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Abstract. In this paper, we consider several homological dimensions of crossed
products Aσ

αG, where A is a left Noetherian ring and G is a finite group. We revisit the
induction and restriction functors in derived categories, generalizing a few classical
results for separable extensions. The global dimension and finitistic dimension of
Aσ

αG are classified: global dimension of Aσ
αG is either infinity or equal to that of A,

and finitistic dimension of Aσ
αG coincides with that of A. A criterion for skew group

rings to have finite global dimensions is deduced. Under the hypothesis that A is a
semiprimary algebra containing a complete set of primitive orthogonal idempotents
closed under the action of a Sylow p-subgroup S � G, we show that A and Aσ

αG share
the same homological dimensions under extra assumptions, extending the main results
in (Li, Representations of modular skew group algebras, Trans. Amer. Math. Soc.
367(9) (2015), 6293–6314, Li, Finitistic dimensions and picewise hereditary property
of skew group algebras, to Glasgow Math. J. 57(3) (2015), 509–517).

2010 Mathematics Subject Classification. 18G20, 16E10.

1. Introduction. Let A be an associative ring with identity, and let G be a group.
Given a map σ : G → Aut(A), the group of ring automorphisms of A, and a map
α : G × G → U(A), the set of invertible elements in A, by imposing some conditions
on them, we can define another associative ring Aσ

αG, called the crossed product of A
with G. It is a group graded ring [14]. For trivial α or trivial σ , we get a skew group ring
Aσ G or a twisted group ring AαG, correspondingly. When both maps are trivial, the
crossed product coincides with ordinary group ring AG.

Group graded rings and their special cases crossed products and skew group
rings are widely studied by many authors from the viewpoints of ring theory and
representation theory; see [3, 6, 7, 12, 18, 19, 21, 22]. For instance, their homological
dimensions are studied by Yi and Aljadeff in [1, 2, 24], and several criteria for the
global dimension to be finite are described; Reiten and Riedtmann show that A and
its skew group algebra Aσ G share many properties for finite dimensional algebras A
and finite groups G when the order of G is invertible in A [23]; in [15, 16], the author
proves that these properties are still shared by A and Aσ G for arbitrary finite groups G
under a much weaker assumption.

In this paper, we mainly consider serval homological dimensions of crossed
products such as global dimensions, finitistic dimensions, and strong global dimensions
(defined in next section), for which we give a uniform definition by considering lengths
of objects in right bounded derived categories. Based on techniques and known results
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introduced in [1, 2, 15, 16], we attack this problem from the viewpoint of representation
theory. As the first step, we lift the classical induction and restriction functors to
homotopy categories of complexes with finitely generated projective components, and
show that some natural maps between modules give rise to chain maps. Consequently,
Aσ

αG and A share the same homological dimensions. This phenomenon actually
happens for quite many separable extensions (defined in Section 3). That is,

THEOREM 1.1. Let R be a left Noetherian ring and let S be a subring which is also
left Noetherian. Suppose that 1S = 1R, SR is a finitely generated projective S-module,
and RS is a flat right S-module. If R is a separable extension over S, then R and S have
the same global dimension, finitistic dimension, and strong global dimension.

If A is further commutative, by a result of Aljadeff [1], a skew group ring Aσ G
has finite global dimension if and only if so does A and the trivial Aσ G-module A is
projective. By [20], the trivial module A is indeed a projective Aσ G-module if and only
if Aσ G is a separable extension over A. We classify global dimensions and finitistic
dimensions of crossed products for arbitrary left Noetherian rings, and extend his
result to non-commutative rings.

THEOREM 1.2. Let Aσ
αG be a crossed product, where A is left Noetherian and G is a

finite group.

(1) For every M ∈ Aσ
αG -mod, its projective dimension pdAσ

α G M is either infinity or equal
to pdA M (when pdA M < ∞). Correspondingly, the global dimension gl. dim Aσ

αG is
either infinity or equal to gl. dim A (when gl. dim A < ∞), and the finitistic dimension
fin. dim Aσ

αG = fin. dim A.
(2) A skew group ring Aσ G has finite global dimension if and only gl. dim A < ∞ and

the trivial representation A is a projective Aσ G-module. Moreover, if the trivial
representation is projective, Aσ H and A have the same global dimension for every
subgroup H � G.

Unfortunately, in practice, it is not easy to check whether the trivial representation
is projective. However, many algebras (in particular finite dimensional algebras) are
defined by using certain combinatorial structures such as quivers, posets, categories,
etc. In this situation, the actions of groups on the sets of vertices or the sets of objects
play a central role. We then focus on a special case that A is a semiprimary left
Noetherian algebra over an algebraically closed field k, and suppose that there are
a Sylow p-subgroup S � G and a complete set E = {ei}i∈[n] of primitive orthogonal
idempotents in A closed under the action of S. Denote by C(A) and AS the centre
of A and the fixed algebra, respectively. The following conclusion gives us a feasible
criterion for the global dimension of Aσ

αG to be finite, generalizing a main result in
[15, 16] for skew group algebras.

THEOREM 1.3. Let A be a finite dimensional algebra, and let G, S, and E be as above.
Suppose that there is a domain D ∈ C(A) ∩ AS containing α(x, y) and the |S|-th root of
hx = ∏

y∈S α(x, y) for every x, y ∈ S. Then, Aσ
αG has finite global dimension if and only

if so does A and the action of S on E is free. Furthermore, if S acts freely on E, then Aσ
αG

and A have the same global dimension.

REMARK 1.4. Conditions in the above theorem seem a little artificial. However,
for many cases, the ground field k of A is a splitting field of S (say for example k is
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algebraically closed), and all coefficients α(x, y) are contained in k. In that situation,
the conclusion of this theorem applies.

The paper is organized as follows. For convenience of the reader, in the next
section, we describe some preliminary results on crossed products, and introduce a
uniform definition for the homological dimensions we study in this paper. In Section
3, we lift the classical induction and restriction functors between module categories to
functors between homotopy categories, and revisit many classical results in the derived
categories. Theorem 1.1 is proved there. In Section 4, we focus on global dimensions
and prove Theorem 1.2. The last section is devoted to the special case mentioned before.
Using the strong no loop conjecture recently established in [13], we prove one direction
of the last theorem. The other direction follows from normalization of parameters.

Here are some notations and conventions. All modules we consider in this paper
are finitely generated left modules. For a ring R, R -mod is the category of finitely
generated R-modules. By gl. dim R, fin. dim R, and sgl. dim R, we mean the global
dimension, finitistic dimension, and strong global dimension, respectively. For M ∈
R -mod, pdR M is its projective dimension. Composition of maps and morphisms is
from right to left.

2. Preliminaries. First, recall the construction of crossed products. Fix an
associative ring A with identity, a group G, two maps

σ : G → Aut(A), x �→ σx,

and

α : G × G → U(A), (x, y) �→ α(x, y).

