels c–d, g–h
and k–l), with larger vortices downstream (rightward half of vortex dipoles). The first, second and third boxes
correspond to lx = 1.2, 1.3 and 1.4, respectively. The colour bar limits are ±ωs where ωs = 3.5 (a–h) or 3 (i–l).

self-propelled speeds. The advantage in Froude efficiency occurs even with the much
larger input power required for the lattices (due to the confinement of flow between the
plates).

To limit the number of parameters under consideration and the computational
complexity, we have assumed all of the plates are moved together in phase (as in Becker
et al. (2015); Peng, Huang & Lu (2018) but not Lin et al. (2019), for a small group of
plates). Even with this restriction, varying the spacing between the plates gives us a degree
of control over the phase between shed vortices and the motions of downstream bodies with
which the vortices collide. In our study, the spacing between them is not allowed to vary
with time (e.g. under fluid forces; Ramananarivo et al. 2016). Incorporating these effects
would greatly expand the parameter spaces under consideration but would be natural areas
for future work.
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Appendix A. Additional examples of thrust–drag transitions and non-periodic flows

Figure 19 shows examples of the vorticity fields at transitions in flows corresponding to
the three sudden drops in 〈Fx〉 in figure 2(d), as U/fA is increased slightly. In each case
the vortex dipoles emitted from the gaps between the plates are oriented more downstream
after the transition.

Figure 20 shows parameters where a measure of the deviation of Fx(t) from
time-periodicity unity exceeds 0.01 in flows through rhombic lattices at Re = 20.
Non-periodicity is associated with small lx, large ly and large St (small U/fA).
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Figure 20. Circles show parameter values where a measure of the deviation of Fx(t) from time-periodicity
unity (described in text adjacent to figure 6) exceeds 0.01, for a rhombic lattice of plates with Re = 20. Values
of A/L are 0.2 (a), 0.5 (b) and 0.8 (c). Values of St are labelled by circle size and colour (key listed at right).
Circles are centred at the corresponding values of lx and ly.
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