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Abstract
A joint algebraic interpretation of the biorthogonal Askey polynomials on the unit circle and of the orthogonal
Jacobi polynomials is offered. It ties their bispectral properties to an algebra called the meta-Jacobi algebra 𝑚𝔍.
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1. Introduction

In a commentary included in his edition of Szegő’s collected works, Askey [2] introduced sets of
biorthogonal polynomials on the unit circle. These polynomials are defined as follows in terms of the
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standard Gauss hypergeometric series:

𝑃𝑛 (𝑧; 𝛼, 𝛽) =
(𝛽)𝑛

(𝛼 + 1)𝑛
2𝐹1

(
−𝑛, 𝛼 + 1
1 − 𝛽 − 𝑛

; 𝑧
)
, (1.1)

𝑄𝑛 (𝑧; 𝛼, 𝛽) = 𝑃𝑛 (𝑧; 𝛽, 𝛼), (1.2)

where (𝑎)𝑘 = 𝑎(𝑎 + 1) · · · (𝑎 + 𝑘 − 1), 𝑘 = 1, 2, . . . and (𝑎)0 = 1, are the Pochhammer symbols. The
normalisation is chosen so that 𝑃𝑛 (𝑧) and 𝑄𝑛 (𝑧) are monic. The biorthogonality of these polynomials
was proven in [3] using slightly different conventions; it here reads:

−
1

2𝜋𝑖

∮
|𝑧 |=1

𝑑𝑧(−𝑧)−1−𝛽 (1 − 𝑧)𝛼+𝛽𝑃𝑚(𝑧; 𝛼, 𝛽)𝑄𝑛

(
1
𝑧

; 𝛼, 𝛽

)
=

𝑚!Γ(𝑚 + 𝛼 + 𝛽 + 1)
Γ(𝛼 + 1)Γ(𝛽 + 1)

𝛿𝑚𝑛, (1.3)

where Γ(𝑥) is the standard gamma function. Remember that (𝑎)𝑛 = Γ(𝑛+𝛼)
Γ(𝛼) . The branch of (−𝑧)−1−𝛽 is

chosen such that (−𝑧)−1−𝛽 = |𝑧 |−1−𝛽 if arg 𝑧 = 𝜋 [14]; this is reflected in [2], [3] by making the polar
variable run from −𝜋 to 𝜋. For the connection with the spherical harmonics of the Heisenberg group,
see [10]. Let us also record that special cases of the Askey polynomials were obtained in [22] as Fourier
transforms of Laguerre polynomials (with weights attached). We refer to [23] for historical remarks
regarding these polynomials (see also [4]).

In his comments, Askey expressed the opinion that the 𝑃𝑛 (𝑧; 𝛼, 𝛽) are the natural analogues of the
Jacobi polynomials on the unit circle. We here reinforce this viewpoint by offering a unified algebraic
description of these Askey polynomials on 𝑆1 and of the Jacobi polynomials. This will involve the
introduction of an algebra to be called meta-Jacobi that will be seen to account for the bispectrality of
both classes of functions.

Let us register for reference the definition and key properties of the monic Jacobi polynomials
�̂�
(𝛼,𝛽)
𝑛 (𝑥) defined on the interval [0, 1]:

�̂�
(𝛼,𝛽)
𝑛 (𝑥) =

(−1)𝑛 (1 − 𝛽)𝑛
(1 + 𝛼 + 𝑛)𝑛

2𝐹1

(
−𝑛, 𝑛 + 𝛼 + 1

1 − 𝛽
; 𝑥
)
. (1.4)

Please note that for convenience an unconventional choice has been made for the parameters. These
polynomials possess the following orthogonality property:∫ 1

0
�̂�
(𝛼,𝛽)
𝑚 (𝑥)�̂�

(𝛼,𝛽)
𝑛 (𝑥)𝑥−𝛽 (1 − 𝑥)𝛼+𝛽𝑑𝑥 = ℎ𝑛𝛿𝑚𝑛, 𝛼 + 𝛽 > −1, 𝛽 < 1, (1.5)

with the normalisation factor ℎ𝑛 given by

ℎ𝑛 = 𝑛!
Γ(𝑛 − 𝛽 + 1)Γ(𝑛 + 𝛼 + 1)Γ(𝑛 + 𝛼 + 𝛽 + 1)

Γ(2𝑛 + 𝛼 + 1)Γ(2𝑛 + 𝛼 + 2)
. (1.6)

As is well known, in addition to satisfying a three-term recurrence relation, the polynomials �̂�
(𝛼,𝛽)
𝑛 (𝑥)

are eigenfunctions of the hypergeometric operator

M = 𝑥(𝑥 − 1)𝜕2
𝑥 + [(𝛼 + 2)𝑥 + 𝛽 − 1]𝜕𝑥 , (1.7)

with eigenvalue 𝑛(𝑛+𝛼+1). These bispectral properties are encoded in the Jacobi algebra 𝔍 [9] defined
in terms of three generators 𝐾1, 𝐾2 and 𝐾3 verifying the relations

[𝐾1, 𝐾2] = 𝐾3, (1.8)

[𝐾2, 𝐾3] = 𝑎𝐾2
2 + 𝑏𝐾2, (1.9)
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[𝐾3, 𝐾1] = 𝑎{𝐾1, 𝐾2} + 𝑏𝐾1 + 𝑐𝐾2 + 𝑑, (1.10)

where [𝐴, 𝐵] = 𝐴𝐵− 𝐵𝐴, {𝐴, 𝐵} = 𝐴𝐵+ 𝐵𝐴 and 𝑎, 𝑏, 𝑐, 𝑑 are structure constants. Indeed, 𝔍 is realised
by taking

𝐾1 = −M, 𝐾2 = 𝑥. (1.11)

In this model where the generators 𝐾1 and 𝐾2 are the bispectral operators, we have

𝐾3 = 2𝑥(𝑥 − 1)𝜕2
𝑥 + [(𝛼 + 2)𝑥 + 𝛽 − 1]𝜕𝑥 , (1.12)

and the parameters 𝑎, 𝑏, 𝑐, 𝑑 are

𝑎 = 2, 𝑏 = −2, 𝑐 = −𝛼(𝛼 + 2), 𝑑 = 𝛼(1 − 𝛽). (1.13)

Headway in the algebraic description of bispectral biorthogonal functions was achieved recently by
studying polynomial and rational functions of Hahn type [27], [29]. (Related Hahn rational functions
also appear in [19], [20].) In broad strokes, the general picture that emerges is as follows. Recall that
generalised eigenvalue problems (GEVPs) of the form 𝑀𝑑𝑛 = 𝜆𝑛𝐿𝑑𝑛, where M and L are two operators
and 𝜆 is the eigenvalue, naturally lead to biorthogonal functions which are rational (or polynomial)
when M and L act tridiagonally in associated bases [30]. Assume this to be the case. In the context
mentioned before, it proved possible to adjoin a third operator X to M and L such that the biorthogonal
special functions are the overlaps between the relevant GEVP basis {𝑑𝑛} and the eigenbasis

{
𝑒∗𝑧
}

of
the adjoint 𝑋𝑇 of X. As for the biorthogonal partners, they are given reciprocally in terms of the
bases for the corresponding adjoint problems. This offers a picture which is parallel to the description
of hypergeometric (finite) polynomials using Leonard pairs [24]. The differential/difference equation
of the biorthogonal functions follows readily from the fact that 𝑀 − 𝜆𝑛𝐿, which annihilates 𝑑𝑛, acts
tridiagonally in the basis

{
𝑒∗𝑧
}
. The second spectral equation stems from the observation that the operator

𝑅𝑇 = 𝐿𝑇 𝑋𝑇 is such that 𝑅𝑇 𝑒∗𝑧 − 𝑧𝐿𝑇 𝑒∗𝑧 = 0 and that 𝑅 = 𝑋𝐿 acts tridiagonally on the basis {𝑑𝑛}. The
algebra generated by the triplet of operators (𝑀, 𝐿, 𝑅) – which we have called the rational Hahn algebra
(𝑟𝔥) in the particular case treated in [27], [29] – thus accounts for the two GEVPs that embody the
bispectrality of the biorthogonal functions. Since R factorises as 𝑋𝐿, the algebra generated by (𝑀, 𝐿, 𝑅)
can be embedded in the meta-algebra generated by (𝑀, 𝐿, 𝑋). The associated family of orthogonal
polynomials also arises in this context as the overlaps between the eigenfunctions of the linear pencil
𝑊 = 𝑀 + 𝜇𝐿 and the vectors

{
𝑒∗𝑧
}

(or equivalently as the scalar product of the eigenbases of the adjoint
problems). The bispectrality of these polynomial functions is accounted for by the algebra generated
by (𝑋,𝑊). In our paradigm study, they are the Hahn polynomials, with W and X seen to generate the
known Hahn algebra 𝔥. In summary, for functions of the Hahn type, we have observed that the meta-
algebra 𝑚𝔥 subsumes both 𝑟𝔥 and 𝔥 and thus provides a unified description of both the biorthogonal and
orthogonal families of functions. The two-dimensional subalgebra of 𝑚𝔥 generated by M and L is on
its own remarkable, since its three-diagonal representations lead alone to the corresponding orthogonal
polynomials, the Hahn ones in this instance. The adjunction of X to form the three-generated algebra has
in fact the effect of constraining the representations of M and L to be three-diagonal in the eigenbasis
of X.

We contend that this approach, which allows the simultaneous description of hypergeometric orthog-
onal polynomials and associated families of biorthogonal functions, extends beyond the Hahn-functions
case from which it is drawn. We shall add support to this suggestion by showing that the biorthogonal
Askey polynomials on the unit circle together with the Jacobi polynomials are amenable to a unified
treatment that follows the lines already sketched. In so doing we will provide an algebraic interpretation
of the bispectral properties of the Askey polynomials which is of interest in its own right. We might
point out that it has been shown in [12] that the recurrence relation of these polynomials can be obtained
from a linear pencil in 𝔰𝔲(1, 1) – but without providing a full account of the bispectrality.
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The rest of the paper is organised as follows. The meta-Jacobi algebra 𝑚𝔍 is introduced and discussed
in the next section. It is shown to be isomorphic to the universal enveloping algebra of 𝔰𝔲(1, 1). The
GEVPs and eigenvalue problems (EVPs) are solved on an 𝑚𝔍 module, and the appropriate overlaps are
shown to yield the special functions of interest. The orthogonality relations are seen to follow from the
completeness and orthogonality of the GEVP and EVP bases. The algebraic setup is used in Section 4
to derive and interpret various properties of the Askey polynomials 𝑃𝑛 (𝑧; 𝛼, 𝛽), and in particular their
bispectrality. A differential model of 𝑚𝔍 is obtained and used to obtain the differential equation and
recurrence relation of the polynomials 𝑃𝑛 (𝑧; 𝛼, 𝛽), as well as some contiguity formulas. Perspectives
are offered in the last section to conclude. Computational details are included in three appendices for
completeness and for the convenience of the reader.

2. The meta-Jacobi algebra 𝑚𝔍

The fundamental algebraic structure upon which the subsequent analysis hinges is introduced next.

Definition 2.1. The meta-Jacobi algebra 𝑚𝔍 has generators L, M and X (and the central 1) verifying the
commutation relations

[𝐿, 𝑀] = 𝐿2 − (𝛼 + 1)𝐿 − 𝑀, (2.1)

[𝐿, 𝑋] = 𝑋 − 1, (2.2)

[𝑀, 𝑋] = {𝑋, 𝐿} − (𝛼 + 1)𝑋 + 𝛽. (2.3)

It is taken to be defined over the real numbers, with the parameters 𝛼 and 𝛽 in R unless specified
otherwise.

The Casimir element is checked to be

𝑄 =
{
𝐿2, 𝑋

}
− (𝛼 + 1){𝐿, 𝑋} − {𝑀, 𝑋} + 2𝑀 + 2𝛽𝐿. (2.4)

We shall now observe that 𝑚𝔍 is isomorphic to the universal algebra of a Lie algebra. Recall that
𝔰𝔲(1, 1) viewed as a Lie algebra over R has the commutation relations

[𝐽0, 𝐽±] = ±𝐽±, [𝐽+, 𝐽−] = −2𝐽0, (2.5)

and the standard Casimir operator

𝐽2 = 𝐽2
0 − 𝐽0 − 𝐽+𝐽−. (2.6)

Proposition 2.1. The meta-Jacobi algebra 𝑚𝔍 is isomorphic to the universal enveloping algebra of
𝔰𝔲(1, 1).