Following Marcus in [18], the pair (σ, α) is called a parameter set of G in A if the
following conditions are satisfied for all x, y, z ∈ G:

(1) σxσy = ια(x,y)σxy, where ια(x,y) is the inner automorphism induced by α(x, y) ∈
U(A);

(2) α(x, y)α(xy, z) = σx(α(y, z))α(x, yz).
The crossed product Aσ

αG = ⊕
x∈G Aσx, where Aσx is a free A-module of rank 1

with basis σx. The multiplication map ∗ in Aσ
αG is determined by the following formula:

(aσx) ∗ (bσy) = aσx(b)α(x, y)σxy.

The above two conditions imposed on the pair (σ, α) are equivalent to the associativity
of Aσ

αG. The restricted multiplication in A is denote by ·.
Two crossed products Aσ

αG and Aσ ′
α′ G are equivalent if there is a G-graded algebra

isomorphism ϕ : Aσ
αG → Aσ ′

α′ G such that the restricted automorphism ϕA on A is the
identity map. Correspondingly, two parameter sets (σ, α) and (σ ′, α′) are equivalent if
for each z ∈ G, there exists an element uz ∈ U(A) such that for all x, y ∈ G one has σ ′

x =
σxιux and α′(x, y) = uxσx(uy)α(x, y)u−1

xy . Since we only consider homological dimen-
sions of crossed products in this paper, equivalent crossed products may be identified.

The following proposition is a direct consequence of Theorem 1.3.7 in [18].

PROPOSITION 2.1. Two crossed products Aσ
αG and Aσ ′

α′ G are equivalent if and only if
the parameter sets (σ, α) and (σ ′, α′) are equivalent.
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Given a set of invertible elements {ux ∈ U(A)}x∈G, we can define a new basis
{σ ′

x = uxσx}x∈G for Aσ
αG. Under the new basis, we get a crossed product Aσ ′

α′ G which
is equivalent to Aσ

αG, where σ ′
x = σxιux and α′(x, y) = uxσx(uy)α(x, y)u−1

xy . Therefore,
by proper basis change, we can make 1Aσ1G the identity of Aσ

αG and denote it by 1.
Moreover, it is straightforward to check that α(1G, 1G) = α(x, 1G) = α(1G, y) = 1A for
all x, y ∈ G. In this paper, we always assume that our crossed products satisfy these
conventions.

Now, we define the trivial representation of Aσ
αG. Let I be the left ideal generated

by elements in {σx − 1 | 1G 
= x ∈ G}. In general, I is only a left ideal, but not a right
ideal. For skew group rings, I consists of all elements of the form

∑
x∈G axσx such that

ax ∈ A and
∑

x∈G ax = 0. Consequently, the quotient module A/I ∼= A by identifying∑
x∈G σx with 1, and the module action is determined by σx · a = σx(a) for x ∈ G and

a ∈ A. However, for crossed products, the existence of non-trivial α makes the structure
of I much more complicated. For example, since σy − 1 ∈ I, we get σx ∗ (σy − 1) =
α(x, y)σxy − σx ∈ I. But then α(x, y)σxy − 1 ∈ I. Since σxy − 1 ∈ I as well, we deduce
that α(x, y) − 1 ∈ I for every x, y ∈ G. We define the trivial representation to be the
quotient Aσ

αG/I, which is clearly an Aσ
αG-module.

The following proposition gives a reason for the name of Aσ
αG/I. Recall for M ∈

Aσ
αG -mod, MG is defined to be the set of all elements v ∈ M such that σxv = v for

every x ∈ G. The fixed algebra AG is defined to be the set of elements a ∈ A such that
σx(a) = a for every x ∈ G. It is clear that MG is an AG-module. Moreover, the map
sending M to MG is functorial since for f ∈ HomAσ

α G(M, N), the restricted map sends
MG into NG. Denote this functor by −G.

PROPOSITION 2.2. Let M, N ∈ Aσ
αG -mod. Then:

(1) For an arbitrary v ∈ M, v is contained in MG if and only if Iv = 0.
(2) There is a natural isomorphism −G ∼= HomAσ

α G(Aσ
αG/I,−).

(3) HomAσ
α G(M, N) ∼= HomA(M, N)G.

Proof. Note that v ∈ MG if and only if σxv − v = 0 for every x ∈ G, if and only if
(σx − 1)v = 0 for all x ∈ G. But I is generated by these elements as a left Aσ

αG ideal.
The first statement follows.

To show the second one, we define two maps:

ϕ : HomAσ
α G(Aσ

αG/I, M) → MG, f → f (1̄);

and

ψ : MG → HomAσ
α G(Aσ

αG/I, M), v → fv

such that fv(1̄) = v. Because every σx fixes 1̄, these two maps are well defined. They are
inverse to each other, and functorial, and hence give a natural isomorphism between
−G and HomAσ

α G(Aσ
αG/I,−) (in the framework of AG-modules).

The last statement can be deduced from part (c) of Theorem 1.4.8 in [18]. �
In the rest of this section, we give a uniform definition for the homological

dimensions we consider in this paper. The reader is suggested to refer to [4] and [11]
for definitions of homological dimensions on complexes. For an arbitrary associative
left Noetherian ring R with identity, we let add(R) be the additive category of finitely
generated projective R-modules. Denote by C−(RP) (resp., Cb(RP)) the category of right
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bounded complexes (resp., bounded complexes) whose terms lie in add(R). Because R
is left Noetherian, R -mod is an abelian category. In particular, every finitely generated
R-module has a projective resolution contained in C−(RP). Let K−(RP) and Kb(RP) be
their homotopy categories. Objects in Kb(RP) are called perfect complexes. Note that
the right-bounded derived category D−(R) of finite generated R-modules is equivalent
to K−(RP) as triangulated categories, and the bounded derived category Db(R) is
equivalent to the full subcategory of K−(RP) consisting of objects with bounded
homologies. Thus, we can identify these categories.

Given P• ∈ K−(RP), we define s(P•) = sup{i ∈ � | Pi 
= 0}. Similarly, i(P•) is
defined to be inf{i ∈ � | Pi 
= 0}. The amplitude a(P•) equals s(P•) − i(P•). We then
define the length l(P•) to be inf{a(Q•) | Q• is quasi-isomorphic to P•}. The reader
readily see that for M ∈ R -mod (view it as a stalk complex in Db(R) concentrated
in degree 0 and identify it with its projective resolutions), l(M) is nothing but the
projective dimension of M. Therefore,

gl. dim R = sup{l(P•) | P• ∈ K−(RP) and Hi(P•) 
= 0 for at most one i ∈ �};
fin. dim R = sup{l(P•) | P• ∈ Kb(RP) and Hi(P•) 
= 0 for at most one i ∈ �};
sgl. dim R = sup{l(P•) | P• ∈ Kb(RP) is indecomposable}.

The concept strong global dimension was introduced by Ringel for finite
dimensional algebras and he conjectured that a finite dimensional algebra has finite
strong global dimension if and only if it is piecewise hereditary; that is, its bounded
derived module category is equivalent to the bounded derived category of a hereditary
abelian category as triangulated categories. This conjecture was proved recently by
Happel and Zacharia. For more details, see [9, 10]. Note that we always have
sgl. dim R � gl. dim R � fin. dim R. The second inequality is obvious, while the first
one can be observed by taking truncations of projective resolutions of finitely generated
R-modules.

