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Abstract

Introduction: Patients with cystic fibrosis (CF) experience frequent episodes of acute decline in
lung function called pulmonary exacerbations (PEx). An existing clinical and place-based
precisionmedicine algorithm that accurately predicts PEx could include racial and ethnic biases
in clinical and geospatial training data, leading to unintentional exacerbation of health
inequities.Methods:We estimated receiver operating characteristic curves based on predictions
from a nonstationary Gaussian stochastic process model for PEx within 3, 6, and 12 months
among 26,392 individuals aged 6 years and above (2003–2017) from the US CF Foundation
Patient Registry. We screened predictors to identify reasons for discriminatory model
performance. Results: The precision medicine algorithm performed worse predicting a PEx
among Black patients when compared with White patients or to patients of another race for all
three prediction horizons. There was little to no difference in prediction accuracies among
Hispanic and non-Hispanic patients for the same prediction horizons. Differences in F508del,
smoking households, secondhand smoke exposure, primary and secondary road densities,
distance and drive time to the CF center, and average number of clinical evaluations were key
factors associated with race. Conclusions: Racial differences in prediction accuracies from our
PEx precision medicine algorithm exist. Misclassification of future PEx was attributable to
several underlying factors that correspond to race: CF mutation, location where the patient
lives, and clinical awareness. Associations of our proxies with race for CF-related health
outcomes can lead to systemic racism in data collection and in prediction accuracies from
precision medicine algorithms constructed from it.

Introduction

Cystic fibrosis (CF) is a disease that causes the production of abnormally thick secreted fluids
[1–3], especially inside the lungs and the pancreas [1–7]. As a result, CF lung disease progression
is marked by recurring rapid declines in lung function in the form of acute respiratory events,
clinically referred to as pulmonary exacerbation (PEx) events [8–10]. Symptoms include
coughing, sputum production, wheezing, chest tightness, difficulty breathing or shortness of
breath, and fever [11]. Precision medicine algorithms that predict these attenuated declines in
CF have been developed in recent years [12,13]. While many of these algorithms entail different
approaches, their primary purpose is to direct care and resources to high-need CF patients at the
right time [14]. Development and targeted use of advanced personalized treatments such as
ivacaftor and lumacaftor are highlights of the CF community embracing precision medicine
[15]. Precision medicine, however, permits discriminatory and harmful impacts of structural
racism that could potentially impact groups that have been historically marginalized [16]. Racial
bias can be introduced in building and analyzing datasets, but it can also be the result of
precision medicine research [14].

Sparking much of the latest interest in PEx prediction was the CF Foundation Learning
Network’s adaptation of a data-driven definition of PEx. They considered changes in lung
function, measured as a forced expiratory volume in 1 s (FEV1) of % predicted, relative to the
baseline to identify PEx. The definition is known as the FEV1-indicated exacerbation signal
(FIES) and is applied over time for each individual patient [17]. We have developed a
nonstationary Gaussian stochastic process model to predict PEx using demographic, encounter-
level, and hospitalization data from the US CF Foundation Patient Registry (CFF-PR) [13]. This
precision medicine algorithm incorporates clinical measures and has been expanded to include
place-based measures to forecast FIES risk [18] including traffic (on the basis of primary road
density and secondary road density of the ZIP code tabulation area), community material
deprivation, and greenspace. The algorithm then determines the probability a CF patient will
experience a future PEx event from the date of an encounter by forecasting FIES risk. The model
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has been shown to accurately predict rapid lung function declines
up to two years from a clinical evaluation (median area under
the receiver operating characteristic [ROC] curve 0.817, 95%
confidence interval [CI]: 0.814, 0.822), serving as a useful clinical
tool to identify for whom and when a FIES-defined PEx event is
imminent [19]. Earlier prediction and identification of a PEx event
allow for earlier preventative interventions; therefore, the accuracy
of any precision health algorithm will influence an individual’s
morbidity and mortality.