This is confirmed by first observing that the commutation relations (2.5) of 𝔰𝔲(1, 1) are recovered
by using the commutation relations (2.1), (2.2) and (2.3) of 𝑚𝔍 and setting

𝐽0 = 𝐿 −
1
2
(𝛼 − 𝛽 + 1), (2.7)

𝐽+ = 𝑋 − 1, (2.8)

𝐽− = −𝐿2 + (𝛼 + 1)𝐿 + 𝑀. (2.9)
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That we have an isomorphism is established by noting that this map is invertible and provides the
following expressions of L, M and X in terms of the 𝔰𝔲(1, 1) generators:

𝐿 = 𝐽0 +
1
2
(𝛼 − 𝛽 + 1), (2.10)

𝑀 = 𝐽0
2 + 𝐽− − 𝛽 𝐽0 −

1
4
(𝛼 − 𝛽 + 1) (𝛼 + 𝛽 + 1), (2.11)

𝑋 = 𝐽+ + 1. (2.12)

The isomorphism between the two-generated subalgebras spanned by {𝐿, 𝑀} and {𝐽0, 𝐽−} was observed
in [7]. In light of the foregoing formulas, the Casimir operator (2.4) of the meta-Jacobi algebra can be
expressed as

𝑄 = 2𝐽2 −
1
2
(𝛼 − 𝛽 + 1)2. (2.13)

Remark 2.1. It will be clear in the following that the 𝑚𝔍 presentation is best suited for the algebraic
interpretation of the Askey polynomials. The terminology recalls the parallel with the treatment of the
biorthogonal rational functions of Hahn type [27] that uses the meta-Hahn algebra.
Proposition 2.2. The Jacobi algebra 𝔍 defined in equations (1.8), (1.9) and (1.10) admits a simple
embedding in the meta-Jacobi algebra 𝑚𝔍.

This is seen by setting

𝐾1 = −𝑀, 𝐾2 = 𝑋, (2.14)

and consequently

𝐾3 = −{𝑋, 𝐿} + (𝛼 + 1)𝑋 − 𝛽. (2.15)

Using the commutation relations (2.1), (2.2) and (2.3) of 𝑚𝔍, it is straightforwardly verified that
𝐾1, 𝐾2, 𝐾3 thus defined obey those of 𝔍 with the parameters given by

𝑎 = 2, 𝑏 = −2, 𝑐 = −𝛼(𝛼 + 2), 𝑑 = (𝛼 + 1)𝛽 −𝑄 − 1. (2.16)

Note the dependence of the parameter d on the Casimir element Q. The distinctive feature of the meta-
Jacobi algebra lies, as we see, in the fact that 𝐾3 is resolved as a quadratic expression in terms of the
fundamental generators X and L.
Remark 2.2. In the following section we shall call upon representations of 𝔰𝔲(1, 1) and hence of 𝑚𝔍
to interpret the Askey and Jacobi polynomials. In an irreducible representation, the Casimir element 𝐽2

of 𝔰𝔲(1, 1) takes the form 𝜏(𝜏 − 1). Hereafter, we shall consider representations with

𝜏 =
1
2
(𝛼 + 𝛽 + 1). (2.17)

Equation (2.13), which establishes the relation between the Casimir operator Q of 𝑚𝔍 and the one of
𝔰𝔲(1, 1), then yields for the value of Q:

𝑄 = 2𝛼𝛽 − 𝛼 + 𝛽 − 1. (2.18)

Let us stress the coherence of the particular realisation of the Jacobi algebra 𝔍 in terms of the bispectral
operators of the Jacobi polynomials given in the introduction with the embedding of 𝔍 in 𝑚𝔍 given in
Proposition 2.2. Indeed, we see that with these choices for the Casimir elements, the parameter d of the
Jacobi algebra as given in equation (2.16) takes the proper value: 𝑑 = (𝛼 + 1)𝛽 −𝑄 − 1 = 𝛼(1 − 𝛽).
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3. Representations of the meta-Jacobi algebra and special functions

In this section we shall establish the connection between the meta-Jacobi algebra 𝑚𝔍, the Askey
polynomials 𝑃𝑛 (𝑧; 𝛼, 𝛽), their biorthogonal partners 𝑄𝑛 (𝑧; 𝛼, 𝛽) and the Jacobi polynomials �̂�

(𝛼,𝛽)
𝑛 (𝑥).

To that end, we shall consider an 𝑚𝔍 representation space inferred from the isomorphism of this algebra
with 𝔰𝔲(1, 1). We shall obtain the bases associated to the various EVPs and GEVPs defined on the
chosen module to show that their overlaps are essentially the special functions already mentioned. This
will cast these functions in their proper algebraic framework and readily lead to their (bi)orthogonality
relations. We shall be working on a real infinite-dimensional space equipped with a scalar product
denoted by 〈|〉. 𝐴𝑇 will stand for the transpose of A:

(〈
𝑢 |𝐴𝑇

)
|𝑣
〉
= 〈𝑢 | (𝐴|𝑣〉).

Consider the infinite-dimensional module 𝔙(𝜏), with 𝜏 ∈ R defined as follows by the action of the
generators on the basis vectors |𝜏, 𝑘〉, 𝑘 ∈ Z:

𝐽0 |𝜏, 𝑘〉 = (𝜏 + 𝑘) |𝜏, 𝑘〉, (3.1)

𝐽+|𝜏, 𝑘〉 = |𝜏, 𝑘 + 1〉, (3.2)

𝐽−|𝜏, 𝑘〉 = 𝑘 (𝑘 − 1 + 2𝜏) |𝜏, 𝑘 − 1〉. (3.3)

(See in this connection [15].) It is readily checked that the Casimir element 𝐽2 = 𝐽2
0 −𝐽0−𝐽+𝐽− = 𝜏(𝜏−1)

on this representation space. The basis vectors are taken to be orthonormalised:

〈𝜏, 𝑘 ′ |𝜏, 𝑘〉 = 𝛿𝑘′𝑘 . (3.4)

Remark 3.1. Let us note the following:

1. The representation defined in the foregoing is not unitarisable [25].
2. It is reducible with the action of the Casimir element given overall by the same constant, meaning

that the representations involved are all of the same kind. It contains the unitary positive discrete
series [11], [15], [21], [28] as an irreducible component. This submodule is spanned by the basis
vectors with 𝑘 ∈ Z+.

Use now formulas (2.10), (2.11) and (2.12) of Proposition 2.2, that define the isomorphism between
𝑚𝔍 and 𝔰𝔲(1, 1), and take as already indicated 𝜏 = 1

2 (𝛼 + 𝛽 + 1); the following actions of 𝐿, 𝑀, 𝑋 on
the basis states |𝜏, 𝑘〉 are readily found:

𝐿 |𝜏, 𝑘〉 = (𝑘 + 𝛼 + 1) |𝜏, 𝑘〉, (3.5)

𝑀 |𝜏, 𝑘〉 = 𝑘
[
(𝑘 + 𝛼 + 1) |𝜏, 𝑘〉 + (𝑘 + 𝛼 + 𝛽) |𝜏, 𝑘 − 1〉

]
, (3.6)

𝑋 |𝜏, 𝑘〉 = |𝜏, 𝑘 + 1〉 + |𝜏, 𝑘〉. (3.7)

The adjoint actions can be read off directly:

𝐿𝑇 |𝜏, 𝑘〉 = (𝑘 + 𝛼 + 1) |𝜏, 𝑘〉, (3.8)

𝑀𝑇 |𝜏, 𝑘〉 = (𝑘 + 1) (𝑘 + 𝛼 + 𝛽 + 1) |𝜏, 𝑘 + 1〉 + 𝑘 (𝑘 + 𝛼 + 1) |𝜏, 𝑘〉, (3.9)

𝑋𝑇 |𝜏, 𝑘〉 = |𝜏, 𝑘〉 + |𝜏, 𝑘 − 1〉. (3.10)

Let us introduce the operator T± on 𝔙(𝜏) such that

T±|𝜏, 𝑘〉 = |𝜏, 𝑘 ± 1〉. (3.11)
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Consider a vector | 𝑓 〉 =
∑∞

𝑘=−∞ 𝑓 (𝑘) |𝜏, 𝑘〉 in 𝔙(𝜏). We have

T±| 𝑓 〉 =
∞∑

𝑘=−∞

𝑓 (𝑘)T±|𝜏, 𝑘〉 =
∞∑

𝑘=−∞

(𝑇∓ 𝑓 (𝑘)) |𝜏, 𝑘〉, (3.12)

where 𝑇± stands for the shift operators acting on functions of k: 𝑇± 𝑓 (𝑘) = 𝑓 (𝑘 ± 1).

Remark 3.2. A realisation of 𝑚𝔍 in terms of shift operators can hence be inferred from the
(dual) transformations of the components of a vector | 𝑓 〉 in the basis {|𝜏, 𝑘〉} defined through
𝑉 | 𝑓 〉 =

∑∞
𝑘=−∞ 𝑓 (𝑘)𝑉 |𝜏, 𝑘〉 =

∑∞
𝑘=−∞

(
V𝑇 𝑓 (𝑘)

)
|𝜏, 𝑘〉. Equations (3.8), (3.9) and (3.10) thus yield

the following representation in terms of unbounded operators on ℓ2(Z):

L = (𝑘 + 𝛼 + 1), (3.13)

M = (𝑘 + 1) (𝑘 + 𝛼 + 𝛽 + 1)𝑇+ + 𝑘 (𝑘 + 𝛼 + 1), (3.14)

X = 𝑇− + 1. (3.15)

The adjoints in this model are readily computed using 𝑇𝑇
± = 𝑇∓.

We are now ready to construct the bases of 𝔙(𝜏) coming in adjoint pairs, whose overlaps will
provide the algebraic interpretation we are looking for. (They will be in part the 𝑑𝑛, 𝑑

∗
𝑛, 𝑒𝑧 , 𝑒

∗
𝑧 of the

introduction.) The bases that will intervene are the following:

1. The GEVP bases {|𝑃𝑛〉} and {|𝑄𝑛〉}:

𝑀 |𝑃𝑛〉 = 𝜈𝑛𝐿 |𝑃𝑛〉, 𝑀𝑇 |𝑄𝑛〉 = 𝜈𝑛𝐿
𝑇 |𝑄𝑛〉. (3.16)

It will be recalled [29], [30] that the sets {|𝑃𝑛〉} and
{
𝐿𝑇 |𝑄𝑛〉

}
form by construction two biorthogonal

ensembles of vectors: 〈
𝑃𝑚 |𝐿

𝑇 |𝑄𝑛

〉
= 0, 𝑚 ≠ 𝑛. (3.17)

2. The EVP bases {|𝑧〉} and
{
|̃𝑧〉

}
:

𝑋 |𝑧〉 = 𝑧 |𝑧〉, 𝑋𝑇 |̃𝑧〉 = 𝑧 |̃𝑧〉. (3.18)

3. The EVP bases {|𝐽𝑛〉} and
{
|̃𝐽𝑛〉

}
:

𝑀 |𝐽𝑛〉 = 𝜇𝑛 |𝐽𝑛〉, 𝑀𝑇 |̃𝐽𝑛〉 = 𝜇𝑛 |̃𝐽𝑛〉. (3.19)

3.1. Eigenvectors of X and 𝑋𝑇

It is directly checked that the EVP (3.18) is satisfied by

|𝑧〉 = 𝛾
∞∑

𝑘=−∞

(𝑧 − 1)−𝑘−𝑎 |𝜏, 𝑘〉, (3.20)

|̃𝑧〉 = �̃�
∞∑

𝑘=−∞

(𝑧 − 1)𝑘+�̃� |𝜏, 𝑘〉, (3.21)
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with 𝑎, �̃� ∈ R and where 𝛾, �̃� ∈ C are normalisation constants. That |𝑧〉 and |̃𝑧′〉 are orthogonal can be
seen as follows. We have

〈̃𝑧′ |𝑧〉 = 𝛾�̃�
∞∑

𝑘,𝑙=−∞

(𝑧′ − 1)−𝑘−𝑎 (𝑧 − 1)𝑙+�̃�〈𝜏, 𝑘 |𝜏, 𝑙〉. (3.22)

Now let 𝑧 = 1 + 𝑒𝑖𝜙, 𝑧′ = 1 + 𝑒𝑖𝜙
′ , so that equation (3.22) becomes

〈̃𝑧′ |𝑧〉 = 𝛾�̃�𝑒𝑖 (�̃�𝜙−𝑎𝜙
′)

∞∑
𝑘=−∞

𝑒𝑖 (𝜙−𝜙
′)𝑘 . (3.23)

We then see that upon imposing

𝑎 = �̃� + 1, (3.24)

we find

〈̃𝑧′|𝑧〉 = −2𝜋𝑖𝛾�̃�𝛿(𝑧 − 𝑧′) (3.25)

with the help of the Fourier series of Dirac’s delta function and of a standard property of this distribution.
Since 〈̃𝑧′ |𝑧〉 is manifestly translation-invariant, equation (3.25) is preserved when the variable z lies on
the unit circle centred at 𝑧 = 0.