Several interesting open questions are related to these homological dimensions.
The famous finitistic dimension conjecture asserts that the finitistic dimension of an
artinian algebra is always finite. For a finite dimensional hereditary algebra, its global
dimension and strong global dimension coincide. This is also true if the algebra is
quasi-titled but not hereditary. In general, the answer is still open.

3. Induction and restriction. In this section, we consider two classical functors:
induction and restriction. Many techniques and results stated in this section are well
known for module categories, and our goal is to revisit them in derived categories. This
slight generalization is essential for studying strong global dimension since it cannot
be defined in module categories as global dimension or finitistic dimension.

Let R be a left Noetherian ring and S be a left Noetherian subring. We also suppose
that 1R = 1S and SR is a finitely generated S-module. For M ∈ S -mod, the induced
module is defined to be R ⊗S M, which is finitely generated. For N ∈ R -mod, the
restricted module is SN, which is finitely generated as well since SR is finitely generated.
In this way, we get a pair of adjoint functors ↑R

S and ↓R
S . That is, there is a natural

isomorphism HomR(M ↑R
S , N) ∼= HomS(M, N ↓R

S ).
According to [11], R is a separable extension over S if the multiplication

epimorphism R ⊗S R → R by sending a ⊗ b to ab is split. In other words, there is a
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certain
∑n

i=1 ai ⊗ bi ∈ R ⊗S R such that
∑n

i=1 ai ⊗ bir = ∑n
i=1 rai ⊗ bi for every r ∈ R

and
∑n

i=1 aibi = 1.
The following proposition is well known.

PROPOSITION 3.1. Let R and S be as above and suppose that SR is a finitely generated
S-module.

(1) If SRS = S ⊕ B, then, for every M ∈ S -mod, M is isomorphic to a direct summand
of M ↑R

S ↓R
S .

(2) If R is a separable extension over S, then for every N ∈ R -mod, N is isomorphic to
a direct summand of N ↓R

S ↑R
S .

Proof. Since SRS = S ⊕ B, there is a split surjection SRS → S, denoted by π . This
gives rise to a split surjection πM : R ⊗S M → M by sending r ⊗ v → π (r)v for r ∈ R
and v ∈ M. Its right inverse δM sends v to 1 ⊗ v. That is, πM ◦ δM is the identity map
on M. The first statement is proved.

Since R is a separable extension over S, there is a certain
∑n

i=1 ai ⊗ bi ∈ R ⊗S R
such that

∑n
i=1 ai ⊗ bir = ∑n

i=1 rai ⊗ bi for every r ∈ R and
∑n

i=1 aibi = 1. For N ∈
R -mod, define ψN : R ⊗S N → N by sending r ⊗ v to rv for r ∈ R and v ∈ N, and
define ϕN : N → R ⊗S N by mapping v to

∑n
i=1 ai ⊗ biv. The first condition on

separable extensions implies that ϕN is an R-module homomorphism, and the second
condition tells us that ψN ◦ ϕN is the identity map on N. The second statement follows
immediately. �

A crucial observation is that the maps defined in the above proof lift to chain maps.

PROPOSITION 3.2. Let R and S be as above and suppose that SR is a finitely generated
projective S-module and RS is a finitely generated flat S-module.

(1) The induction and restriction functors induce functors between K−(SP) (resp.,
Kb(SP)) and K−(RP) (resp., Kb(RP)), which are still denoted by ↑R

S and ↓R
S .

(2) If SRS = S ⊕ B, for every Q• ∈ K−(SP) (resp., Q• ∈ Kb(SP)), Q• is isomorphic to
a direct summand of Q• ↑R

S ↓R
S .

(3) If R is a separable extension over S, then for every P• ∈ K−(RP) (resp., P• ∈
Kb(RP)), P• is isomorphic to a direct summand of P• ↓R

S ↑R
S .

Proof. We only give a proof for bounded homotopy categories as it works for right
bounded homotopy categories as well. Since 1S = 1R, the restriction functor is exact.
Moreover, since SR is a finitely generated projective S-module, ↓R

S preserves projective
modules, too. Applying it termwise to a bounded chain complex of projective R-
modules, we get a bounded chain complex of projective S-modules. Moreover, it sends
morphisms (homotopy classes of chain maps) in Kb(RP) to morphisms in Kb(SP). In
this way, we get a functor ↓R

S : Kb(RP) → Kb(SP).
Similarly, the induction functor preserves projective modules. Moreover, it is

exact since RS is flat. Given Q• ∈ Kb(SP) with differentials (di)i∈�, applying the
induction functor termwise, we get an object P• ↑R

S ∈ Kb(RP) whose i-th term is
R ⊗S Pi and i-th differential map is 1 ⊗ di. This is a chain complex of projective
R-modules. Moreover, given a morphism (f i)i∈� : X• → Y • in Kb(SP), we can define a
corresponding morphism (1 ⊗ f i)i∈�. These constructions are functorial. In this way,
we lift the induction functor from S -mod to Kb(SP). The first statement is proved.

To prove statements (2) and (3), it suffices to observe that under the given
assumptions the homomorphisms δ, π, ϕ,ψ constructed in the proof of the previous
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proposition commute with differential maps, and hence give rise to chain maps.
Explicitly, given Q• ∈ Kb(SP), we have

Q• δ•=(δi)i∈� �� Q• ↑R
S ↓R

S
π•=(π i)i∈� �� Q•

such that π• ◦ δ• is the identity map. Similarly, given P• ∈ Kb(RP), we have

P• ϕ•=(ϕi)i∈� �� P• ↓R
S ↑R

S
ψ•=(ψ i)i∈� �� P•

such that ψ• ◦ ϕ• is the identity map. The conclusion follows. �
This proposition immediately implies Theorem 1.1.

THEOREM 3.3. Let R and S be as above, and suppose that SR is a finitely generated
projective S-module and RS is flat. If R is a separable extension over S, then R and S
have the same global dimension, finitistic dimension, and strong global dimension.

Proof. We prove the conclusion for global dimensions, and the same technique
applies to other homological dimensions with very small modifications. Take an object
Q• ∈ K−(SP) with Hi(Q•) 
= 0 for at most one i ∈ �. Using quasi-isomorphisms, we
can assume that the amplitude a(Q•) equals the length l(Q•).

By the above proposition, Q• is isomorphic to a direct summand of Q• ↑R
S ↓R

S . We
claim that a(Q• ↑R

S ) = l(Q• ↑R
S ). If this is not true, then there is some V• ∈ K−(RP)

quasi-isomorphic to Q• ↑R
S with

a(V•) = l(V•) < a(Q• ↑R
S ) = a(Q•) = l(Q•).

Applying the restriction functor to V•, we conclude that V• ↓R
S is quasi-isomorphic to

Q• ↑R
S ↓R

S . Consequently, Q• is quasi-isomorphic to a direct summand of V• ↓R
S , so we

have

l(Q•) � a(V• ↓R
S ) = a(V•) = l(V•).