Concerns around racial equity in many precision health
algorithms have been introduced [20,21] because they include
race as a predictor [22], but racial inequality is also present in real-
world precision health algorithms that do not explicitly use race as
a predictor [23]. Group-level fairness is defined as the desired state
of achieving similar model performance across subpopulations
partitioned by protected attributes, such as race and ethnicity
[24]. Most precision medicine research today, however, does not
incorporate group fairness adequately into the statistical evaluation
process and may not even consider group bias for aspects such
as variable measurement and design selection [25–27]. Rather,
researchers focus on the accuracy and interpretation of the
algorithm being developed and are only evaluated based on
individual fairness – similar individuals within a population being
treated similarly [28]. Even though symptom severity and
frequency vary between individuals, precisionmedicine algorithms
commonly use covariates associated with race and ethnicity [29]
that could induce differences in PEx prediction accuracies between
racial and ethnic groups. Using predictors associated with race or
ethnicity does not necessarily imply predictions will be unfair, but
we do not wish to see racial and ethnic differences in accuracies in
PEx prediction from our precision medicine algorithm. We
screened predictors from our PEx precision medicine algorithm to
determine if they are correlated with race or ethnicity, as this is
most likely how racial and ethnic differences are incorporated in
prediction accuracies.

Methods

The CFF-PR collects information on CF patient encounters who
receive care in CF Foundation-accredited care centers [30]. Race
and ethnicity information was collected using categories (White,
Black or African American, Other, Asian, Native Hawaiian or
other Pacific Islander, American Indian or Alaskan native) defined
by the CF Foundation based on patient-level clinical records from
each site [30]. We then further categorized the patient’s race as
either “White” if they identified as only White, “Black” if they
identified as Black, and “Other” if any other race (besides White or
Black) was selected. We defined a patient’s ethnicity whether they
self-identified as either Hispanic or non-Hispanic. The CFF-PR
cohort was primarily composed of White patients (White:
n= 24,490 [92.8%], Black: n= 1,172 [4.4%], Other: n= 730
[2.8%]) and non-Hispanic patients (non-Hispanic: n= 23,392
[88.6%], Hispanic: n= 2,045 [7.7%]) with CF. There were 955
patients (3.6%) who did not report their ethnicity, due to a
combination of patients refusing to report and healthcare centers
not collecting this information. We did not consider patients with
unknown ethnicity since the rate of missingness differs within each
racial group (White: n= 691 [2.6%, Other: n= 206 [2.8%], Black:
n= 58 [0.2%]).

The precision medicine algorithm models personalized thresh-
olds of rapid lung function decline [13]. The algorithm is a non-
stationary stochastic process model comprised of fixed effects (age,

F508del, birth cohort, FEV1 at baseline, enzyme use, Pseudomonas
aeruginosa, methicillin-resistant Staphylococcus aureus, Medicaid
insurance use, CF-related diabetes mellitus, outpatient visits in last
year, acute exacerbations in last year), between-patient hetero-
geneity, and a continuous-time integrated Brownian motion
process to determine hyperlocal, dynamic predictive probabilities
in lung function (FEV1) measurement. The algorithm was applied
to data from 30,879 US CFF-PR patients, and the median (95% CI)
area under the ROC curve estimates was 0.817 (0.814, 0.822).
While the precisionmedicine algorithm has reasonable accuracy in
personalized rapid lung function decline predictions, the algorithm
has not been evaluated for group fairness.

We analyzed each predictor and outcome to determine if
associations with race and ethnicity could be responsible for any
model unfairness. Predictors considered include gender (male,
female), F508del mutation (homozygous, heterozygous, neither/
unknown), insurance payor status (private or non-private),
smoking status (smoker, nonsmoker), smoking household (yes,
no), secondhand smoke (yes, no), primary road density and
secondary road density as a proxy for traffic exposure (total length
of all roads in meters in the ZIP Code Tabulation Area
[ZCTA] divided by the total area in square meters of the
ZCTA), a community material deprivation index [31] (a census
tract-level deprivation index based on five different census tract-
level variables related to material deprivation, derived from the
2015 5-year American Community Survey), fraction of surround-
ing land characterized as greenspace (using the National Land
Cover Database), straight-line distance (in meters) and drive time
(in 5-minute intervals) to the healthcare center, baseline age
(patient’s age at first encounter), number of encounter visits,
number of PEx events, and the amount of time since baseline age at
encounter.

Rapid lung function decline is defined by a decrease in FEV1 of
more than 10% predicted from the maximum observed FEV1

within the past 12 months [32,33]. We identified a PEx using
predictions of rapid lung function decline based on FIES [34–36].
FIES is determined by first defining the patient’s baseline FEV1 as
the average of the highest two FEV1 measurements in the past
12 months when not under intravenous antibiotic treatment [37].
If only one valid FEV1 was available, it was used as the baseline.
A FIES-defined PEx event occurs when the FEV1% predicted
declines at least 10% or more [34]. The FIES definition excludes
any lung function measurements within 28 days of a previous PEx
to ensure accurate patient baseline FEV1. We calculated prediction
accuracy by comparing the PEx probability from the precision
medicine algorithm with whether a PEx eventually occurred for
3-, 6-, and 12-month prediction horizons.