We also have the completeness relation

1
2𝜋𝑖𝛾�̃�

∮
𝐶

𝑑𝑧 |̃𝑧〉〈𝑧 | = 1, (3.26)

where the contour C consists in the unit circle infinitesimally deformed so that the singularity at 𝑧 = 1
lies inside C. Indeed,

1
2𝜋𝑖𝛾�̃�

∮
𝐶

𝑑𝑧 |̃𝑧〉〈𝑧 | =
1

2𝜋𝑖

∮
𝐶

𝑑𝑧(𝑧 − 1)𝑘−𝑙−𝑎+�̃�
∞∑

𝑘,𝑙=−∞

|𝜏, 𝑘〉〈𝜏, 𝑙 |. (3.27)

Again the choice (3.24) for the integration constants a and �̃� consistently ensures that the integral over
z becomes 1

2𝜋𝑖

∮
𝐶

𝑑𝑧(𝑧 − 1)𝑘−𝑙−1 = 𝛿𝑘𝑙 and hence

1
2𝜋𝑖𝛾�̃�

∮
𝐶

𝑑𝑧 |̃𝑧〉〈𝑧 | =
∞∑

𝑘=−∞

|𝜏, 𝑘〉〈𝜏, 𝑘 | = 1. (3.28)

This will play a key role in the derivation of the orthogonality relations.

3.2. GEVP bases

We shall now obtain the bases {|𝑃𝑛〉} and {|𝑄𝑛〉} of 𝔙(𝜏) that satisfy the GEVP (3.16). First we need
to determine the set of eigenvalues 𝜈. From the explicit two-diagonal actions (3.5) and (3.6) of L and M
on the basis vectors {|𝜏, 𝑘〉}, it is readily seen that the (formal) determinantal condition is

det(𝑀 − 𝜈𝐿) =
∞∏

𝑘=−∞

[𝑘 (𝑘 + 𝛼 + 1) − 𝜈(𝑘 + 𝛼 + 1)] = 0, (3.29)
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and hence (disregarding the degenerate case where 𝛼 ∈ Z) that the spectrum consists in the following
values:

𝜈𝑛 = 𝑛, 𝑛 = 0,±1,±2, . . . . (3.30)

Remark 3.3. In the following, as we consider GEVPs and EVPs, we shall limit ourselves to eigenvalues
corresponding to nonnegative n – that is, 𝑛 ∈ Z≥. This will not restrain the breadth of the algebraic
description, since the same results would be obtained with other choices. For completeness, indications
of how the equations are handled for negative values of n are given in Appendix C.

Let

|𝑃𝑛〉 =
∞∑

𝑘=−∞

𝑑𝑛 (𝑘) |𝜏, 𝑘〉. (3.31)

The generalised eigenvalue equation 𝑀 |𝑃𝑛〉 = 𝑛𝐿 |𝑃𝑛〉 implies the following recurrence relation for the
expansion coefficients 𝑑𝑛 (𝑘):

(𝑘 + 1) (𝑘 + 𝛼 + 𝛽 + 1)𝑑𝑛 (𝑘 + 1) + (𝑘 − 𝑛) (𝑘 + 𝛼 + 1)𝑑𝑛 (𝑘) = 0. (3.32)

From equation (3.32), it is immediately seen that for 𝑛 ≥ 0,

𝑑𝑛 (𝑘) = 0 for 𝑘 > 𝑛 and 𝑘 ∈ Z−. (3.33)

The explicit expression of the nonzero coefficients 𝑑𝑛 (𝑘) reads

𝑑𝑛 (𝑘) = 𝑑𝑛 (0)
(−1)𝑘 (−𝑛)𝑘 (𝛼 + 1)𝑘

𝑘!(𝛼 + 𝛽 + 1)𝑘
, 𝑘 = 0, 1, 2, . . . , 𝑛. (3.34)

Turn now to the adjoint GEVP 𝑀𝑇 |𝑄𝑚〉 = 𝑚𝐿𝑇 |𝑄𝑚〉, which imposes on the coefficients 𝑑∗𝑚(𝑘) in

|𝑄𝑚〉 =
∞∑

𝑘=−∞

𝑑∗𝑚(𝑘) |𝜏, 𝑘〉 (3.35)

the recurrence relation

𝑘 (𝑘 + 𝛼 + 𝛽)𝑑∗𝑚(𝑘 − 1) + (𝑘 − 𝑚) (𝑘 + 𝛼 + 1)𝑑∗𝑚(𝑘) = 0. (3.36)

Assuming 𝑚 ≥ 0 as previously indicated, one immediately notices that equation (3.36) implies

𝑑∗𝑚(𝑘) = 0 for 𝑘 < 𝑚. (3.37)

In view of this fact, let

𝑘 = 𝑙 + 𝑚, 𝑙 = 0, 1, . . . ; (3.38)

the relation (3.36) then becomes

(𝑚 + 𝑙) (𝑙 + 𝑚 + 𝛼 + 𝛽)𝑑∗𝑚(𝑚 + 𝑙 − 1) + 𝑙 (𝑙 + 𝑚 + 𝛼 + 1)𝑑∗𝑚(𝑚 + 𝑙). (3.39)

It is found to have for its solution

𝑑∗𝑚(𝑚 + 𝑙) =
(−1)𝑙 (𝑚 + 1)𝑙 (𝑚 + 𝛼 + 𝛽 + 1)𝑙

𝑙!(𝑚 + 𝛼 + 2)𝑙
𝑑∗𝑚(𝑚), 𝑙 = 0, 1, . . . . (3.40)
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Apart from the initial condition 𝑑∗𝑚(𝑚), equation (3.40) fully determines

|𝑄𝑚〉 =
∞∑
𝑙=0

𝑑∗𝑚(𝑚 + 𝑙) |𝜏, 𝑚 + 𝑙〉. (3.41)

From general linear algebra considerations [27], [29], [30], we know that the vectors |𝑃𝑛〉 and
𝐿𝑇 |𝑄𝑚〉 are biorthogonal for 𝑛 ≠ 𝑚. We have

(〈𝑃𝑛 |𝑀) |𝑄𝑚〉 = 𝑛(〈𝑃𝑛 |𝐿) |𝑄𝑚〉

=
〈
𝑃𝑛 |

(
𝑀𝑇 |𝑄𝑚

〉)
= 𝑚

〈
𝑃𝑚 |

(
𝐿𝑇 |𝑄𝑚

〉)
= 𝑚(〈𝑃𝑛 |𝐿) |𝑄𝑚〉. (3.42)

It follows that

(𝑛 − 𝑚) (〈𝑃𝑛 |𝐿) |𝑄𝑚〉 = (𝑛 − 𝑚)
〈
𝑃𝑛 |

(
𝐿𝑇 |𝑄𝑚

〉)
= 0, (3.43)

which implies the asserted biorthogonality if 𝑚 ≠ 𝑛. Since the derivation we shall provide of the
biorthogonality of the Askey polynomials will rest on this property obtained formally, we shall next
directly verify that it holds in the case at hand and determine the norm.

From the observations already made, we see that

〈
𝑃𝑛 |𝐿

𝑇 |𝑄𝑚

〉
=

𝑛∑
𝑘=−∞

∞∑
𝑙=0

𝑑𝑛 (𝑘)𝑑
∗
𝑚(𝑙 + 𝑚)

〈
𝜏, 𝑘 |𝐿𝑇 |𝜏, 𝑙 + 𝑚

〉
=

𝑛∑
𝑘=−∞

∞∑
𝑙=0

𝑑𝑛 (𝑘)𝑑
∗
𝑚(𝑙 + 𝑚) (𝑚 + 𝑙 + 𝛼 + 1)𝛿𝑘,𝑙+𝑚. (3.44)

We readily find that 〈
𝑃𝑛 |𝐿

𝑇 |𝑄𝑚

〉
= 0 if 𝑚 > 𝑛. (3.45)

It remains to consider the situation when 𝑚 ≤ 𝑛. Substituting into equation (3.44) expressions (3.34)
and (3.40) for 𝑑𝑛 (𝑘) and 𝑑∗𝑚(𝑚 + 𝑙), using a few properties of the Pochhammer symbols such as
𝑥(𝑥 + 1)𝑙−1 = (𝑥)𝑙 and (𝑥)𝑚+𝑙 = (𝑥)𝑚 (𝑥 + 𝑚)𝑙 , and performing one of the sums, we arrive at

〈
𝑃𝑛 |𝐿

𝑇 |𝑄𝑚

〉
= 𝑑𝑛 (0)𝑑∗𝑚(𝑚) (−1)𝑚

(−𝑛)𝑚(𝛼 + 1)𝑚+1
𝑚!(𝛼 + 𝛽 + 1)𝑚

𝑛−𝑚∑
𝑙=0

(−𝑛 + 𝑚)𝑙

𝑙!
. (3.46)

We then recall the binomial formula

(1 − 𝑥) 𝜉 =
∞∑
𝑘=0

(−𝜉)𝑘
𝑘!

𝑥𝑘 (3.47)

to conclude that 〈
𝑃𝑛 |𝐿

𝑇 |𝑄𝑚

〉
= 𝑁𝑛𝛿𝑚,𝑛, (3.48)

with

𝑁𝑛 = 𝑑𝑛 (0)𝑑∗𝑛 (𝑛)
(𝛼 + 1)𝑛+1
(𝛼 + 𝛽 + 1)𝑛

. (3.49)
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3.3. Askey polynomials and their biorthogonal partners

Let us now identify some of the special functions that arise from this representation theoretic setting. In
light of the completeness relation (3.26) and the orthogonality relation (3.48), we see that 〈̃𝑧 |𝑃𝑛〉 and〈
𝑧 |𝐿𝑇 |𝑄𝑛

〉
provide two families of biorthogonal functions on the unit circle, since

1
2𝜋𝑖𝛾�̃�

∮
|𝑧 |=1

𝑑𝑧〈𝑃𝑛 |̃𝑧〉
〈
𝑧 |𝐿𝑇 |𝑄𝑚

〉
=
〈
𝑃𝑛 |𝐿

𝑇 |𝑄𝑚

〉
= 𝑁𝑛𝛿𝑚,𝑛. (3.50)

These are explicitly obtained in the following.

3.3.1. The overlaps 〈̃𝑧 |𝑃𝑛〉

From the expansions (3.21) and (3.31) of |̃𝑧〉 and |𝑃𝑛〉 over the orthonormal basis vectors |𝜏, 𝑘〉, we have

〈̃𝑧 |𝑃𝑛〉 = �̃�
𝑛∑

𝑙=−∞

(𝑧 − 1)𝑙+�̃�𝑑𝑛 (𝑙). (3.51)

Upon inserting equation (3.34) for 𝑑𝑛 (𝑙), we observe that 〈̃𝑧 |𝑃𝑛〉 is the 2𝐹1 polynomial

〈̃𝑧 |𝑃𝑛〉 = �̃�𝑑𝑛 (0) (𝑧 − 1) �̃�2𝐹1

(
−𝑛, 𝛼 + 1
𝛼 + 𝛽 + 1

; 1 − 𝑧

)
. (3.52)

The Askey polynomials are then recognised with the help of the Pfaff formula [1]:

2𝐹1

(
−𝑛, 𝑏

𝑐
; 𝑧
)
=

(𝑐 − 𝑏)𝑛
(𝑐)𝑛

2𝐹1

(
−𝑛, 𝑏

−𝑛 + 𝑏 + 1 − 𝑐
; 1 − 𝑧

)
. (3.53)

We find

〈̃𝑧 |𝑃𝑛〉 = �̃�𝑑𝑛 (0)
(𝛼 + 1)𝑛

(𝛼 + 𝛽 + 1)𝑛
(𝑧 − 1) �̃�𝑃𝑛 (𝑧; 𝛼, 𝛽), (3.54)

where the polynomials 𝑃𝑛 (𝑧; 𝛼, 𝛽) are as defined in equation (1.1).