But these two inequalities contradict each other, so a(Q• ↑R
S ) = l(Q• ↑R

S ) as claimed.
In particular,

l(Q•) = a(Q•) = a(Q• ↑R
S ) = l(Q• ↑S

R) � gl. dim R,

and hence gl. dim S � gl. dim R.
If R is a separable extension over S, we can apply a similar reasoning (using (3) of

the previous proposition) to every indecomposable object P• ∈ K−(RP) with Hi(P•) 
=
0 for at most one i ∈ � and deduce that l(P•) � gl. dim S, and hence gl. dim R �
gl. dim S. This forces gl. dim R = gl. dim S. �

We give a remark.

REMARK 3.4. The above proof implicitly implies that pdR V � pdS V for arbitrary
V ∈ R -mod since a projective resolution of RV restricted to S give a projective
resolution of SV . Moreover, it is also true that gl. dim S � gl. dim R, fin. dim S �
fin. dim R, and sgl. dim S � sgl. dim R. Equalities hold if R is a separable extension
over S.
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Now, we apply the previous results to investigate homological dimensions of
crossed products. Similar techniques have been used to explore other properties of
crossed product in [17]. Suppose that G is a finite group and let H � G be a subgroup.
Then, σ : G → Aut(A) and α : G × G → U(A) restrict to H and H × H, respectively.
Denote these restricted maps by σ and α again. They define a crossed product Aσ

αH,
which is a subring of Aσ

αG. It is well known that both Aσ
α HAσ

αG and Aσ
αGAσ

α H are finitely
generated projective modules. Moreover, Aσ

α HAσ
αGAσ

α H ∼= Aσ
αH ⊕ B. For more details,

see [18].
We want to show that Aσ

αG is a separable extension over Aσ
αH when the index

|G : H| is invertible in A. One approach is to consider the element

ζ = 1
|G : H|

∑

x∈G/H

α(x, x−)σx ⊗ σx− ∈ Aσ
αG ⊗Aσ

α H Aσ
αG

and show that it satisfies the two conditions of separable extensions, where x− is the
inverse of x. This approach is implicitly used in Proposition 3.3 (page 79) and Theorem
3.4 (page 81) of [14]. For convenience of the reader, we give a detailed proof. We need
the following technical lemma.

LEMMA 3.5. For x, y ∈ G, let x− = x−1 and y− = y−1. Then,

α(x, x−)−1 · σx(α(x−, y−)) · α(y−, yx)−1 = σy− (α(yx, x−y−))−1, (1)

and

α(xy, y−x−)−1 · σxy(α(y−, x−))−1 · α(xy, y−) = α(x, x−)−1. (2)

Proof. By considering the product (σx ∗ σx− ) ∗ σy− = σx ∗ (σx− ∗ σy− ), we get

α(x, x−) = σx(α(x−, y−)) · α(x, x−y−),

and hence

α(x, x−)−1 = α(x, x−y−)−1 · σx(α(x−, y−))−1.

Applying this identity to the left side of (3.1), it suffices to show

α(x, x−y−)−1 · α(y−, yx)−1 = σy−(α(yx, x−y−))−1,

which is equivalent to

α(y−, yx) · α(x, x−y−) = σy− (α(yx, x−y−)). (3)

Now consider

σy− ∗ ((σy ∗ σx) ∗ (σx− ∗ σy− )) = (σy− ∗ (σy ∗ σx)) ∗ (σx− ∗ σy− ).

On the left side, we get

σy− (α(y, x)) · α(y−, yx) · σx(α(x−, y−)) · α(y−, yx)−1 · σy− (α(yx, y−x−))σy− .
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On the right side, we have

σy− (α(y, x)) · α(y−, yx) · σx(α(x−, y−)) · α(x, x−y−)σy− .

Therefore,

α(x, x−y−) = α(y−, yx)−1 · σy− (α(yx, y−x−)).

Multiplied by α(y−, yx) on both sides, this identity turns out to be (3.3) as claimed.
The identity (3.2) is equivalent to

σxy(α(y−, x−)) · α(xy, y−x−) = α(xy, y−) · α(x, x−). (4)

To prove this, we consider (σx ∗ σy) ∗ (σy− ∗ σx−) = ((σx ∗ σy) ∗ σy− ) ∗ σx− . �

PROPOSITION 3.6. Let G be a finite group. If |G : H| is invertible in A, then Aσ
αG is a

separable extension over Aσ
αH.

Proof. Let

ζ = 1
|G : H|

∑

x∈G/H

α(x, x−)σx ⊗ σx− ∈ Aσ
αG ⊗Aσ

α H Aσ
αG.

We claim that this is well defined. That is, it is independent of the choice of
representatives in cosets. Indeeds, for a fixed x ∈ G, take another representative xy
with y ∈ H. Then,

α(xy, y−x−)−1σxy ⊗ σy−x−

= α(xy, y−x−)−1σxy ⊗ (α(y−, x−)−1σy− ∗ σx−)

= α(xy, y−x−)−1(σxy ∗ α(y−, x−)−1σy− ) ⊗ σx−

= α(xy, y−x−)−1 · σxy(α(y−, x−))−1 · α(xy, y−)σx ⊗ σx−

= α(x, x−)−1σx ⊗ σx− ,

where the last identity comes from (3.2). Therefore, ζ is well defined.
For y−1 ∈ G, we check

|G : H|ζσy− =
∑

x∈G/H

α(x, x−)−1σx ⊗ σx−σy−

=
∑

x∈G/H

(α(x, x−)−1σx) ∗ α(x−, y−) ⊗ σx−y−

=
∑

x∈G/H

α(x, x−)−1 · σx(α(x−, y−))σx ⊗ σx−y−

=
∑

x∈G/H

α(x, x−)−1 · σx(α(x−, y−)) · α(y−, yx)−1(σy−σyx) ⊗ σx−y−

=
∑

x∈G/H

σy− (α(yx, x−y−))−1(σy−σyx) ⊗ σx−y− by (3.1)
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=
∑

x∈G/H

σy−
(
α(yx, x−y−)−1σyx ⊗ σx−y−

)

= |G : H|σy−ζ.

That is, ζσy− = σy−ζ . Similarly, we check that ζa = aζ for a ∈ A. Therefore, ζ satisfies
the first condition of separable extensions. The second condition is obvious. �

We establish the following result on homological dimensions of crossed products.

COROLLARY 3.7. Let H be a subgroup of a finite group G. If |G : H| is invertible in
A, then Aσ

αG and Aσ
αH have the same global dimension, finitistic dimension, and strong

global dimension.

Proof. Follows from Theorem 3.3 and Proposition 3.6. �

4. Classify global dimensions. As before, let A be a left Noetherian associative
ring, G be a finite group, and I be the left Aσ

αG ideal generated by all elements in
{σx − 1 | 1G 
= x ∈ G}. Recall that the trivial representation is Aσ

αG/I.

