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Abstract

We prove that any continuous mapping f : E→ Y on a completely metrizable subspace E of a perfect
paracompact space X can be extended to a Lebesgue class one mapping g : X→ Y (that is, for every
open set V in Y the preimage g−1(V ) is an Fσ -set in X ) with values in an arbitrary topological space Y .
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1. Introduction

A mapping f : X→ Y from a topological space X to a topological space Y is called a
Lebesgue class α mapping (or a mapping of the αth Lebesgue class) if for every closed
set F in Y the set f −1(F) is of the multiplicative class α in X . The family of all such
mappings f : X→ Y we denote by Hα(X, Y ). Moreover, we write f ∈ H1(X, Y ) if
for every open set V in Y the preimage g−1(V ) is an Fσ -set in X .

Obviously, if X or Y is a perfect space then any continuous mapping f : X→ Y is
of the first Lebesgue class.

Classification of mappings naturally leads to the problem of the extension of
mappings from a subset of a topological space to the whole space with preservation of
the mapping class or its estimation. So, such classical results as the Tietze theorem
[4, p. 116] or the Dugundji theorem [3] give the possibility of the extension of a
continuous mapping to a continuous mapping.

Many mathematicians (F. Hausdorff [8], W. Sierpiński [13], G. Alexits [1],
H. Hahn [5], K. Kuratowski [11]) have considered the extension of real-valued
functions of some Lebesgue class.

Kuratowski [11] proved that every mapping f ∈ Hα(E, Y ) on a subset E of a metric
space X with values in a complete metric separable space Y can be extended to a
mapping g : B→ Y of class α such that the set B ⊇ E is of the multiplicative class
α + 1. Moreover, if E is of the multiplicative class α > 0 then f can be extended to
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a Lebesgue mapping of class α on the whole space X . Consequently, every mapping
of the Lebesgue class α ≥ 0 on a set E ⊆ X can be extended to a mapping of the
Lebesgue class α + 1 on X . In particular, the following result holds.

THEOREM 1.1. Let X be a metric space, Y be a complete metric separable space and
E ⊆ X. Then every continuous mapping f : E→ Y can be extended to a mapping
g ∈ H1(X, Y ).

It follows from the above that the problem of the extension of a continuous
function (Lebesgue class one function) to a continuous function (Lebesgue class one
function) essentially differs from the problems of the extension of functions preserving
their class. For example, if X =R and E =Q then not every continuous function
f : E→R can be extended to a continuous function defined on X ; moreover, it is
easy to construct an everywhere discontinuous function f : E→R which is of the
first Lebesgue class and cannot be extended to a function of the first Lebesgue class on
X . On the other hand, Theorem 1.1 implies that every continuous function f : E→R
can be extended to a function g : X→R of the first Lebesgue class.

In connection with Theorem 1.1 the following question arises.

QUESTION 1.2. Is it possible to omit the assumption of separability on space Y in
Theorem 1.1?

Hansell studied the problem of the extension of Lebesgue mappings with
nonseparable metrizable ranges using the notion of σ -discrete mappings as introduced
by Stone [14].

Recall that a family A of subsets of a topological space X is said to be discrete if
for every point x ∈ X there exists a neighborhood U which intersects with at most one
set from A.

A family A is said to be σ -discrete if it can be written as a countable union of
discrete families.

The family B of subsets of a topological space X is said to be a base for a mapping
f : X→ Y if for every open set V in Y there exists a subfamily BV ⊆ B such that
f −1(V )= ∪BV . If, moreover, the system B is σ -discrete then it is said to be a σ -
discrete base for f and f is said to be a σ -discrete mapping. The family of all σ -
discrete mappings we denote by 6(X, Y ).

Obviously, every mapping with a second countable range space is σ -discrete. Also
it is easy to see that every continuous mapping with metrizable domain or range is
σ -discrete since a metrizable space has a σ -discrete base [4].

The paper of Hansell [6] mentioned above contains the following result.

THEOREM 1.3 [6, Theorem 9]. Let X be a paracompact space, Y a complete metric
space, E ⊆ X and f : E→ Y a σ -discrete Lebesgue mapping of class α. Then f can
be extended to a Lebesgue mapping g : B→ Y of class α so that the set B ⊇ E is of
multiplicative class α + 1.

The following question naturally arises.
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QUESTION 1.4. Is it possible to replace the set B in Theorem 1.3 with the whole
space X?

The most recent (to the best of our knowledge) result on the extension of Lebesgue
functions is due to Kalenda and Spurný.

THEOREM 1.5 [9, Theorem 29]. Let E be a Lindelöf subspace of a completely regular
space X, Y a complete metric separable space and

(i) E be hereditarily Baire or
(ii) E be Gδ in X.

Then every mapping f ∈ H1(E, Y ) can be extended to a mapping g ∈ H1(X, Y ).

At the same time it is interesting to study when we can extend mappings with values
in an arbitrary topological space.

In Section 2 we introduce and study the notion of H1-retract which is tightly
connected with the problem of the extension of continuous mappings to Lebesgue class
one mappings with values in an arbitrary topological space (analogously, the notion of
a retract is connected with the extension of continuous mappings with preservation of
continuity).