A ROC curve [38] was used to determine the optimal cutoff
probability for a PEx occurrence. Group-specific ROC curves
were then implemented using this optimal cutoff probability to
achieve group-specific sensitivity and specificity. ROC curves
were formulated by contrasting a patient’s PEx probability from
the precision medicine algorithm to actual PEx outcomes for the
prediction horizon at each clinical visit. Actual PEx outcomes were
determined by whether the patient was clinically evaluated and
confirmed to have at least one PEx within the prediction horizon.
The area under the ROC curve (AUC), sensitivity, and specificity
were calculated overall and for each group-specific subpopulation
using Youden’s J statistic [39]. The AUC was used as a benchmark
for the PEx precision medicine algorithm performance [40]. The
95% CIs for sensitivity and specificity were obtained with 2000
stratified bootstrap replicates. Statistical computing was performed
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in R version 4.2.3, specifically with the pROC (ver. 1.18.2) package
to perform ROC curve analyses [41].

Results

The CFF-PR cohort consists of patients with CF (n= 26,392) aged
6 years of age or older monitored between January 3, 2003, and
December 31, 2017. The cohort was 47.9% female (n= 12,634)
with a median baseline age of 11.1 years (25th percentile: 6.2, 75th

percentile: 18.9). Each study participant was followed for a median
of 7.8 years (25th percentile: 3.7, 75th percentile: 12.4). Overall,
92.8% (n= 24,490) of patients self-identified as White, and 4.4%
(n= 1172) self-identified as Black. Furthermore, 88.6% (n
= 23,392) self-identified as non-Hispanic, and 7.7% (n= 2045)
self-identified as Hispanic. 2.6% (n= 691) of White patients, 4.9%
(n= 58) of Black patients, and 28.2% (n= 206) of patients who
self-reported as another race did not self-report their ethnicity.
Since the rate of missing reported ethnicity differs by race, we did
not consider those who did not report their ethnicity. Different
genetic mutations for CFwere considered: 47.3% (n= 12,484) were
F508del homozygous, 36.9% (n= 9744) were F508del heterozy-
gous, and the remaining 15.8% (n= 4164) were neither F508del or
had an unknown mutation.

We examined predictors and the outcome to identify possible
reasons for racial discriminatory performance in the PEx precision
medicine algorithm. Newborn screening for CF has rapidly
expanded through DNA tests for CF mutations, so seeing
differences by mutation and racial identification is not necessarily
novel [42]. FromFigure 1, 49.2% (n= 12,041) and 36.7% (n= 8,988)
of White patients were predominately F508del homozygous or
heterozygous, respectively, whereas 41.1% (n= 482) and 40.3%
(n= 472) of Black patients were mainly F508del heterozygous or
neither, respectively. The distribution of F508del was more
balanced in patients who self-identified as another race, with
30.8% homozygous (n = 225), 37.5% heterozygous (n = 274),
and 31.6% (n = 231) neither/unknown. Differences existed by
racial group in the distribution of primary road density, secondary
road density, drive time (in minutes), and straight-line distance (in
kilometers) to the nearest healthcare center (Table 1). On average,
Black patients lived in neighborhoods with higher densities of
primary and secondary roadway, with shorter distances and
shorter travel times to their CF care center. We did not see any
racial differences in gender (Other: 49.0% female, Black: 48.5%
female, White: 47.8% female; p= 0.7183) or smoking status
(p= 0.8856), but there were racial differences in smoking house-
holds (Other: 4.7%, Black: 3.9%, White: 2.5%; p< 0.0001) and
secondhand smoke exposure (Black: 8.1%, Other: 6.4%, White:
5.7%; p= 0.0020). Black patients were also less likely to have
private health insurance (Black: 28.2%, Other: 37.0%, White:
51.6%; p< 0.0001). White patients tended to live in ZCTAs with a
higher average percentage of greenspace than both Black patients
or patients who self-identified as another race (White: 82.8%,
Other: 72.3%, Black: 70.7%; p< 0.0001). Black patients were more
likely to live in neighborhoods that had a higher average
community deprivation index (Black: 0.404, Other: 0.364,
White: 0.335; p < 0.0001). The average number of CF encoun-
ters was different by racial group, with White patients having a
higher number of clinical visits on average (White: 38.1, Black:
31.3, Other: 29.6; p = 0.035). Consequently, White patients had
a higher average number of encounters with a PEx (White: 9.19,
Black: 8.37, Other: 6.77; p < 0.0001) and a higher average
number of encounters with no PEx (White: 21.9, Black: 17.1,