PROPOSITION 4.1. If the trivial representation Aσ
αG/I is projective, then an Aσ

αG-
module M is projective if and only if the restricted module AM is projective. In this
situation, Aσ

αH and A have the same global dimension for every subgroup H � G.

Proof. Obviously, AM is projective if so is M. Conversely, assume that AM is
projective. Note that M is projective if and only if HomAσ

α G(M,−) is exact. However,
by Proposition 2.2, HomAσ

α G(M,−) ∼= HomA(M,−)G is the composite of two exact
functors HomA(M,−) and −G ∼= HomAσ

α G(Aσ
αG/I,−), and hence is exact. The first

statement is verified.
Note that we always have gl. dim Aσ

αG � A, so it suffices to show gl. dim A �
gl. dim Aσ

αG under the assumption. This is true if gl. dim A = ∞, so we assume that
gl. dim A = s < ∞.

For an arbitrary M ∈ Aσ
αG -mod, choosing a projective resolution P• ∈ K−(RP)

and applying the restriction functor ↓G
1 , we get a projective resolution AP• for AM. As

pdA M � s, AKs is a projective A-module, where Ks is the s-th syzygy of P•. Therefore,
Ks is projective as an Aσ

αG-module. In other words, pdAσ
α G M � s, so gl. dim Aσ

αG � s =
gl. dim A. But for every subgroup H � G, we always have gl. dim Aσ

αG � gl. dim Aσ
αH �

gl. dim A. This forces gl. dim Aσ
αH = gl. dim A. �

Unfortunately, the structure of I, and hence that of the trivial representation are
hard to exploit for general crossed products. In contrast, the trivial representation
of a skew group ring has a very explicit description. In this situation, I consists of
elements

∑
x∈G axσx with

∑
x∈G ax = 0, and the skew group ring Aσ G acts on A by

(
∑

x∈G axσx) · a = ∑
x∈G axσx(a). More details can be found in [3].

For every subgroup H � G, we define a trace map tr : A → AH by sending a ∈ A
to

∑
x∈H σx(a). This is an AH-linear map. Conclusions in the next proposition can be

found in various literatures; see [1, 2, 3].

PROPOSITION 4.2. The following are equivalent for a skew group ring Aσ G:

(1) the trivial Aσ G-module A is projective;
(2) M ∈ Aσ G -mod is projective if and only if the restricted module AM is projective;
(3) the trace map tr : A → AG is surjective;
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(4) there is a certain element a ∈ A such that tr(a) = 1.
When A is commutative, they are equivalent to the following condition: Aσ G is a separable
extension over A.

Proof. We just proved that (1) implies (2) for crossed products, so it is also true for
skew group rings. It is obvious that (2) implies (1). The equivalence between (3) and
(4) is straightforward since the trace map is AG-linear. Equivalence between (1) and (4)
is precisely Proposition 4.1 in page 87 of [3] by observing that the proof there actually
works for arbitrary left Noetherian rings. For commutative R, the equivalence of (4)
and the last condition is implied by Proposition 2.1 in [20]. �

This propositions tells us that the projective dimension of the trivial representation
plays an important role in determining the homological dimensions of skew group
rings. The following theorem classifies global dimensions and finitistic dimensions for
crossed products.

THEOREM 4.3. Let Aσ
αG be a crossed product, where A is left Noetherian and G is a

finite group.

(1) For every M ∈ Aσ
αG -mod, pdAσ

α G M is either infinity or equal to pdA M (when
pdA M < ∞).

(2) The global dimension of Aσ
αG is either infinity or equal to gl. dim A (when gl. dim A <

∞), and fin. dim Aσ
αG = fin. dim A.

(3) If the trivial representation Aσ
αG/I is projective when viewed as an A-module, then

gl. dim Aσ
αG is finite if and only so is gl. dim A and Aσ

αG/I is a projective Aσ
αG-module.

Proof. Note that for crossed products, the induction functor Aσ
αG ⊗A − and the

coinduction functor HomA(Aσ
αG,−) are naturally isomorphic. Therefore, for M ∈

Aσ
αG -mod and N ∈ A -mod, we have the Frobenius reciprocity

HomA(M, N) ∼= HomAσ
α G(M, Aσ

αG ⊗A N)

and the Eckmann–Shapiro formula (see Corollary 2.8.4 in [5]) for n � 1:

Extn
A(M, N) ∼= Extn

Aσ
α G(M, Aσ

αG ⊗A N).

To prove (1), we only need to consider the case that pdAσ
α G M < ∞. Let r =

pdAσ
α G M and s = pdA M. By Remark 3.4, s � r.
For an arbitrary N ∈ Aσ

αG -mod, since the map ϕ : Aσ
αG ⊗A N → N given by λ ⊗

v �→ λv is a surjective Aσ
αG-module homomorphism, we have a short exact sequence

0 → K → Aσ
αG ⊗A N → N → 0. Applying HomAσ

α G(M,−) to it, we get a long exact
sequence:

. . . → Extr
Aσ

α G(M, K) → Extr
Aσ

α G(M, Aσ
αG ⊗A N) →

Extr
Aσ

α G(M, N) → Extr+1
Aσ

α G(M, K) → . . .

But Extr+1
Aσ

α G(M, K) = 0 since pdAσ
α G M = r. If pdA M = s < r, then

Extr
Aσ

α G(M, Aσ
αG ⊗ N) ∼= Extr

A(M, N) = 0
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by the Eckmann–Shapiro formula. Consequently, Extr
Aσ

α G(M, N) = 0. But N ∈
Aσ

αG -mod is arbitrary. Therefore, pdAσ
α G M < r. This contradiction tells us that s = r,

and (1) is established.
To determine the global dimension of Aσ

αG, we still only need to consider the
case that gl. dim Aσ

αG < ∞. In this situation, pdAσ
α G M < ∞ for every M ∈ Aσ

αG -mod.
Therefore, by (1), pdAσ

α G M = pdA M. Consequently, gl. dim Aσ
αG � gl. dim A. But by

Remark 3.4, gl. dim Aσ
αG � gl. dim A, and the equality follows.

Note that fin. dim Aσ
αG = sup{pdAσ

α G M | pdAσ
α G M < ∞}. By (1), if pdAσ

α G M < ∞,
then pdAσ

α G M = pdA M � fin. dim A. Consequently, fin. dim Aσ
αG � fin. dim A. But by

Remark 3.4, we have fin. dim Aσ
αG � fin. dim A. This forces fin. dim Aσ

αG = fin. dim A.
Now, we turns to (3). If Aσ

αG/I is projective as an Aσ
αG-module, by Proposition

4.1 gl. dim Aσ
αG = gl. dim A. Therefore, gl. dim A < ∞ implies gl. dim Aσ

αG < ∞.
Conversely, if gl. dim Aσ

αG < ∞, clearly gl. dim A < ∞ and pdAσ
α G Aσ

αG/I < ∞. By
the first statement, pdAσ

α G Aσ
αG/I = pdA Aσ

αG/I = 0. �
We have the following corollary for skew group rings:

COROLLARY 4.4. Let Aσ G be a skew group ring with A left Noetherian and G a finite
group.