Proposition 3.1. The Askey polynomials 𝑃𝑛 (𝑧; 𝛼, 𝛽) have a natural interpretation in the representation
theory of the meta-Jacobi algebra. They occur according to equation (3.54) as the overlaps between
two bases of the module 𝔙

(
𝜏 = 1

2 (𝛼 + 𝛽 + 1)
)

satisfying, respectively, equations defined in terms of the
generators 𝑋, 𝐿, 𝑀 of 𝑚𝔍. The first basis consists in the eigenvectors of 𝑋𝑇 (the transpose of X) and
the second is formed by the vectors solving the GEVP defined by L and M.

One may remark that the reducible module allows us to posit the eigenvalue problem for X.

3.3.2. The overlaps
〈
𝑧 |𝐿𝑇 |𝑄𝑚

〉
The biorthogonal partners to the Askey polynomials are obtained in a similar fashion. From equations
(3.8), (3.40) and (3.41) we have

𝐿𝑇 |𝑄𝑚〉 = 𝑑∗𝑚(𝑚) (𝑚 + 𝛼 + 1)
∞∑
𝑙=0

(−1)𝑙 (𝑚 + 1)𝑙 (𝑚 + 𝛼 + 𝛽 + 1)𝑙
𝑙!(𝑚 + 𝛼 + 1)𝑙

|𝜏, 𝑙 + 𝑚〉. (3.55)

Combining with equation (3.20) and using the orthonormality of the basis vectors |𝜏, 𝑘〉, we find

〈
𝑧 |𝐿𝑇 |𝑄𝑚

〉
= 𝛾𝑑∗𝑚(𝑚) (𝑚 + 𝛼 + 1) (𝑧 − 1)−𝑚−𝑎

2𝐹1

(
𝑚 + 1, 𝑚 + 𝛼 + 𝛽 + 1

𝑚 + 𝛼 + 1
;

1
1 − 𝑧

)
. (3.56)
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We may now use the fact that any three solutions of the hypergeometric equation are related by linear
relations and call upon transformation formulas of 2𝐹1 series under homographic transformations to
make the biorthogonal partners of the Askey polynomials appear in this overlap. Indeed, following the
steps described in Appendix A, we arrive at the following expression:〈

𝑧 |𝐿𝑇 |𝑄𝑚

〉
= 𝛾𝑑∗𝑚 (𝑚) (𝑚 + 𝛼 + 1) (𝑧 − 1)1−𝑎

×

[
Γ(𝑚 + 𝛼 + 1)Γ(𝛽 + 1)
Γ(𝑚 + 𝛽 + 2)Γ(𝛼) 2𝐹1

(
𝑚 + 1, 1 − 𝛼

𝑚 + 𝛽 + 2
; 𝑧
)

−
Γ(𝑚 + 𝛼 + 1)Γ(𝑚 + 𝛽 + 1)

𝑚!Γ(𝑚 + 𝛼 + 𝛽 + 1)
(−𝑧)−1−𝛽 (1 − 𝑧)𝛼+𝛽𝑄𝑚

(
1
𝑧
, 𝛼, 𝛽

) ]
, (3.57)

where 𝑄𝑚 (𝑧) is defined as in equation (1.2).

Remark 3.4. Note that the first term in this expression for
〈
𝑧 |𝐿𝑇 |𝑄𝑚

〉
is a power series, while the

second one, which contains the polynomial 𝑄𝑛 in the variable 1
𝑧 , has the transcendental factor 𝑧−𝛽 .

Restrictions on z could be imposed with regard to the convergence of the power series, or it could be
treated formally, as the focus is on the polynomial partner 𝑄𝑛 (𝑧, 𝛼, 𝛽).

The following proposition summarises the main results of this subsection.

Proposition 3.2. The biorthogonal partners 𝑄𝑛 (𝑧, 𝛼, 𝛽) of the Askey polynomials 𝑃𝑛 (𝑧; 𝛼, 𝛽) arise in
the representation theory of the meta-Jacobi algebra in the overlaps (see equation (3.57)), between the
eigenbasis vectors of the generator X and the basis vectors that obey the GEVP defined by the operators
𝑀𝑇 and 𝐿𝑇 .

3.3.3. Biorthogonality relation
The interpretation of the Askey polynomials in the framework of the meta-Jacobi algebra leads to a
natural derivation of their biorthogonality. Recall equation (3.50). First observe that in multiplying the
expressions of the overlaps 〈̃𝑧 |𝑃𝑛〉 and

〈
𝑧 |𝐿𝑇 |𝑄𝑚

〉
, as they are given by formulas (3.54) and (3.57),

the factor (𝑧 − 1)1−𝑎+�̃� reduces to 1 because of equation (3.24). Furthermore, one observes that the
product of the first term in equation (3.57) – a power series – with the polynomial 𝑃𝑛 (𝑧, 𝛼, 𝛽) will give
a vanishing contribution when integrated over the circle |𝑧 | = 1. Equation (3.50) thus yields

𝑑𝑛 (0)𝑑∗𝑚(𝑚)
(𝑚 + 𝛼 + 1) (𝛼 + 1)𝑛

(𝛼 + 𝛽 + 1)𝑛
Γ(𝑚 + 𝛼 + 1)Γ(𝑚 + 𝛽 + 1)

𝑚!Γ(𝑚 + 𝛼 + 𝛽 + 1)

×
−1
2𝜋𝑖

∮
|𝑧 |=1

𝑑𝑧(−𝑧)−1−𝛽 (1 − 𝑧)𝛼+𝛽𝑃𝑛 (𝑧, 𝛼, 𝛽)𝑄𝑚

(
1
𝑧
, 𝛼, 𝛽

)
= 𝑁𝑛𝛿𝑚,𝑛. (3.58)

Recalling that 𝑁𝑛 is given by equation (3.49), we thus recover precisely the biorthogonality relation
(1.3).

3.4. Eigenbases of M and 𝑀𝑇

We now undertake to show that the Jacobi polynomials can be described within the same algebraic
framework. We already noted in Proposition 2.2 that the elements X and M generate the Jacobi algebra
𝔍, which is thus embedded in 𝑚𝔍. We therefore expect to see the Jacobi polynomials occur in the
overlaps between the eigenvectors of X, 𝑋𝑇 and 𝑀𝑇 , M, respectively. We shall hence first determine the
eigenbases of 𝔙(𝜏) associated to M and 𝑀𝑇 .

From the two-diagonal action (3.6) of M, we see that the spectrum {𝜇𝑛} of this operator is of the form

𝜇𝑛 = 𝑛(𝑛 + 𝛼 + 1). (3.59)
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Consider the EVPs (3.19). Set

|𝐽𝑛〉 =
∞∑

𝑘=−∞

𝑓𝑛 (𝑘) |𝜏, 𝑘〉. (3.60)

The eigenvalue equation 𝑀 |𝐽𝑛〉 = 𝑛(𝑛 + 𝛼 + 1) |𝐽𝑛〉 yields the following two-term recurrence relation
for the coefficients 𝑓𝑛 (𝑘):

(𝑘 + 1 + 𝛼 + 𝛽) 𝑓𝑛 (𝑘 + 1) + [𝑘 (𝑘 + 𝛼 + 1) − 𝑛(𝑛 + 𝛼 + 1)] 𝑓𝑛 (𝑘) = 0, (3.61)

which can be rewritten as

(𝑘 + 1) (𝑘 + 1 + 𝛼 + 𝛽) 𝑓𝑛 (𝑘 + 1) + (𝑘 − 𝑛) (𝑘 + 𝑛 + 𝛼 + 1) 𝑓𝑛 (𝑘) = 0. (3.62)

Here again, we shall focus on the case 𝑛 ≥ 0. This equation is then found to imply that

𝑓𝑛 (𝑘) = 0 for 𝑘 > 𝑛 and 𝑘 ∈ Z− (3.63)

and is solved by

𝑓𝑛 (𝑘) = 𝑓𝑛 (0) (−1)𝑘
(−𝑛)𝑘 (𝑛 + 𝛼 + 1)𝑘
𝑘!(𝛼 + 𝛽 + 1)𝑘

, 𝑘 = 0, 1, . . . , 𝑛. (3.64)

Similarly, let

|̃𝐽𝑛〉 =
∞∑

𝑘=−∞

𝑓𝑛 (𝑘) |𝜏, 𝑘〉. (3.65)

The EVP 𝑀𝑇 |̃𝐽𝑛〉 = 𝑛(𝑛 + 𝛼 + 1) |̃𝐽𝑛〉 is readily seen to give

𝑘 (𝑘 + 𝛼 + 𝛽) 𝑓𝑛 (𝑘 − 1) + (𝑘 − 𝑛) (𝑘 + 𝑛 + 𝛼 + 1) 𝑓𝑛 (𝑘) = 0. (3.66)

In this instance, for 𝑚 ≥ 0, we observe that

𝑓𝑛 (𝑘) = 0 when 𝑘 < 𝑛. (3.67)

We set 𝑘 = 𝑛 + 𝑙, 𝑙 = 0, 1, 2, . . . , and convert equation (3.66) into

(𝑛 + 𝑙) (𝑛 + 𝑙 + 𝛼 + 𝛽) 𝑓𝑛 (𝑛 + 𝑙 − 1) + 𝑙 (𝑙 + 2𝑛 + 𝛼 + 1) 𝑓𝑛 (𝑛 + 𝑙) = 0 (3.68)

to find

𝑓𝑛 (𝑛 + 𝑙) = 𝑓𝑛 (𝑛) (−1)𝑙
(𝑛 + 1)𝑙 (𝑛 + 1 + 𝛼 + 𝛽)𝑙

𝑙!(2𝑛 + 𝛼 + 2)𝑙
. (3.69)

We can now verify that |𝐽𝑛〉 and ˜|𝐽𝑚〉 are orthogonal when 𝑚 ≠ 𝑛. This proceeds in a way similar
to the computation of

〈
𝑃𝑛 |𝐿

𝑇 |𝑄𝑚

〉
carried out before. Clearly, 〈𝐽𝑛 ˜|𝐽𝑚〉 = 0 if 𝑚 > 𝑛. If 𝑚 ≤ 𝑛, after

some algebraic simplifications we see that

〈𝐽𝑛 ˜|𝐽𝑚〉 = 𝑓𝑛 (0) 𝑓𝑚(𝑛) (−1)𝑚
(−𝑛)𝑚(𝑛 + 𝛼 + 1)𝑚
𝑚!(𝛼 + 𝛽 + 1)𝑚

2𝐹1

(
𝑚 − 𝑛, 𝑛 + 𝑚 + 𝛼 + 1

2𝑚 + 𝛼 + 2
; 1
)
. (3.70)
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From the Vandermonde formula [8]

2𝐹1

(
−𝑛, 𝑏

𝑐
; 1
)
=

(𝑐 − 𝑏)𝑛
(𝑐)𝑛

, (3.71)

we may then conclude that because of the factor (𝑚 − 𝑛+ 1)𝑛−𝑚 that appears, 〈𝐽𝑛 ˜|𝐽𝑚〉 = 0 unless 𝑛 = 𝑚,
in which case

〈𝐽𝑛 ˜|𝐽𝑚〉 = N𝑛𝛿𝑚,𝑛, (3.72)

with

N𝑛 = 𝑓𝑛 (0) 𝑓𝑛 (𝑛)
(𝑛 + 𝛼 + 1)𝑛
(𝛼 + 𝛽 + 1)𝑛

. (3.73)

3.5. Jacobi polynomials

We will now observe how the Jacobi polynomials emerge in this framework and indicate how this allows
for another derivation of their orthogonality relation.

3.5.1. The overlaps
Let us now look at the overlaps 〈̃𝑧 |𝐽𝑛〉 and 〈𝑧 ˜|𝐽𝑚〉. From equations (3.21), (3.60) and (3.64) we obtain

〈̃𝑧 |𝐽𝑛〉 = �̃� 𝑓𝑛 (0) (𝑧 − 1) �̃�2𝐹1

(
−𝑛, 𝑛 + 𝛼 + 1
𝛼 + 𝛽 + 1

; 1 − 𝑧

)
. (3.74)

Using equation (A.1) – or equivalently equation (3.53) – we arrive at

〈̃𝑧 |𝐽𝑛〉 = �̃�(𝑧 − 1) �̃�
(−1)𝑛Γ(1 + 𝛼 + 𝛽)Γ(𝛽)Γ(2𝑛 + 𝛼 + 1)Γ(1 − 𝛽)

Γ(−𝑛 + 𝛽)Γ(𝑛 + 𝛼 + 𝛽 + 1)Γ(𝑛 + 𝛼 + 1)Γ(𝑛 + 1 − 𝛽)
�̂�
(𝛼,𝛽)
𝑛 (𝑧), (3.75)

where �̂�
(𝛼,𝛽)
𝑛 (𝑧) are the Jacobi polynomials defined in equation (1.4) extended to the complex plane.