Other: 16.9; p < 0.0001). The average number of CF encounters
per year was lowest for Black patients (Other: 5.30, White: 5.25,
Black: 4.95; p < 0.0001). We did not see racial differences in the
average rate of encounters with a PEx per year (White: 1.19,
Black: 1.13, Other: 1.10; p = 0.0154) and in the average rate of
encounters with no PEx per year (Other: 2.97, White: 2.87,
Black: 2.74; p = 0.0436). Black patients recorded fewer clinical
visits per year when compared with other races.

Group-specific AUC, sensitivity, and specificity were compared
with the overall AUC sensitivity and specificity to evaluate model
performance between each racial and ethnic group (Figs. 2 and 3
and Supplemental Table S1). Black patients had lower sensitivity
(3-month: 0.596, 95% CI: 0.582, 0.608; 6-month: 0.607, 95% CI:
0.595, 0.618; 12-month: 0.608, 95% CI: 0.598, 0.619) for every
prediction horizon compared with White patients (3-month:
0.627, 95% CI: 0.625, 0.630; 6-month: 0.628, 95% CI: 0.626, 0.630;
12-month: 0.620, 95% CI: 0.618, 0.622) and those who self-
identified with another racial group (3-month: 0.638, 95% CI:
0.620, 0.656; 6-month: 0.672, 95% CI: 0.657, 0.686; 12-month:
0.623, 95%CI: 0.611, 0.636). PEx predictions for Black patients also
had lower specificity (3-month: 0.608, 95% CI: 0.595, 0.622; 6-
month: 0.615, 95% CI: 0.604, 0.625; 12-month: 0.622, 95% CI:
0.610, 0.635) for every prediction horizon compared with White
patients (3-month: 0.641, 95% CI: 0.638, 0.643; 6-month: 0.653,
95% CI: 0.651, 0.656; 12-month: 0.655, 95% CI: 0.653, 0.657) and
patients who self-identified with another race (3-month: 0.611,
95% CI: 0.594, 0.626; 6-month: 0.586, 95% CI: 0.572, 0.602; 12-
month: 0.627, 95% CI: 0.610, 0.643). In each case, Black patients
had the worst prediction performance from the PEx precision
medicine algorithm in terms of AUC, sensitivity, and specificity.
Actual PEx outcomes were determined using future clinical
evaluations during the prediction horizon, but the results were also
similar when actual PEx outcomes were instead defined only on the
date of clinical evaluation during the prediction horizon (see
Supplemental Table S2).

Prior research work has shown disparities in pulmonary
function exist between Hispanic and non-Hispanic patients with
CF [43]. Even though non-Hispanic patients represent 88.6% of

Figure 1. F508del mutation by racial group in the US Cystic Fibrosis Foundation
Patient Registry analysis cohort.
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the cohort, the PEx precision medicine algorithm had similar
performance between Hispanic and non-Hispanic ethnic groups.
AUC values are similar for Hispanic patients (3-month: 0.668, 95%
CI: 0.663, 0.673; 6-month: 0.678, 95% CI: 0.674, 0.682; 12-month:
0.678, 95% CI: 0.674, 0.683) and non-Hispanic patients (3-month:
0.672, 95% CI: 0.671, 0.674; 6-month: 0.682, 95% CI: 0.680, 0.683;
12-month: 0.679, 95% CI: 0.677, 0.680). We also allowed group-
specific optimal cutoffs and verified if changing the overall optimal
cutoff improves model prediction accuracy. When allowing each

group to have their own optimal cutoff, we saw a similar
performance from the PEx precision medicine algorithm for both
racial and ethnic groups (see Supplemental Table S3). Ultimately,
we found no evidence of ethnic discrimination inmodel prediction
performance from the PEx precision medicine algorithm.