(1) The skew group ring Aσ G has finite global dimension if and only if so does A and the
trivial representation is projective.

(2) If the trivial representation is a projective Aσ G-module, then Aσ G and A have the
same global dimension.

(3) If A is commutative and Aσ G has finite global dimension, then Aσ G is a separable
extension over A. In particular, Aσ G and A have the same global dimension, finitistic
dimension, and strong global dimension.

Proof. The first statement follows from (3) of the above theorem since for skew
group rings, the trivial representation A is a free A-module. The second one follows
from Proposition 4.1. Note that according to (1), the given condition in (3) implies
that the trivial representation A is a projective Aσ G-module, so Aσ G is a separable
extension over A by the second part of Proposition 4.2. �

It is surprising in some sense to the author that Aσ
αG and A always have the same

finitistic dimension. This makes the conjecture posted in [16] by the author trivial,
which asks whether fin. dim Aσ G < ∞ whenever fin. dim A < ∞.

We end this section by an example, which tells us that for non-commutative rings,
separable extension in general is much stronger than the condition that the trivial
representation is projective.

EXAMPLE 4.5. Let A be the path algebra of the following quiver with relations
βγ = γβ = 0 over an algebraically closed field k with characteristic 2. Let G be a cyclic
group of order 2 generated by g, which permutes vertices x and y, and arrows β and
γ . This action determines a skew group algebra Aσ G.

x
β

�� y
γ

��

It is easy to check that the centre of A is the one-dimensional space spanned by
1A = 1x + 1y. However, since g fixes every scalar, the trace map sends every element

https://doi.org/10.1017/S0017089516000240 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089516000240


HOMOLOGICAL DIMENSIONS OF CROSSED PRODUCTS 413

in the centre of A to 0. Therefore, by Proposition 2.1 in [20], Aσ G is not a separable
extension over A. On the other hand, we can check that the trace map sends both
1x and 1y to the identity of Aσ G. By Proposition 4.2 and Corollary 4.4, the trivial
representation A is a projective Aσ G-module. Therefore, A and Aσ G have the same
global dimension (which is ∞) and finitistic dimension (which is 0).

Actually, since 1x and 1y are isomorphic idempotent in Aσ G, the skew group
algebra Aσ G in this example is actually Morita equivalent to 1xAσ G1x. A direct
computation shows that 1xAσ G1x ∼= AG ∼= k[X ]/(X2).

5. Crossed products of semiprimary algebras. In this section, let A be a left
Noetherian semiprimary algebra over an algebraically closed field k with characteristic
p � 0. That is, the Jacobson radical R of A is nilpotent and A/R is a finite dimensional
k-algebra. By the main result of last section, Aσ

αG has the same homological dimensions
as Aσ

αS for every Sylow p-subgroup S � G. Thus, we mainly focus on Aσ
αS in this

section.
Take a complete set E = {ei}i∈[n] of primitive orthogonal idempotents in A. Then,

AA = ⊕i∈[n]Aei. Throughout this section, we assume that there is a Sylow p-subgroup
S � G such that E is an S-set; that is, E is closed under the action of S.

Two elements e, f ∈ E are said to be isomorphic if Ae ∼= Af as A-modules. Note
that e and f are isomorphic if and only if there are elements u, v ∈ A such that uv = e
and vu = f . When identifying ei with ei1S, elements in E are pairwise orthogonal
idempotents in the crossed product Aσ

αS. It is obvious that isomorphic idempotents in
A are still isomorphic regarded as idempotents in Aσ

αS. Moreover, for every e ∈ E and
x ∈ S, e and σx(e) are isomorphic in Aσ

αS. We will show that E is also a complete set
of primitive orthogonal idempotents in Aσ

αS.
Clearly, for every x ∈ S, σx maps R onto R. In particular, RS = ⊕

x∈S Rσx is
a two-sided ideal of Aσ

αS. Moreover, By Corollary 3.12 in page 86 of [14], R is the
intersection of the radical of Aσ

αS and A. Therefore, R is contained in the radical of
Aσ

αS, so is RS. Let Aσ
αS be the quotient algebra

Aσ
αS/RS =

⊕

x∈S

Aσx/
⊕

x∈S

Rσx ∼=
⊕

x∈S

(A/R)σx = Āσ
αS,

which is a crossed product as well. Since RS is contained in the radical of Aσ
αS,

a complete set of primitive orthogonal idempotents in Āσ
αS can be obtained from

a complete set of primitive orthogonal idempotents in Aσ
αS by taking quotients.

Conversely, given a complete set of primitive orthogonal idempotents in Āσ
αS, it can

be lifted to a complete set of primitive orthogonal idempotents in Aσ
αS.

With this observation, we have:

LEMMA 5.1. The chosen set E is a complete set of primitive orthogonal idempotents
in Aσ

αS.

Proof. By the above observation, we only need to show that E is a complete set of
primitive idempotents in Āσ

αS. Clearly, it is enough to prove that every idempotent in
E is primitive in Āσ

αS. We deduce it by showing that the algebra ei(Āσ
αS)ei is a finite-

dimensional local algebra for every i ∈ [n]; here and later by convention we identity
idempotents with their images in the quotient algebra. Since ei is a primitive idempotent
in A, it is still a primitive idempotent in Ā = A/R.
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Note that

ei(Āσ
αS)ei =

⊕

x∈S

eiĀσx(ei)σx.

Let H = {x ∈ S | Āσx(ei) ∼= Āei}. Because Ā is semisimple, H = {x ∈ S | eiĀσx(ei) 
=
0}. This is a subgroup of S. Indeed, for x, y ∈ H, suppose that eĀσx(e) 
=
0 and eĀσy(e) 
= 0. That is, Āe ∼= Āσx(e) ∼= Āσy(e). Applying σx to eĀσx(e) we
get σx(e)Aα(x, x)σx2 (e)α(x, x)−1 
= 0, so σx(e)Āσx2 (e) 
= 0. Therefore, Āe ∼= Āσx(e) ∼=
Āσx2 (e). Repeating this process, we have Āσx−1 (e) ∼= Āe ∼= Āσy(e), so σx−1 (e)Āσy(e) 
= 0.
Applying σx one more time, we deduce that eĀσxy(e) 
= 0. That is, xy ∈ H, so H is a
group.

We observe that

ei(Āσ
αS)ei =

⊕

x∈H

eiĀσx(ei)σx

is a strongly H-graded algebra [14]. Moreover, eiĀei ∼= k since k is algebraically closed.
By Proposition 1.11 in page 71 of [14], it is a crossed product of k with H, and hence
a twisted group algebra. It is well known that this is a local algebra.1 The conclusion
follows. �

The following proposition motivates us to consider free action of S on E.

PROPOSITION 5.2. Let Aσ
αS and E be as before. If A is finite dimensional and the

action of S on E is not free, then gl. dim Aσ
αS = ∞.