The second overlap is recovered from equations (3.20), (3.65) and (3.69). We find

〈𝑧 ˜|𝐽𝑚〉 = 𝛾 𝑓𝑚(𝑚) (𝑧 − 1)−𝑚−𝑎
2𝐹1

(
𝑚 + 1, 𝑚 + 𝛼 + 𝛽 + 1

2𝑚 + 𝛼 + 2
;

1
1 − 𝑧

)
. (3.76)

At this point, by performing the transformations described in Appendix B that make use of identities
involving gamma functions and solutions of the hypergeometric equation, the following formula is
discovered:

〈𝑧 ˜|𝐽𝑚〉 = (−1)𝑚+1𝛾 𝑓𝑚(𝑚) (𝑧 − 1)1−𝑎

×

[
Γ(2𝑚 + 𝛼 + 2)Γ(−𝛽)

Γ(𝑚 + 𝛼 + 1)Γ(𝑚 − 𝛽 + 1) 2𝐹1

(
𝑚 + 1,−𝑚 − 𝛼

1 + 𝛽
; 𝑧
)

+
(−1)𝑚Γ(2𝑚 + 𝛼 + 2)Γ(𝛽)Γ(2𝑚 + 𝛼 + 1)Γ(1 − 𝛽)

𝑚!Γ(𝑚 + 𝛼 + 𝛽 + 1)Γ(𝑚 + 𝛼 + 1)Γ(𝑚 + 1 − 𝛽)
(−𝑧)−𝛽 (1 − 𝑧)𝛼+𝛽 �̂�

(𝛼,𝛽)
𝑚 (𝑧)

]
. (3.77)

Remark 3.5. As already encountered in expression (3.57) of 〈𝑧 |𝐿𝑇 |𝑄𝑚〉, we see that the first term in
equation (3.77) is a power series, and the second, which involves the Jacobi polynomials, contains the
transcendental term 𝑧−𝛽 .
Proposition 3.3. The Jacobi polynomials �̂�

(𝛼,𝛽)
𝑚 (𝑧) over C also arise in the context of the meta-Jacobi

algebra 𝑚𝔍. They occur as per equations (3.75) and (3.77) in two overlaps between eigenbases of the
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module 𝔙
(

1
2 (𝛼 + 𝛽 + 1)

)
: on the one hand between the eigenstates of M and 𝑋𝑇 and on the other hand

between those of 𝑀𝑇 and X.

3.5.2. Orthogonality
This interpretation of the Jacobi polynomials in the framework of the algebra 𝑚𝔍 entails a derivation
of their orthogonality. Owing to the completeness relation (3.28), we have

1
2𝜋𝑖𝛾�̃�

∮
𝐶|𝑧 |=1

〈𝐽𝑛 |̃𝑧〉〈𝑧 ˜|𝐽𝑚〉 = 〈𝐽𝑛 ˜|𝐽𝑚〉 = N𝑛𝛿𝑚,𝑛, (3.78)

where N𝑛 is given by equation (3.73). When substituting expressions (3.75) and (3.77) for 〈̃𝑧 |𝐽𝑛〉 and
〈𝑧 ˜|𝐽𝑚〉, we first observe anew that the resulting factor (𝑧−1)1−𝑎+�̃� = 1, since 1−𝑎+ �̃� = 0. Then we note
that the product of 〈̃𝑧 |𝐽𝑛〉 with the first term of equation (3.77) is a power series that will integrate to 0
over the unit circle. Taking into account formula (3.73) for N𝑛 and after some simplifications, equation
(3.78) thus amounts to

−
1

2𝜋𝑖

(
𝜋

sin 𝜋𝛽

) ∮
𝐶|𝑧 |=1

𝑑𝑧(−𝑧)−𝛽 (1 − 𝑧)𝛼+𝛽 �̂�
(𝛼,𝛽)
𝑛 (𝑧)�̂�

(𝛼,𝛽)
𝑚 (𝑧) = ℎ𝑛𝛿𝑚,𝑛, (3.79)

with ℎ𝑛 given in equation (1.6). In obtaining equation (3.79) we have used the identity Γ(𝑥)Γ(1 − 𝑥) =
𝜋

sin 𝜋𝑥 , and in particular

Γ(−𝑛 + 𝛽)Γ(𝑛 + 1 − 𝛽) =
𝜋

sin 𝜋(−𝑛 + 𝛽)
= (−1)𝑛

𝜋

sin 𝜋𝛽
. (3.80)

Finally, the orthogonality of the Jacobi polynomials on the interval [0, 1] is recovered by using
the contour depicted in Figure 1 and computations carried out in [14]. Schematically the contour
Ξ = 𝐶 |𝑧 |=1 + [1, 0] +𝐶𝜖 + [0, 1], it is composed of the unit circle (short of crossing the branch cut), the
segment from 𝑥 = 1 to 𝑥 = 0 below the branch cut, a circle of radius 𝜖 around 𝑧 = 0 and the segment
from 𝑥 = 0 to 𝑥 = 1 above the branch cut. Consider the integral in equation (3.79) with the contour 𝐶 |𝑧 |=1
replaced by the contour Ξ of Figure 1. Since no singularities are enclosed by Ξ, that integral is equal to 0.

If we restrict 𝛽 to be smaller than 1 – that is, if we take 𝛽 < 1 as in the standard definition of the
Jacobi polynomials – it is readily seen that

lim
𝜖→0

1
2𝜋𝑖

∮
𝐶𝜖

𝑑𝑧(−𝑧)−𝛽 (1 − 𝑧)𝛼+𝛽 �̂�
(𝛼,𝛽)
𝑛 (𝑧)�̂�

(𝛼,𝛽)
𝑚 (𝑧) = 0, for 𝛽 < 1. (3.81)

It follows that the integral over 𝐶 |𝑧 |=1 must be the negative of the sum of the integrals over and above
the real axis. Hence, recalling the choice of branch (−𝑧)−𝛽 = |𝑧 |−𝛽 when arg 𝑧 = 𝜋, we have

−
1

2𝜋𝑖

(
𝜋

sin 𝜋𝛽

) ∮
𝐶|𝑧 |=1

𝑑𝑧(−𝑧)−𝛽 (1 − 𝑧)𝛼+𝛽 �̂�
(𝛼,𝛽)
𝑛 (𝑧)�̂�

(𝛼,𝛽)
𝑚 (𝑧) =

1
2𝑖

(
1

sin 𝜋𝛽

)
𝑒𝑖 𝜋𝛽

(
1 − 𝑒−2𝜋𝑖𝛽

) ∫ 1

0
𝑥−𝛽 (1 − 𝑥)𝛼+𝛽 �̂�

(𝛼,𝛽)
𝑛 (𝑥)�̂�

(𝛼,𝛽)
𝑚 (𝑥)𝑑𝑥. (3.82)

The factors before the integral sign in the last expression cancel, and this gives the orthogonality relation
(1.5) of the Jacobi polynomials in view of equation (3.79).
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Figure 1. The contour Ξ.

4. Algebraic derivation of the properties of the Askey polynomials

We shall indicate in this section how various properties of the biorthogonal Askey polynomials on the
circle naturally follow from their interpretation based on the meta-Jacobi algebra. Recall that

|𝑃𝑛〉 = 𝑑𝑛 (0)
𝑛∑

𝑘=0
(−1)𝑘

(−𝑛)𝑘 (𝛼 + 1)𝑘
𝑘!(𝛼 + 𝛽 + 1)𝑘

|𝜏, 𝑘〉. (4.1)

Looking at the overlap 〈̃𝑧 |𝑃𝑛〉 given in equation (3.54), without loss of generality we can set from now on

�̃� = 1, �̃� = 0, 𝑎 = 1. (4.2)

It is moreover natural to take the initial values 𝑑𝑛 (0) of the recurrence relation (3.32) to be

𝑑𝑛 (0; 𝛼, 𝛽) =
(𝛼 + 𝛽 + 1)𝑛
(𝛼 + 1)𝑛

, (4.3)

so that

〈̃𝑧 |𝑃𝑛〉 = 𝑃𝑛 (𝑧; 𝛼, 𝛽), (4.4)

identifying 〈̃𝑧 |𝑃𝑛〉 precisely with the Askey polynomials. This also means that |𝜏, 𝑛〉 has coefficient 1
in |𝑃𝑛〉:

|𝑃𝑛〉 =
(𝛼 + 𝛽 + 1)𝑛
(𝛼 + 1)𝑛

|𝜏, 0〉 + · · · + |𝜏, 𝑛〉. (4.5)
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4.1. Action of L and 𝑅 = 𝑋𝐿 in the basis {|𝑃𝑛〉}

We shall now show that the generator L and the product 𝑋𝐿 act in a two-diagonal fashion in the basis
{|𝑃𝑛〉, 𝑛 = 0, 1, . . . }. We have

𝐿 |𝑃𝑛 (𝛼, 𝛽)〉 =
(𝛼 + 𝛽 + 1)𝑛
(𝛼 + 1)𝑛

𝑛∑
𝑘=0

(−1)𝑘
(−𝑛)𝑘 (𝛼 + 1)𝑘
𝑘!(𝛼 + 𝛽 + 1)𝑘

𝐿 |𝜏, 𝑘〉. (4.6)

From equation (3.5) and the identity

(−𝑛)𝑘 (𝑘 + 𝛼 + 1) = (−𝑛)𝑘 [𝑛 + 𝛼 + 1 + (−𝑛 + 𝑘)]

= (𝑛 + 𝛼 + 1) (−𝑛)𝑘 − 𝑛(−𝑛 + 1)𝑘 , (4.7)

we see that

𝐿 |𝑃𝑛 (𝛼, 𝛽)〉 = (𝑛 + 𝛼 + 1) |𝑃𝑛 (𝛼, 𝛽)〉 −
𝑛(𝑛 + 𝛼 + 𝛽)

(𝑛 + 𝛼)
|𝑃𝑛−1 (𝛼, 𝛽)〉. (4.8)

Alternatively, using

(𝑘 + 𝛼 + 1) (𝛼 + 1)𝑘 = (𝛼 + 1)𝑘+1 = ((𝛼 + 1) + 1)𝑘 (𝛼 + 1) (4.9)

we note that L also has the effect of shifting the parameters:

𝐿 |𝑃𝑛 (𝛼, 𝛽)〉 = (𝑛 + 𝛼 + 1) |𝑃𝑛 (𝛼 + 1, 𝛽 − 1)〉. (4.10)

Consider now the action of the operator 𝑅 = 𝑋𝐿. Knowing that L acts diagonally as per equation
(3.5) on the basis vectors |𝜏, 𝑘〉, and according to equation (3.7), we have

𝑅 |𝑃𝑛 (𝛼, 𝛽)〉 =
(𝛼 + 𝛽 + 1)𝑛
(𝛼 + 1)𝑛

𝑛∑
𝑘=0

(−1)𝑘
(−𝑛)𝑘 (𝛼 + 1)𝑘 (𝑘 + 𝛼 + 1)

𝑘!(𝛼 + 𝛽 + 1)𝑘
[|𝜏, 𝑘〉 + |𝜏, 𝑘 + 1〉] . (4.11)

Collecting the factors of the vectors |𝜏, 𝑘〉, 𝑘 = 0, . . . , 𝑛 + 1, we find

𝑅 |𝑃𝑛 (𝛼, 𝛽)〉 =
(𝛼 + 𝛽 + 1)𝑛
(𝛼 + 1)𝑛

[
(𝛼 + 1) |𝜏, 0〉

+

𝑛∑
𝑘=1

(−1)𝑘 (𝛼 + 1)𝑘
𝑘!(𝛼 + 𝛽 + 1)𝑘

[(−𝑛)𝑘 (𝑘 + 𝛼 + 1) − (−𝑛)𝑘−1𝑘 (𝑘 + 𝛼 + 𝛽)] |𝜏, 𝑘〉

+
(𝛼 + 1)𝑛+1
(𝛼 + 𝛽 + 1)𝑛

|𝜏, 𝑛 + 1〉

]
. (4.12)