Table 1. Counts and averages of each predictor with 95% confidence intervals among the racial groups in the US Cystic Fibrosis Foundation Patient Registry analysis
cohort

Black White Other p-value

Sample size 1172 (4.4%) 24,490 (92.8%) 730 (2.8%)

Gender F: 569 (48.5%) F: 11,707 (47.8%) F: 358 (49.0%) 0.7183

M: 603 (51.5%) M: 12,783 (52.2%) M: 372 (51.0%)

Private health insurance 330 (28.2%) 12,647 (51.6%) 270 (37.0%) <0.0001

Secondhand smoke 95 (8.1%) 1394 (5.7%) 47 (6.4%) 0.0020

Living in smoking household 46 (3.9%) 608 (2.5%) 34 (4.7%) <0.0001

Primary road density (kilometer/square meter) 1.38 (1.17, 1.60) 0.99 (0.95, 1.03) 0.81 (0.62, 0.99) 0.0001

Secondary road density (kilometer/square meter) 2.35 (2.10, 2.60) 1.92 (1.87, 1.97) 1.14 (0.89, 1.40) <0.0001

Greenspace percent of ZIP code tabulation area 70.7% (69.2, 72.2) 82.8% (82.6, 83.1) 72.3% (70.3, 74.3) <0.0001

Community deprivation index 0.404 (0.397, 0.410) 0.335 (0.333, 0.336) 0.364 (0.355, 0.372) <0.0001

Straight-line distance to center (kilometers) 111.4 (90.9, 131.9) 170.6 (165.0, 176.3) 155.3 (124.8, 185.8) <0.0001

Drivetime to healthcare center (minutes) 36.2 (35.1, 37.4) 45.6 (45.4, 45.8) 41.1 (39.8, 42.5) <0.0001

Average number of encounters 31.3 (29.7, 32.8) 38.1 (37.7, 38.5) 29.6 (27.6, 31.5) 0.035

Average number of encounters per year 4.95 (4.66, 5.24) 5.25 (5.20, 5.30) 5.30 (5.07, 5.53) <0.0001

Average number of encounters with a pulmonary exacerbation (PEx) 8.37 (7.82, 8.92) 9.19 (9.07, 9.31) 6.77 (6.18, 7.36) <0.0001

Average number of encounters with PEx per year 1.13 (1.07, 1.18) 1.19 (1.18, 1.20) 1.10 (1.03, 1.18) 0.0154

Average number of encounters with no PEx 17.1 (16.3, 17.9) 21.9 (21.6, 22.1) 16.9 (15.9, 18.0) <0.0001

Average number of encounters with no PEx per year 2.74 (2.56, 2.93) 2.87 (2.85, 2.89) 2.97 (2.84, 3.09) 0.0436

Figure 2. Area under the receiver operating characteristic (ROC) curve (AUC) for the
3-, 6-, and 12-month prediction horizons by racial and ethnic group. Overall AUC is
indicated by the horizontal line. Group-specific AUC and their respective 95%
confidence interval are displayed as points and vertical lines, respectively.

Figure 3. Optimal sensitivities and specificities by racial and ethnic group achieved
by the precision medicine algorithm for 3-, 6-, and 12-month exacerbation prediction.
The average optimal sensitivity (0.623) and average optimal specificity (0.648) are
indicated by the horizontal lines.
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Discussion

We characterized the accuracies of a precision medicine tool for
PEx prediction by race and ethnicity, which demonstrates the need
to optimize an algorithm by balancing both accuracy and group
fairness. Our results show that racial, but not ethnic, differences in
the PEx prediction algorithm accuracies exist when applied to the
CFF-PR data. We conclude the PEx precision medicine algorithm
is racially biased against Black patients with worse PEx predictions
than those who self-identify with another race. These discrepancies
are not due to the differences in sample size but rather by ignoring
group-level fairness in prediction accuracies by racial group. Even
though we see differences in model accuracies between Hispanic
and non-Hispanic, groups of proportionately different sample
sizes, the nature of the difference in model accuracy does not lend
itself an unfair advantage to either group, since Hispanic had better
sensitivity while non-Hispanic had better specificity.

The same cannot be said for the discrepancy we see between the
races, and we are left to wonder why the PEx prediction algorithm
yields worse sensitivity and specificity to Black patients. The PEx
prediction algorithm is formulated by treating each CF individual
in the CFF-PR cohort equally, so the discriminatory performance
of this algorithm must be caused by some underlying factors. We
examined predictors and outcome variables to formulate three
main reasons for discriminatory model performance in the PEx
prediction algorithm: (i) CF mutation: While the prediction
algorithm is treated on individuals with CF, differences in F508del
mutation exist in the cohort. The severity of CF disease and the
frequency of PEx events change, in part, based on the F508del
mutation [2,29], which varies between the races. (ii) Location:
Black patients tended to live in locations with higher road densities.
Increased roads in these areas usually lead to increased vehicle
traffic and therefore are associated with increased air pollution
exposure. (iii) Accessibility: Even though Black patients tended to
live closer to their nearest healthcare center on average, and the
drive time to arrive at their healthcare center is also lower on
average, the encounter rates are noticeably lower for Black patients.