Proof. Since the action of S on E is not free, we can take some e ∈ E and some
1 
= x ∈ S such that σx(e) = e. Let H = 〈x〉, which is a non-trivial cyclic p-group. By
Remark 3.4, it suffices to show that gl. dim Aσ

αH = ∞.
Consider the quotient algebra Aσ

αH/RH ∼= Āσ
αH. Then, Āσ

αHe is a projective
Āσ

αH-module, and clearly an Aσ
αH-module. Since elements in H fix Ae, they fix Āe as

well, and we have

Āσ
αHe =

⊕

x∈H

Āσxe =
⊕

x∈H

Āσx(e)σx =
⊕

x∈H

σx(Āe)σx =
⊕

x∈H

Āeσx = ĀeH,

and hence

HomAσ
α H(Aσ

αHe, Āσ
αHe) ∼= e(Āσ

αH)e = (eĀe)H ∼= kαH

is a twisted group algebra with non-trivial H. Since it is not a division ring, we conclude
that Āσ

αHe is not a simple Aσ
αH-module.

Take f ∈ E such that Aσ
αHf � Aσ

αHe. Because isomorphic idempotents in A viewed
as idempotents in Aσ

αH are still isomorphic, we deduce that e and f are not isomorphic
in A, so f Ae ∈ R, and hence f Āe = 0. Therefore,

HomAσ
α H(Aσ

αHf, Āσ
αHe) ∼= f (Āσ

αH)e = (f Āe)H = 0,

1Actually, by changing basis, this twisted group algebra is isomorphic to an ordinary group algebra. For
details, see the proof of the theorem in Section 1 of [8]. This can also be deduced from the fact that
H2(S, k) = 1 for a p-group S; see for example, Proposition 6.1 in page 42 of [14].
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which implies that all composition factors of Āσ
αHe are isomorphic to Se, the simple

Aσ
αH-module corresponding to the primitive idempotent e. Consequently, (Āσ

αH)e is a
non-simple Aσ

αH-module with only composition factors isomorphic to Se.
The short exact sequences 0 → M → Āσ

αHe → Se → 0 and 0 → RHe →
Aσ

αHe → Āσ
αHe → 0 give rise to the following diagram with exact rows and columns:

0 �� RHe ��

��


Se ��

��

M �� 0

Aσ
αHe

��

Aσ
αHe

��
0 �� M �� Āσ

αHe �� Se �� 0

where 
 is the Heller operator. Note that M 
= 0 and has only composition factors
isomorphic to Se.

Applying HomAσ
α H(−, Se) to the last column, we conclude that Ext1

Aσ
α H(Se, Se) ∼=

HomAσ
α H(
Se, Se). Applying the same functor to the top row, we get an inclusion

HomAσ
α H(M, Se) → HomAσ

α H(
Se, Se). Since HomAσ
α H(M, Se) 
= 0, we deduce that

Ext1
Aσ

α H(Se, Se) 
= 0. By the strong no loop conjecture proved in [13], the projective
dimension pdAσ

α H Se = ∞. Therefore, gl. dim Aσ
αH = ∞. The conclusion follows. �

Here, the proof relies on the strong no loop conjecture, which requires A to be an
artinian k-algebra. We wonder if there is an alternate proof for arbitrary left Noetherian
semiprimary k-algebras.

We describe two corollaries.

COROLLARY 5.3. Let A be a finite dimensional algebra. Then, a twisted group algebra
AαG has finite global dimension if and only if gl. dim A is finite and the order of G is
invertible. Moreover, in this situation, we have gl. dim A = gl. dim AαG.

Proof. We always have gl. dim AαG = gl. dim AαS � gl. dim A. Assume that
gl. dim AαG < ∞, then gl. dim A < ∞. Moreover, since G acts trivially on A, every
chosen complete set of primitive orthogonal idempotents E is closed under the action
of G, and hence closed under the trivial action of S. But by the previous proposition,
S must acts freely on E. This forces S = 1. That is, |G| is invertible. Conversely, if |G| is
invertible, then gl. dim AαG = gl. dim AαS. But AαS = A. The conclusion follows. �

Let K be the kernel of σ : S → Autk(A), which is a subgroup of S. The action of
S on A is said to be faithful if K is the trivial group.

COROLLARY 5.4. Let A be a finite dimensional algebra. If the action of S on A is not
faithful, then gl. dim Aσ

αG = ∞.

Proof. Since the action of S on A is not faithful, we can find a non-trivial subgroup
H � S such that every element in H acts on A trivially. In particular, for a chosen
complete set of primitive orthogonal idempotents E, it is closed under the trivial
action of H. By Proposition 5.2, gl. dim Aσ

αH = ∞. But we always have gl. dim Aσ
αG �

gl. dim Aσ
αH. The conclusion follows. �
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However, even if gl. dim A < ∞ and S acts faithfully on E, the global dimension
of Aσ

αG might not be finite.

EXAMPLE 5.5. Let A be the path algebra of the following quiver over an
algebraically closed field of characteristic 2, and let G = S = 〈x〉 be a cyclic group
of order 2. The action of S on A is determined by x(1) = 3 and x(2) = 2. This action
is faithful.

1 �� 2 3��

However, the skew group algebra Aσ S is Morita equivalent to the path algebra of the
following quiver with relations δ2 = 0, which has infinite global dimension. This is
because the action of S on the chosen set E = {e1, e2, e3} of primitive idempotents is
not free.

1 ��δ �� 2

Let s denote the number of S-orbits in E and take a representative ei from each
S-orbit. Without loss of generality, we can assume that e1, e2, . . . , es give a chosen set
of representatives from distinct orbits. Let ε = e1 + e2 + . . . + es. A special case of the
following result is described in Proposition 1.6 in page 67 of [14].

PROPOSITION 5.6. Let Aσ
αS, E, and ε be as above and suppose that the action of S on

E is free. Then, Aσ
αS is an |S| × |S| matrix algebra over εAσ

αSε.

Proof. Note that for every e ∈ E and x ∈ S, Aσ
αSe and Aσ

αSσx(e) are isomorphic.
Indeed, let μ = σx(e)σx and ν = α(x−, x)−1σx− where x− = x−1. Using σx(α(x−, x)) =
α(x, x−), we get

μ ∗ ν = (σx(e)σx) ∗ (α(x−, x)−1σx−) = σx(e)σx(α(x−, x)−1)α(x, x−) = σx(e);

and

ν ∗ μ = (α(x−, x)−1σx−) ∗ (σx(e)σx) = (α(x−, x)−1σx−) ∗ σx ∗ e = e.

Consequently, Aσ
αSε ∼= Aσ

αSσx(ε). Since the action of S on E is free, and by our
definition of ε, we have

Aσ
α SAσ

αS =
⊕

x∈S

Aσ
αSσx(ε) ∼= (Aσ

αSε)|S|.