The two relations

𝑘 (−𝑛)𝑘−1 = (−𝑛)𝑘 − (−𝑛 − 1)𝑘 , (4.13)

(−𝑛)𝑘 (−𝑛 − 1) − (−𝑛 − 1)𝑘 (𝑛 + 1 − 𝑘) = 0 (4.14)
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come in handy in deriving the following identity:

(−𝑛)𝑘 (𝑘 + 𝛼 + 1) − 𝑘 (−𝑛)𝑘−1(𝑘 + 𝛼 + 𝛽)

= (−𝑛)𝑘 (𝑘 + 𝛼 + 1) − [(−𝑛)𝑘 − (−𝑛 − 1)𝑘 ] (𝑘 + 𝛼 + 𝛽)

= (−𝑛)𝑘 (1 − 𝛽) + (−𝑛 − 1)𝑘 (𝑘 + 𝛼 + 𝛽)

= (−𝑛)𝑘 (−𝑛 − 𝛽) + (−𝑛 − 1)𝑘 (𝑛 + 𝛼 + 𝛽 + 1). (4.15)

Clearly, equation (4.13) has been used in getting the second line and equation (4.14) has been added
to the third line to obtain the end result. Upon inserting this relation (4.15) into equation (4.12), we
recognise easily that R is a two-diagonal raising operator:

𝑅 |𝑃𝑛 (𝛼, 𝛽)〉 = (𝑛 + 𝛼 + 1) |𝑃𝑛+1 (𝛼, 𝛽)〉 − (𝛽 + 𝑛) |𝑃𝑛 (𝛼, 𝛽)〉. (4.16)

In the following we shall also consider the element

�̃� = 𝑋𝑀. (4.17)

Remark 4.1. Given that the vectors |𝑃𝑛 (𝛼, 𝛽)〉 satisfy the GEVP 𝑀 |𝑃𝑛 (𝛼, 𝛽)〉 = 𝑛𝐿 |𝑃𝑛 (𝛼, 𝛽)〉, equa-
tions (4.8) and (4.16) readily provide the actions of M and �̃� on these vectors.

4.2. A differential realisation

A differential model of the meta-Jacobi algebra is directly obtained. With the choices in equation (4.2),
we have

〈̃𝑧 |𝜏, 𝑘〉 ≡ 𝑓 (𝑧, 𝑘) = (𝑧 − 1)𝑘 . (4.18)

We can dually define an operator acting on the variable z as follows:

O𝑧 〈̃𝑧 |𝜏, 𝑘〉 = 〈̃𝑧 |𝑂 |𝜏, 𝑘〉 = O𝑘 𝑓 (𝑧, 𝑘), (4.19)

whereO𝑧 corresponds to the operator O acting on the module𝔙
(

1
2 (𝛼 + 𝛽 + 1)

)
and O𝑘 as in Remark 3.2,

acts on the components 𝑓 (𝑧, 𝑘) of the vector |̃𝑧〉. With 𝑂 = 𝐿, 𝑀, 𝑋 we find the following:

Proposition 4.1. The differential operators L, M and X provide a realisation of the commutation
relations (2.1), (2.2) and (2.3) of the meta-Jacobi algebra:

L = (𝑧 − 1)𝜕𝑧 + (𝛼 + 1)I, (4.20)

M = 𝑧(𝑧 − 1)𝜕2
𝑧 + [(𝛼 + 2)𝑧 + 𝛽 − 1] 𝜕𝑧 ; (4.21)

X = 𝑧. (4.22)

It follows that 𝑅 = 𝑋𝐿 and �̃� = 𝑋𝑀 are realised by

R = 𝑧(𝑧 − 1)𝜕𝑧 + (𝛼 + 1)𝑧, (4.23)

R̃ = 𝑧2(𝑧 − 1)𝜕2
𝑧 + 𝑧[(𝛼 + 2)𝑧 + 𝛽 − 1]𝜕𝑧 . (4.24)

Remark 4.2. One may also take X acting on the left on 〈̃𝑧 | and giving the eigenvalue z so that

R〈̃𝑧 |𝑃𝑛 (𝛼, 𝛽)〉 = 〈̃𝑧 |𝑋𝐿 |𝑃𝑛 (𝛼, 𝛽)〉 = 𝑧 〈̃𝑧 |𝐿 |𝑃𝑛 (𝛼, 𝛽)〉 = 𝑧L〈̃𝑧 |𝑃𝑛 (𝛼, 𝛽)〉, (4.25)

and similarly for �̃� = 𝑋𝑀 .
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Remark 4.3. Note thatL andM have the property of stabilising spaces of polynomials of given degrees,
whereas X, R, R̃ raise the degree by 1. In the spirit of [6], [13], [26], for example, X, R, R̃ are operators
of Heun type.

Remark 4.4. Observe that M precisely coincides with the hypergeometric operator (1.7), albeit in the
variable z.

Remark 4.5. This differential model for 𝑚𝔍 can also be retrieved by using the Barut–Ghirardello
realisation of 𝔰𝔲(1, 1),

𝐽0 = (𝑧 − 1)
𝑑

𝑑𝑧
+ 𝜏,

𝐽+ = (𝑧 − 1),

𝐽− = (𝑧 − 1)
𝑑2

𝑑𝑧2 + 2𝜏
𝑑

𝑑𝑧
, 𝜏 =

1
2
(𝛼 + 𝛽 + 1), (4.26)

in formulas (2.10), (2.11) and (2.12), giving L, M and X in terms of the 𝔰𝔲(1, 1) generators. Note that
the variable z is here translated by 1 with respect to the usual Barut–Ghirardello formulas.

Given expression (4.4) of 𝑃𝑛 (𝑧; 𝛼, 𝛽) as 〈̃𝑧 |𝑃𝑛 (𝛼, 𝛽)〉, in view of the actions (4.8) and (4.16) of L and
R on the vectors |𝑃𝑛〉, of Remark 4.1 and of the realisations of these operators already given (equations
(4.20)–(4.24)), we have the following:

Proposition 4.2. The biorthogonal Askey polynomials 𝑃𝑛 (𝑧; 𝛼, 𝛽) on the unit circle satisfy the following
differential identities:

L𝑃𝑛 (𝑧; 𝛼, 𝛽) = (𝑛 + 𝛼 + 1)𝑃𝑛 (𝑧; 𝛼, 𝛽) −
𝑛(𝛼 + 𝛽 + 𝑛)

𝛼 + 𝑛
𝑃𝑛−1 (𝑧; 𝛼, 𝛽), (4.27)

M𝑃𝑛 (𝑧; 𝛼, 𝛽) = 𝑛(𝑛 + 𝛼 + 1)𝑃𝑛 (𝑧; 𝛼, 𝛽) −
𝑛2 (𝛼 + 𝛽 + 𝑛)

𝛼 + 𝑛
𝑃𝑛−1 (𝑧; 𝛼, 𝛽), (4.28)

R𝑃𝑛 (𝑧; 𝛼, 𝛽) = (𝑛 + 𝛼 + 1)𝑃𝑛+1(𝑧; 𝛼, 𝛽) − (𝛽 + 𝑛)𝑃𝑛 (𝑧; 𝛼, 𝛽), (4.29)

R̃𝑃𝑛 (𝑧; 𝛼, 𝛽) = 𝑛(𝑛 + 𝛼 + 1)𝑃𝑛+1 (𝑧; 𝛼, 𝛽) − 𝑛(𝛽 + 𝑛)𝑃𝑛 (𝑧; 𝛼, 𝛽). (4.30)

4.3. Bispectrality

The bispectral equations of the Askey polynomials can now easily be identified and interpreted in terms
of generalised eigenvalue problems.

4.3.1. The differential equation
The GEVP 𝑀 |𝑃𝑛 (𝛼, 𝛽)〉 = 𝑛𝐿 |𝑃𝑛 (𝛼, 𝛽)〉 translates after projection on 〈̃𝑧 | into the second-order differ-
ential equation

M𝑃𝑛 (𝑧; 𝛼, 𝛽) = 𝑛L𝑃𝑛 (𝑧; 𝛼, 𝛽), (4.31)

with eigenvalue n and where the operators M and L are respectively given by equations (4.28) and
(4.27).

4.3.2. The recurrence relation
The recurrence relation is obtained by considering the GEVP

R𝑃𝑛 (𝑧; 𝛼, 𝛽) = 𝑧L𝑃𝑛 (𝑧; 𝛼, 𝛽), (4.32)
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which is satisfied by construction (see equation (4.25) in Remark 4.2). Expressing in equation (4.32)
the two-diagonal actions (4.27) and (4.29) of L and R, one arrives at the recurrence relation

𝑃𝑛+1 (𝑥) + 𝑏𝑛𝑃𝑛 (𝑥) = 𝑥 (𝑃𝑛 (𝑥) + 𝑔𝑛𝑃𝑛−1 (𝑥)) , (4.33)

where

𝑏𝑛 = −
𝛽 + 𝑛

𝛼 + 𝑛 + 1
, 𝑔𝑛 = −

𝑛(𝑛 + 𝛼 + 𝛽)

(𝛼 + 𝑛) (𝛼 + 𝑛 + 1)
. (4.34)

This recurrence relation was obtained by Hendriksen and van Rossum in [14]. It was derived in [12] by
considering linear pencils in 𝔰𝔩2. It is also constructed through a gluing procedure by Kim and Stanton
in their recent study of 𝑅𝐼 polynomials [17].

Remark 4.6. It is manifest from this recurrence relation of 𝑅𝐼 -type [16] that z (resp., X) is a lower
Hessenberg matrix on the space of Askey polynomials (resp., in the basis {|𝑃𝑛 (𝛼, 𝛽)〉}). This feature of
the representation theory of 𝑚𝔍 was also observed in a study of the meta-Hahn algebra [29].

Proposition 4.3. The biorthogonal Askey polynomials defined on the unit circle are bispectral. They
satisfy the differential equation (4.31) and the recurrence relation of 𝑅𝐼 -type (4.33) with coefficients
(4.34). Both spectral equations are of GEVP type.

4.4. Contiguity relations

Some contiguity relations for the Askey polynomials also arise naturally in the meta-Jacobi algebra
framework. Indeed, we already observed in equation (4.10) that the generator L has the effect of
performing the shifts 𝛼 → 𝛼 + 1, 𝛽 → 𝛽 − 1 when acting on |𝑃𝑛 (𝛼, 𝛽)〉. That M has a similar effect
follows from the fact that 𝑀 = 𝑛𝐿 in the GEVP basis |𝑃𝑛 (𝛼, 𝛽)〉. This translates into the following for
the polynomials 𝑃𝑛 (𝛼, 𝛽) = 〈̃𝑧 |𝑃𝑛 (𝛼, 𝛽)〉:

Proposition 4.4. The Askey polynomials 𝑃𝑛 (𝛼, 𝛽) verify the following contiguity equations:

L𝑃𝑛 (𝑧; 𝛼, 𝛽) = (𝛼 + 𝑛 + 1)𝑃𝑛 (𝑧; 𝛼 + 1, 𝛽 − 1), (4.35)

M𝑃𝑛 (𝑧; 𝛼, 𝛽) = 𝑛(𝛼 + 𝑛 + 1)𝑃𝑛 (𝑧; 𝛼 + 1, 𝛽 − 1), (4.36)

where L and M are the differential operators (4.20) and (4.21), respectively.

Remark 4.7. Given the explicit form (1.1) of the Askey polynomials, these relations can be checked
directly on 𝑃𝑛 (𝑧; 𝛼, 𝛽) with the differential operators L and M. Having done this, comparing equations
(4.35) and (4.36) offers a way to show that the Askey polynomials are solutions of the GEVP (4.31).