There are several potential reasons for the discrepancy – lack of
interaction or trust in the healthcare system, socioeconomic status
(SES), and affordability for essential healthcare services, acces-
sibility, and the quality of health care, all of which have been
studied more generally in environmental health research [44,45].
More frequent clinic visits are associated with better lung function
outcomes in CF [13], but there has been a shift in the care paradigm
toward telehealth visits that were partially motivated to overcome
barriers to access that were heightened during the coronavirus
disease 2019 pandemic [46]. However, recent research on
telehealth utilization in US CF patients during the pandemic
showed that individuals who identified as Black orHispanic/Latino
and those who reported having financial constraints were less
likely to have a telehealth visit [46]. Although individual-level
proxies of SES (e.g., Medicaid/state insurance use) are linked to
lung function and survival in CF, Albon and colleagues found no
association between SES factors and telehealth utilization in the
aforementioned study, and differences due to race/ethnicity
persisted after SES adjustments. Coupling prior literature with
our study findings, interventions to improve chronic disease
management, including outcome prognostication, for Black people
with CF may have suboptimal impact unless fairness is considered.

The obstacles to algorithm fairness that we identified also pose
challenges for therapeutics development, which are expected to
grow in light of the changing demographics of CF worldwide

[47,48].While there is generally a paucity of transparent (i.e., freely
open) algorithms that are subjected to critical appraisal from and
co-production by patient communities [49], the CF patient
subgroups identified from our study at greatest risk for algorithmic
bias have also historically been underrepresented in CF clinical
research (e.g., identifying as nonwhite, rural, or socioeconomically
disadvantaged) [50,51]. Although research participation among
CF minority populations has been a longstanding challenge in CF,
it is of greater importance in the modern era of care, given the need
to develop therapies for the remaining 5%–6% of the US CF
population for whom highly effective modulator therapies are
currently unavailable [52]. Individuals who have ultra-rare
mutations that are not FDA approved for modulator treatment
tend to identify as Black/African American or nonwhite Hispanic,
and they have the lower average lung function, compared with
their white counterparts [53].

A larger issue that is raised from this research is how to address
group-level fairness in CF precision medicine tools. Although
unintentional, both (i) associations of model predictors with race
and (ii) associations of our proxies for health outcomes with race
can lead to prediction algorithms that could replicate systemic
racism in the data and the system used to create it. Clinical
implementation of this PEx prediction tool could possibly enhance
racial disparities in access to care for CF patients. Individual-level
fairness and group-level fairness cannot be maximized simulta-
neously in a prediction algorithm [28]. Therefore, we must
examine the tradeoff in the accuracy of the PEx prediction
algorithm with respect to group-level fairness [14]. Addressing
group-level fairness in precision medicine models, particularly in
respiratory diseases like CF, is essential to ensure that these tools
benefit all patients equitably, irrespective of their race, ethnicity, or
socioeconomic background. There have been some methods
suggested to effectively address bias and factors to consider for
inclusion or exclusion in these models. These suggestions include
(i) diverse data representation which ensures that the data used to
train precision medicine models are representative of the diverse
patient population affected by the condition [22], (ii) bias detection
and correction which may require using advanced statistical tools
to detect and correct biases in the model [54], and (iii) group-
specific model adjustment that allows developing separate models
for groups with distinct characteristics or adjusting models to
account for known disparities [21].

There is a critical lack of evaluation of racial and ethnic fairness
in precision health medicine within CF patients. Discrepancies of
the PEx prediction algorithm on the CFF-PR cohort by racial and
ethnic group must raise the awareness of group-level bias in
precision medicine algorithm development in CF research. We
hope to invite discussions on how to promote ways of addressing
group-level fairness in statistical modeling research. By not
addressing group fairness, researchers run the risk of developing
statistical models that puts those from minority populations at a
strong disadvantage when it comes to model accuracy and
performance, further exacerbating racial inequalities in CF
outcomes and care. Precisionmedicine tools can then be developed
to better meet the needs of healthcare professionals and promote
equitable patient care.

Supplementary material. The supplementary material for this article can be
found at https://doi.org/10.1017/cts.2024.532.
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