Therefore, Aσ
αS is a matrix algebra over εAσ

αSε = EndAσ
α S(Aσ

αSε)op, and is Morita
equivalent to εAσ

αSε. �
In the situation that ε is a central idempotent in A, that is, εa = aε for every

a ∈ A, we get a very simple case. Note that ε might not be in the centre of Aσ
αS as

σxε = σx(ε)σx 
= εσx. Since σx acts on A as an algebra automorphism, σx(ε) is a central
idempotent in A as well for every x ∈ S. Then,

A =
⊕

x∈S

Aσx(ε) =
⊕

x∈S

σx(ε)Aσx(ε)
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is actually a direct sum of isomorphic algebras. Moreover, we have

εAσ
αSε =

⊕

x∈S

εAσxε =
⊕

x∈S

εAσx(ε)σx = εAε,

since ε is in the centre of A, and ε and σx(ε) are orthogonal for 1S 
= x ∈ S. Therefore,
Aσ

αS is actually an |S| × |S| matrix algebra over εAε, while A is the subalgebra of
all diagonal matrices. In particular, Aσ

αS, A, and AS all have the same homological
dimensions, where AS is the fixed algebra; that is, AS = {a ∈ A | σx(a) = a ∀x ∈ S}.

For general crossed products, the structure of AS is hard to explore. However, if
α(x, y) is contained in the centre of A for all x, y ∈ S and the action of S is free on E,
we have an explicit description of AS.

PROPOSITION 5.7. If S acts on E freely and α(x, y) is contained in the centre of A for all
x, y ∈ S, then the fixed algebra AS = {∑x∈S σx(a) | a ∈ A}. Furthermore, Aσx(ε) ∼= AS

(resp, σx(ε)A ∼= AS) as left (resp., right) AS-modules for every x ∈ S.

Proof. Since α(x, y) lies in the centre of A, A is a kS-module, so
∑

x∈S σx(a) ∈ AS

for every a ∈ A. To show the other inclusion, we take an element a ∈ AS. Then, a =∑
x∈S aσx(ε) = ∑

x∈S σx(aε). The first statement is proved.
Since AS is a subalgebra of A, Aσx(ε) is a left AS-module for every x ∈ S. Define

ϕ : AS → Aσx(ε) by letting ϕ(a) = aσx(ε), and ψ : Aσx(ε) → AS by sending aσx(ε) to∑
y∈S σy(aσx(ε)), which is contained in AS. We check that both ϕ and ψ are AS-module

homomorphisms. Moreover, for a ∈ AS,

ψ(ϕ(a)) = ψ(aσx(ε)) =
∑

y∈S

σy(aσx(ε)) =
∑

y∈S

aσyx(ε) = a;

and for bσx(ε) ∈ Aσx(ε),

ϕ(ψ(bσx(ε))) = ϕ(
∑

y∈S

σy(bσx(ε))) =
∑

y∈S

σy(b)σyx(ε)σx(ε) = bσx(ε).

Therefore, ϕ and ψ are inverse to each other, so Aε ∼= AS as left AS-modules. The
conclusion for right modules can be proved similarly. �

From this proposition, we immediately deduce that A is both a left and a right
free AS-module whenever the action of S on E is free and α(x, y) is contained in the
centre of A for x, y ∈ S. However, usually A is not a free AS-bimodule; see Example 3.6
in [15].

Recall that a ring R is a domain if it has no non-zero zero factors. Denote by C(A)
the centre of A, and by U(A) the multiplicative group of invertible elements in A. The
following technical lemma will be used for normalization of crossed products.

LEMMA 5.8. Let D ⊆ C(A) be a domain.

(1) For every a ∈ D and n ∈ � which is a power of p, the polynomial Xn − a ∈ D[X ] has
at most one root in D.

(2) If a ∈ AS ∩ U(A) and λ ∈ D is a root of the above polynomial, then λ ∈ AS ∩ U(A)
as well.
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Proof. If λ1, λ2 ∈ D are two roots, then we have λn
1 − λn

2 = 0. But since D is
commutative and n is a power of p, we have (λ1 − λ2)n = 0. As D is assumed to
be a domain, this happens if and only if λ1 = λ2, so (1) is true.

If a is invertible, then aa−1 = 1. But a = λn, so λ(λn−1a−1) = (λn−1a−1)λ = 1. That
is, λ ∈ U(A). For every x ∈ S, we have (σx(λ))n = σx(λn) = σx(a) = a. That is, σx(λ)
is also a root of the polynomial Xn − a. But the root is unique, so σx(λ) = λ; i.e.,
λ ∈ AS. �

We introduce some notation. For x ∈ S, define hx = ∏
y∈S α(x, y). This is well

defined since α(x, y) is contained in C(A) for all x, y ∈ S. Because α(x, y)α(xy, z) =
σx(α(y, z))α(x, yz), letting z range over all elements in S and taking the product, we get

α(x, y)|S|hxy = σx(hy)hx. (5)

LEMMA 5.9. Suppose that the following conditions hold:

(1) There is a domain D ⊆ C(A) ∩ AS containing all α(x, y) for x, y ∈ S.
(2) The |S|-th root of hx exists in D for every x ∈ S.
Then, Aσ

αS is equivalent to a skew group algebra Aσ ′
S.

Proof. For each x ∈ S, let ux ∈ D be the |S|-th root of hx, which is unique and
is contained in U(A) ∩ AS as well by the previous lemma. Now, we define another
parameter set (α′, σ ′) by letting σ ′

x = u−1
x σx. Then, α′(x, y) = u−1

x u−1
y α(x, y)uxy. Taking

the |S|-th power, we get

α′(x, y)|S| = h−1
x h−1

y hxyα(x, y)|S| = 1

by (5.1). Note that α′(x, y) is also contained in D. Therefore, α′(x, y) = 1.
We have proved that the parameter set (α, σ ) is equivalent to (α′, σ ′) with α′(x, y) =

1. Therefore, by Proposition 2.1, Aσ
αS is equivalent to a skew group algebra Aσ ′

S. �
Note that σ ′

x = u−1
x σx. Therefore, a ∈ A is fixed by σx if and only it is fixed by σ ′

x.
In other words, the fixed algebras for these two equivalent crossed products coincide,
so can be denoted by AS again.

Now, we prove Theorem 1.3, generalizing a main result in [15, 16].

THEOREM 5.10. Suppose that conditions (1) and (2) in the previous lemma hold.
Then:

(1) If A is a finite dimensional algebra, then gl. dim Aσ
αG < ∞ if and only if gl. dim A <

∞ and S acts on E freely.
(2) If S acts freely on E, then Aσ

αG and A have the same global dimension. Moreover,
if A as an AS-bimodule has a summand AS, then Aσ

αG and A have the same strong
global dimension.

Proof. By Theorem 1.1, we can assume that G = S. By the previous lemma, Aσ
αS

is isomorphic to the skew group algebra Aσ ′
S. In particular, they have the same

homological dimensions and the same fixed algebras. Then, the conclusion follows
from Theorem 1.1 in [15] and Theorem 1.1 in [16].2 �

2Although in these two papers we mainly deal with finite dimensional algebras, the conclusion that A and
Aα′

G share the same homological dimensions when S acts freely on E still holds for semiprimary Noetherian
k-algebras.
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