4.5. Solutions of the generalised eigenvalue problems in the differential realisation

We shall finally examine how solving the GEVP M 𝑓 (𝑧) = 𝑛L 𝑓 (𝑧) and the adjoint problem compares
to the representation-theoretic computations that were performed for the overlaps 〈̃𝑧 |𝑃𝑛 (𝛼, 𝛽)〉 and〈
𝑧 |𝐿𝑇 |𝑄𝑚 (𝛼, 𝛽)

〉
. A first look shows that the GEVPs in the differential model will be of hypergeometric

nature, as is confirmed by the expressions of the overlaps. Let us focus on this more closely.
Given expressions (4.20) and (4.21) for L and M, we see that M 𝑓 (𝑧) = 𝑛L 𝑓 (𝑧) takes the form of

the hypergeometric equation [5]

𝑧(1 − 𝑧)
𝑑2 𝑓

𝑑𝑧2 + [𝑐 − (𝑎 + 𝑏 + 1)𝑧]
𝑑𝑓

𝑑𝑧
− 𝑎𝑏 𝑓 = 0, (4.37)
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with parameters

𝑎 = −𝑛, 𝑏 = 𝛼 + 1, 𝑐 = 1 − 𝑛 − 𝛽. (4.38)

In the following we shall use Bateman’s nomenclature [5] for the 24 Kummer solutions; these are
arranged in six sets such that the four elements in each set represent the same function. The representatives
𝑢1, 𝑢2, . . . , 𝑢6 of the sets are in general different, although equation (3.53) is a case where 𝑢1 ∝ 𝑢2. With
the parameters given by equation (4.38), it is immediate to see that the solution

𝑢1 = 2𝐹1

(
𝑎, 𝑏

𝑐
; 𝑧
)

(4.39)

will yield directly (up to a constant) the Askey polynomials 𝑃𝑛 (𝑧; 𝛼, 𝛽).
Consider now the adjoint operators

L𝑇 = (1 − 𝑧)𝜕𝑧 + 𝛼I, (4.40)

M𝑇 = 𝑧(𝑧 − 1)𝜕2
𝑧 + [(2 − 𝛼)𝑧 − 𝛽 − 1]𝜕𝑧 − 𝛼I. (4.41)

The adjoint GEVP M𝑇 𝑓 ∗(𝑧) = 𝑚L 𝑓 ∗(𝑧) also turns out to yield the hypergeometric equation (4.37),
but this time with parameters

𝑎 = 𝑚 + 1, 𝑏 = −𝛼, 𝑐 = 1 + 𝛽 + 𝑚. (4.42)

Recall that L𝑇 𝑓 ∗(𝑧) will provide a solution orthogonal to 𝑓 (𝑧). Selecting 𝑢1 for 𝑓 ∗ also will lead to
functions trivially orthogonal over the unit circle. Consider instead

𝑓 ∗(𝑧) = 𝑢3 = (1 − 𝑧)−𝑎2𝐹1

(
𝑎, 𝑐 − 𝑏

𝑎 + 1 − 𝑏
;

1
1 − 𝑧

)
. (4.43)

Using

(𝑘 + 𝑚 + 𝛼 + 1)
(𝑚 + 𝛼 + 2)𝑘

=
(𝑚 + 𝛼 + 1)
(𝑚 + 𝛼 + 1)𝑘

, (4.44)

it is easy to find that in that case,

L𝑇 𝑓 ∗(𝑧) = (𝑚 + 𝛼 + 1) (1 − 𝑧)−𝑚−1
2𝐹1

(
𝑚 + 1, 𝑚 + 𝛼 + 𝛽 + 1

𝑚 + 𝛼 + 1
;

1
1 − 𝑧

)
. (4.45)

We thus see that choosing the solution 𝑢3 yields the result (3.56) obtained algebraically for〈
𝑧 |𝐿𝑇 |𝑃𝑚 (𝛼, 𝛽)

〉
. (Recall that the constant a in this expression is here set equal to 1.) The reader

is reminded of equation (3.57), where this function is seen to be composed of two parts: one a power se-
ries in z and the other the function orthogonal to the Askey polynomial dressed with the hypergeometric
weight.

Let us point out that within the differential realisation, it is possible to pick a solution of M𝑇 𝑓 ∗(𝑧) =

𝑚L 𝑓 ∗(𝑧) that will solely give the biorthogonal partner 𝑄𝑚

(
1
𝑧 , 𝛼, 𝛽

)
multiplied by the weight. Indeed,

take 𝑓 ∗(𝑧) to be given by the solution

𝑢4 = (1 − 𝑧)−𝑏2𝐹1

(
𝑏, 𝑐 − 𝑎

𝑏 + 1 − 𝑎
;

1
1 − 𝑧

)
. (4.46)
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Substituting the parameters (4.42), we have in this instance

𝑓 ∗(𝑧) = (1 − 𝑧)𝛼2𝐹1

(
−𝛼, 𝛽

−𝛼 − 𝑚
;

1
1 − 𝑧

)
=

∞∑
𝑘=0

(−𝛼)𝑘 (𝛽)𝑘
(−𝛼 − 𝑚)𝑘

(1 − 𝑧)−𝑘+𝛼

𝑘!
. (4.47)

The action of L𝑇 is again readily computed when the argument is a function of (1 − 𝑧):

L𝑇 𝑓 ∗(𝑧) =
∞∑
𝑘=1

(−𝛼)𝑘 (𝛽)𝑘
(−𝛼 − 𝑚)𝑘

(1 − 𝑧)−𝑘+𝛼

(𝑘 − 1)!

=
∞∑
𝑙=0

(−𝛼)𝑙+1(𝛽)𝑙+1
(−𝛼 − 𝑚)𝑙+1

(1 − 𝑧)−𝑙+𝛼−1

𝑙!

=
𝛼𝛽

(𝛼 + 𝑚)
(1 − 𝑧)𝛼−1

2𝐹1

(
−𝛼 + 1, 𝛽 + 1

1 − 𝛼 − 𝑚
;

1
1 − 𝑧

)
, (4.48)

where we have used (𝑥)𝑙+1 = 𝑥(𝑥+1)𝑙 . We thus observe that the action of L𝑇 is to effect 𝛼 → 𝛼−1, 𝛽 →

𝛽 + 1; in view of the parameter identification (4.42), the action of L𝑇 on 𝑢4 yields again 𝑢4, with the
following parameters:

𝑎 = 𝑚 + 1, 𝑏 = −𝛼 + 1, 𝑐 = 2 + 𝛽 + 𝑚. (4.49)

Now another expression for 𝑢4 is

𝑢4 = (−𝑧)𝑎−𝑐 (1 − 𝑧)𝑐−𝑎−𝑏2𝐹1

(
1 − 𝑎, 𝑐 − 𝑎

𝑏 + 1 − 𝑎
;

1
𝑧

)
. (4.50)

Using the parameters (4.49), we then find that choosing 𝑢4 as solution of the hypergeometric equation
stemming from the adjoint GEVP M𝑇 𝑓 ∗(𝑧) = 𝑚L 𝑓 ∗(𝑧) leads to

L𝑇 𝑓 ∗(𝑧) ∝ (−𝑧)−1−𝛽 (1 − 𝑧)𝛼+𝛽𝑄𝑚

(
1
𝑧
, 𝛼, 𝛽

)
. (4.51)

That is, we obtain as unique term, up to a factor, the orthogonal partner of 𝑃𝑛 (𝑧; 𝛼, 𝛽) multiplied by the
weight.

5. Conclusion

It is now time to wrap up and offer perspectives. We have presented a unified algebraic interpretation of
the biorthogonal Askey polynomials on the circle and of the Jacobi polynomials on the interval [0, 1].
It is based on an algebra with three generators 𝐿, 𝑀, 𝑋 verifying quadratic relations, which we have
called the meta-Jacobi algebra and denoted by 𝑚𝔍. The Askey polynomials 𝑃𝑛 (𝑧; 𝛼, 𝛽) arise as overlaps
between the basis elements that are on the one hand the solutions, on an infinite-dimensional module,
of the generalised eigenvalue problem defined by the generators L and M, and on the other hand, the
eigenvectors of the adjoint of X. The biorthogonal partners 𝑄𝑛 (𝑧; 𝛼, 𝛽) are obtained similarly from the
reciprocal adjoints. The same framework is seen to provide an algebraic picture for the Jacobi polyno-
mials as overlaps between the eigenbases of M and of 𝑋𝑇 (or of 𝑀𝑇 and X). Proofs of the orthogonality
relations were found to follow. With the introduction of a differential model for the meta-Jacobi algebra,
the bispectrality of the Askey polynomials 𝑃𝑛 (𝑧; 𝛼, 𝛽) was accounted for in particular; their differential
equation and the recurrence relation were explicitly obtained and found to be of GEVP form.
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The meta-Jacobi algebra is actually isomorphic to the universal algebra of the Lie algebra 𝔰𝔲(1, 1).
We nevertheless kept with the (possibly redundant) terminology because the relevant presentation is
parallel to that of the meta-Hahn algebra previously introduced [27], [29] to treat in a unified way
orthogonal polynomials and biorthogonal rational functions of Hahn type. Both algebras involve a
noncommutative generalisation of the plane which is supplemented by the addition of a third generator
that brings to the fore significant representation-theoretic features. The use of GEVPs proved to be a
key aspect. As said already in the introduction, we see a pattern develop and we suspect that it might be
possible to associate meta-algebras to most entries of the Askey scheme, so as to simultaneously describe
the bispectrality of the hypergeometric polynomials and of associated biorthogonal (rational) functions.
This most likely relates to the forays by Kim and Stanton [17] toward the development of a scheme for
orthogonal polynomials of type 𝑅𝐼 . To be sure, it is with enthusiasm that we plan to pursue investigations
of meta-algebras and their relations to special functions. Looking at further generalisations, it is known
that there are elliptic biorthogonal rational functions that have an interpretation in terms of structures
related to elliptic quantum groups (see, e.g., [18]); it would of course be of interest to see if the analysis
presented here could arise as a limit from these connections.

Appendix A. The computation of
〈
𝑧 |𝐿𝑇 |𝑄𝑚

〉
We provide in this appendix the details on how the result of Proposition 3.2 is obtained.

Given expression (3.56) for
〈
𝑧 |𝐿𝑇 |𝑄𝑚

〉
, we use the following linear relation between Kummer

solutions of the hypergeometric equation [5]:

2𝐹1

(
𝑎, 𝑏

𝑐
; 𝑧
)
=

Γ(𝑎 + 1 − 𝑐)Γ(𝑏 + 1 − 𝑐)

Γ(𝑎 + 𝑏 + 1 − 𝑐)Γ(1 − 𝑐)
2𝐹1

(
𝑎, 𝑏

𝑎 + 𝑏 + 1 − 𝑐
; 1 − 𝑧

)
−
Γ(𝑎 + 1 − 𝑐)Γ(𝑏 + 1 − 𝑐)Γ(𝑐 − 1)

Γ(𝑎)Γ(𝑏)Γ(1 − 𝑐)
𝑧1−𝑐 (1 − 𝑧)𝑐−𝑎−𝑏2𝐹1

(
1 − 𝑎, 1 − 𝑏

2 − 𝑐
; 𝑧
)
. (A.1)

This yields

2𝐹1

(
𝑚 + 1, 𝑚 + 𝛼 + 𝛽 + 1

𝑚 + 𝛼 + 1
;

1
1 − 𝑧

)
=

Γ(1 − 𝛼)Γ(𝛽 + 1)
Γ(𝑚 + 𝛽 + 2)Γ(−𝑚 − 𝛼)

2𝐹1

(
𝑚 + 1, 𝑚 + 𝛼 + 𝛽 + 1

𝑚 + 𝛽 + 2
;

𝑧

𝑧 − 1

)
−

Γ(1 − 𝛼)Γ(𝛽 + 1)Γ(𝑚 + 𝛼)

𝑚!Γ(𝑚 + 𝛼 + 𝛽 + 1)Γ(−𝑚 − 𝛼)
(−𝑧)−𝑚−𝛽−1(1 − 𝑧)2𝑚+𝛼+𝛽+1

2𝐹1

(
−𝑚,−𝑚 − 𝛼 − 𝛽

1 − 𝑚 − 𝛼
;

1
1 − 𝑧

)
.

(A.2)

Now use [5],

2𝐹1

(
𝑎, 𝑐 − 𝑏

𝑐
;

𝑧

𝑧 − 1

)
= (1 − 𝑧)𝑎2𝐹1

(
𝑎, 𝑏

𝑐
; 𝑧
)

(A.3)

and

2𝐹1

(
𝑎, 𝑐 − 𝑏

𝑎 + 1 − 𝑏
;

1
1 − 𝑧

)
= (1 − 𝑧)𝑎 (−𝑧)−𝑎2𝐹1

(
𝑎, 𝑎 + 1 − 𝑐

𝑎 + 1 − 𝑏
;

1
𝑧

)
, (A.4)

to re-express the two 2𝐹1s on the right-hand side of equation (A.2) as functions of z and 1
𝑧 , respectively.

Recalling then the definition (1.2) of the biorthogonal partner 𝑄𝑚(𝑧, 𝛼, 𝛽) of the Askey polynomials,
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one arrives at equation (3.57) with the help of the relation

Γ(−𝑚 − 𝛼)Γ(𝑚 + 𝛼 + 1) = (−1)𝑚+1Γ(𝛼)Γ(1 − 𝛼), (A.5)

which is a consequence of the identity

Γ(𝑥)Γ(1 − 𝑥) =
𝜋

sin 𝜋𝑥
. (A.6)

Appendix B. The determination of 〈𝑧 |̃𝐽𝑛〉

Details on how formula (3.77) for 〈𝑧 ˜|𝐽𝑚〉 is obtained are given here. We need to transform the 2𝐹1 that
occurs in expression (3.76) of this overlap. First we use the following relation between three solutions
of the hypergeometric equation [5]:

2𝐹1

(
𝑎, 𝑏

𝑐
; 𝑧
)
=

Γ(𝑐)Γ(𝑏 − 𝑎)

Γ(𝑐 − 𝑎)Γ(𝑏)
(−𝑧)−𝑎2𝐹1

(
𝑎, 𝑎 + 1 − 𝑐

𝑎 + 1 − 𝑏
;

1
𝑧

)

+
Γ(𝑐)Γ(𝑎 − 𝑏)

Γ(𝑐 − 𝑏)Γ(𝑎)
(−𝑧)𝑎−𝑐 (1 − 𝑧)𝑐−𝑎−𝑏2𝐹1

(
1 − 𝑎, 𝑐 − 𝑎

𝑏 + 1 − 𝑎
;

1
𝑧

)
. (B.1)

From this identity we find

2𝐹1

(
𝑚 + 1, 𝑚 + 𝛼 + 𝛽 + 1

2𝑚 + 𝛼 + 2
;

1
1 − 𝑧

)

= (𝑧 − 1)𝑚+1

[
Γ(2𝑚 + 𝛼 + 2)Γ(𝛼 + 𝛽)

Γ(𝑚 + 𝛼 + 1)Γ(𝑚 + 𝛼 + 𝛽 + 1) 2𝐹1

(
𝑚 + 1,−𝑚 − 𝛼

1 − 𝛼 − 𝛽
; 1 − 𝑧

)

+
Γ(2𝑚 + 𝛼 + 2)Γ(−𝛼 − 𝛽)

𝑚!Γ(𝑚 + 1 − 𝛽)
𝑧−𝛽 (𝑧 − 1)𝛼+𝛽2𝐹1

(
−𝑚, 𝑚 + 𝛼 + 1

𝛼 + 𝛽 + 1
; 1 − 𝑧

) ]
. (B.2)

We now apply relation (A.1) to convert each of the two 2𝐹1s on the right-hand side of equation (B.2)
that are functions of (1 − 𝑧) into combinations of 2𝐹1s that are functions of z. This leads to

2𝐹1

(
𝑚 + 1, 𝑚 + 𝛼 + 𝛽 + 1

2𝑚 + 𝛼 + 2
;

1
1 − 𝑧

)

=
Γ(2𝑚 + 𝛼 + 2)Γ(𝛼 + 𝛽)Γ(1 − 𝛼 − 𝛽)Γ(−𝛽)

Γ(𝑚 + 𝛼 + 1)Γ(𝑚 + 𝛼 + 𝛽 + 1)Γ(1 + 𝑚 − 𝛽)Γ(−𝑚 − 𝛼 − 𝛽)
(𝑧 − 1)𝑚+1

2𝐹1

(
𝑚 + 1,−𝑚 − 𝛼

1 + 𝛽
; 𝑧
)

+

[
(−1) (𝛼+𝛽)

Γ(2𝑚 + 𝛼 + 2)Γ(𝛼 + 𝛽)Γ(1 − 𝛼 − 𝛽)Γ(𝛽)
𝑚!Γ(𝑚 + 𝛼 + 1)Γ(−𝑚 − 𝛼)Γ(𝑚 + 𝛼 + 𝛽 + 1)

+
Γ(2𝑚 + 𝛼 + 2)Γ(−𝛼 − 𝛽)Γ(𝛼 + 𝛽 + 1)Γ(𝛽)
𝑚!Γ(𝑚 + 1 − 𝛽)Γ(−𝑚 + 𝛽)Γ(𝑚 + 𝛼 + 𝛽 + 1)

]
𝑧−𝛽 (𝑧 − 1)𝑚+1+𝛼+𝛽

2𝐹1

(
−𝑚, 𝑚 + 𝛼 + 1

1 − 𝛽
; 𝑧
)
.

(B.3)
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Simplifications are carried out through repeated use of identity (A.6) and various implications, such as
equation (A.5), and by observing that

1
sin 𝜋(𝛼 + 𝛽)

(
(−1)𝛼+𝛽 sin 𝜋𝛼 + sin 𝜋𝛽

)
=

𝑒𝑖 𝜋𝛼

sin 𝜋(𝛼 + 𝛽)

(
𝑒𝑖 𝜋𝛽 sin 𝜋𝛼 + 𝑒−𝑖 𝜋𝛼 sin 𝜋𝛽

)
= 𝑒𝑖 𝜋𝛼 = (−1)𝛼 . (B.4)

One finally obtains

2𝐹1

(
𝑚 + 1, 𝑚 + 𝛼 + 𝛽 + 1

2𝑚 + 𝛼 + 2
;

1
1 − 𝑧

)

= (1 − 𝑧)𝑚+1

[
Γ(2𝑚 + 𝛼 + 2)Γ(−𝛽)

Γ(𝑚 + 𝛼 + 1)Γ(𝑚 − 𝛽 + 1) 2𝐹1

(
𝑚 + 1,−𝑚 − 𝛼

1 + 𝛽
; 𝑧
)

+
Γ(2𝑚 + 𝛼 + 2)Γ(𝛽)
𝑚!Γ(𝑚 + 𝛼 + 𝛽 + 1)

(−𝑧)−𝛽 (1 − 𝑧)𝛼+𝛽2𝐹1

(
−𝑚, 𝑚 + 𝛼 + 1

1 − 𝛽
; 𝑧
) ]

, (B.5)

which readily gives equation (3.77).

Appendix C. Negative eigenvalues

In the main part of the paper, it sufficed for the purpose of interpreting the Askey polynomials and their
biorthogonal partners to focus on GEVP and EVP solutions with nonnegative (integer) eigenvalues. For
completeness, we briefly indicate in this appendix how situations with negative integers can be treated
and seen to lead to redundant information.

C.1.

Consider equation (3.32) and assume that 𝑛 < 0. Let

𝑛 = −𝑠 − 1, 𝑠 = 0, 1, . . . . (C.1)

In this case, the recursion relation still implies 𝑑𝑛 (𝑘) = 0 for 𝑘 > 𝑛 but no longer bounds k from below.
Write k in the form

𝑘 = −𝑠 − 1 − 𝑙, 𝑙 = 0, 1, . . . . (C.2)

Upon substituting in equations (C.1) and (C.2) and taking 𝑑𝑛 (𝑘) ≡ 𝑑𝑠 (𝑠 + 𝑙), equation (3.32) becomes

(𝑠 + 𝑙) (𝑙 + 𝑠 − 𝛼 − 𝛽)𝑑𝑠 (𝑠 + 𝑙 − 1) + 𝑙 (𝑙 + 𝑠 − 𝛼)𝑑𝑠 (𝑠 + 𝑙) = 0. (C.3)

We observe that this last relation coincides with condition (3.36), which was obtained from the adjoint
GEVP with a positive eigenvalue under the substitutions

𝑚 → 𝑠, 𝛼 → −𝛼 − 1, 𝛽 → −𝛽 + 1, 𝑑∗𝑚(𝑚 + 𝑙) → 𝑑𝑠 (𝑠 + 𝑙). (C.4)

Hence,

𝑑𝑛 (𝑘) = 𝑑−𝑠−1(−𝑠 − 1 − 𝑙) = (−1)𝑙
(𝑠 + 1)𝑙 (𝑠 − 𝛼 − 𝛽 + 1)𝑙

𝑙!(𝑠 − 𝛼 + 1)𝑙
𝑑𝑛 (𝑛), 𝑠, 𝑙 = 0, 1, 2, . . . . (C.5)
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C.2.

Examine now equation (3.36) when 𝑚 < 0. Set 𝑚 = −𝑠 − 1, 𝑠 = 0, 1, . . . . In this case, the recursion
equation implies that 𝑑∗𝑚(𝑘) = 0 for 𝑘 < 𝑚 and also truncates at 𝑘 = 0. The nonzero values of 𝑑∗𝑛 (𝑘)
therefore only occur for

𝑘 = −𝑙 − 1, 𝑙 = 0, . . . , 𝑠. (C.6)

Incorporating the previous redefinitions in equation (3.36) and taking 𝑑∗𝑚(𝑘) = 𝑑∗
−𝑠−1(−𝑙 − 1) ≡ 𝑑∗𝑚(𝑙),

we get

(𝑙 + 1) (𝑙 − 𝛼 − 𝛽 + 1)𝑑∗𝑚(𝑙 + 1) + (𝑙 − 𝑠) (𝑙 − 𝛼)𝑑∗𝑚(𝑙) = 0, (C.7)

and we see that this equation can be retrieved from equation (3.32) under the substitutions

𝑛 → 𝑚, 𝛼 → −𝛼 − 1, 𝛽 → −𝛽 − 1, 𝑑𝑛 (𝑘) → 𝑑∗𝑚(𝑙). (C.8)

It follows that for negative m that

𝑑∗𝑚(𝑘) = 𝑑∗−𝑠−1(−𝑙 − 1) = (−1)𝑙
(−𝑠)𝑙 (−𝛼)𝑙

𝑙!(−𝛼 − 𝛽 + 1)𝑙
𝑑∗𝑛 (−1), 𝑙 = 0, . . . , 𝑠. (C.9)

C.3.

We may check the orthogonality of |𝑃𝑛〉 and 𝐿𝑇 |𝑄𝑚〉, 𝑚 ≠ 𝑛, for various possibilities regarding the
sign of the indices m and n. In summary, the summation ranges are as follows:

◦ For 𝑛 ≥ 0, 𝑚 ≥ 0,

|𝑃𝑛〉 =
𝑛∑

𝑘=0
𝑑𝑛 (𝑘) |𝜏, 𝑘〉, (C.10)

|𝑄𝑚〉 =
∞∑

𝑘=𝑚

𝑑𝑚(𝑘) |𝜏, 𝑘〉. (C.11)

◦ For 𝑛 < 0, 𝑚 < 0,

|𝑃𝑛〉 =
𝑛∑

𝑘=−∞

𝑑𝑛 (𝑘) |𝜏, 𝑘〉, (C.12)

|𝑄𝑚〉 =
−1∑
𝑘=𝑚

𝑑𝑚(𝑘) |𝜏, 𝑘〉. (C.13)

It is manifest that orthogonality prevails when one index is nonnegative and the other is negative. When
the two indices are negative, the proof of orthogonality follows the one given for two nonnegative
indices, since as we observed, the change of signs basically flips the coefficients d and 𝑑∗.
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C.4.

Regarding the special functions, in light of this exchange of the expansion coefficients, the roles of |𝑃𝑛〉

and 𝐿𝑇 |𝑄𝑚〉 are inverted when the indices are negative. For instance, we have

|𝑄−𝑠−1〉 =
𝑠∑
𝑙=0

(−1)𝑙
(−𝑠)𝑙 (−𝛼)𝑙

𝑙!(−𝛼 − 𝛽 + 1)𝑙
|𝜏,−𝑙 − 1〉. (C.14)

The overlap of 𝐿𝑇 |𝑄−𝑠−1〉 with the state |𝑧〉 given in equation (3.20) is then found to be

〈
𝑧 |𝐿𝑇 |𝑄−𝑠−1

〉
= 𝛼𝑑−𝑠−1(−1) (𝑧 − 1) �̃�−1

2𝐹1

(
−𝑠, 1 − 𝛼

1 − 𝛼 − 𝛽
; 1 − 𝑧

)
. (C.15)

Owing again to equation (3.53), we see that the Askey polynomials arise in this case in the overlap〈
𝑧 |𝐿𝑇 |𝑄−𝑠−1

〉
with a change of parameters.

Again, when nonterminating series are encountered, the proper convergence restrictions can be
imposed so that the full overlaps are defined or one may take a formal approach to get at the polynomials.

C.5.

Things can be seen to proceed similarly in the treatment of the Jacobi polynomials if negative indices
are considered.
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