Furthermore, in Section 3 we prove that every continuous mapping f : E→ Y on
a completely metrizable subspace E of a perfect paracompact space X with values in
an arbitrary topological space Y can be extended to a Lebesgue class one mapping
g : X→ Y . This result implies a positive answer to Question 1.2. In addition, we give
a negative answer to Question 1.4.

2. H1-retracts and their properties

Let X be a topological space and E ⊆ X . Recall [2] that a set E is said to be a
retract of X if there exists a continuous mapping r : X→ E such that r(x)= x for all
x ∈ E . The mapping r is called a retraction of X onto E . It is easy to see that a set
E ⊆ X is a retract of X if and only if for any topological space Y every continuous
mapping f : E→ Y can be extended to a continuous mapping g : X→ Y .

We call a subset E of a topological space X an H1-retract of X if there exists a
mapping r ∈ H1(X, E) such that r(x)= x for all x ∈ E . We call the mapping r an
H1-retraction of X onto E .

The following properties of H1-retracts immediately follow from the definition.

PROPOSITION 2.1. Let X be a topological space. A set E ⊆ X is an H1-retract of X
if and only if for an arbitrary space Y every continuous mapping f : E→ Y can be
extended to a Lebesgue class one mapping g : X→ Y .

PROPOSITION 2.2. Let E be an H1-retract of a topological space X. Then E is a
perfect space.

A subset A of a topological space X is said to be an ambiguous set if A is
simultaneously Fσ and Gδ in X .
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PROPOSITION 2.3. Let X be a metrizable space and E be an H1-retract of X. Then
E is Gδ in X.

PROOF. Let r : X→ E be an H1-retraction of X onto E . It is easy to see that
E = {x ∈ X | r(x)= x}.

Consider the diagonal 1= {(x ′, x ′′) ∈ X × X | x ′ = x ′′} of the space X2 and the
mapping h : X→ X × X , h(x)= (r(x), x). Since r ∈ H1(X, E)⊆ H1(X, X) and the
mapping g : X→ X , g(x)= x is continuous, according to [7, Theorem 1] the mapping
h : X→ X × X is of the first Lebesgue class. Since 1 is closed in X × X , the set
E = h−1(1) is Gδ in X . 2

Note that an H1-retract may, in general, be even a nonmeasurable set. Moreover,
the following example shows that the assumption of metrizability of X in the previous
proposition is essential.

EXAMPLE 2.4. There exists a nonmeasurable H1-retract E of a perfect separable
linear ordered compact space X .

PROOF. Let X = [0, 1] × {0, 1} be endowed with the lexicographic order, that is
(x, i) < (y, j) if x < y or x = y and i < j , i, j ∈ {0, 1}. Note that X satisfies
necessary conditions (see [4, p. 318]).

Consider a set E = {(x, 0) | x ∈ [0, 1]}. A mapping r : X→ E , r(x, i)= (x, 0), is
of the first Lebesgue class.

It remains to prove that E is nonmeasurable.
For a set A ⊆ X denote A+ = {x ∈ [0, 1] | (x, 1) ∈ A} and A− = {x ∈ [0, 1] |

(x, 0) ∈ A}. It is not hard to prove that for any open or closed set A in X we have
|A+1A−| ≤ ℵ0. This implies that |B+1B−| ≤ ℵ0 for any measurable set B. But
E+ = ∅ and E− = [0, 1]. Hence, E is a nonmeasurable set. 2

PROPOSITION 2.5. Let X and Y be topological spaces, E be an ambiguous subset
of X and f : E→ Y be a Lebesgue class one mapping. Then there exists a Lebesgue
class one mapping g : X→ Y such that g|E = f .

COROLLARY 2.6. Let X be a topological space and E be a perfect ambiguous subset
of X. Then E is an H1-retract of X.

We call a subset E of a topological space X a Cozδ-set if there exists a sequence
of continuous functions fn : X→ [0, 1] such that E =

⋂
∞

n=1 f −1
n ((0, 1]). We call the

complement to a Cozδ-set a Zerσ -set. We call a set which is simultaneously Cozδ
and Zerσ a functionally ambiguous set.

PROPOSITION 2.7. Let E1, . . . , En be disjoint H1-retracts of topological space X
and let Ei be Cozδ in X for every i ∈ {1, . . . , n}. Then the union E =

⋃n
i=1 Ei is an

H1-retract of X.
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PROOF. First we obtain that for every finite family of disjoint Cozδ-sets E1, . . . , En
there exist disjoint functionally ambiguous sets B1, . . . , Bn such that Ei ⊆ Bi for
every i ∈ {1, . . . , n} and X =

⋃n
i=1 Bi .

Let n = 2 and E1, E2 be disjoint Cozδ-sets. Then the complements Ec
i = X \ Ei ,

i = 1, 2, are Zerσ and Ec
1 ∪ Ec

2 = X . From [10, Lemma 3.2] it follows that there exist
functionally ambiguous sets B1 and B2 such that Bc

1 ⊆ Ec
1, Bc

2 ⊆ Ec
2, Bc

1 ∪ Bc
2 = X

and Bc
1 ∩ Bc

2 = ∅. Then E1 ⊆ B1, E2 ⊆ B2, B1 ∩ B2 = ∅ and B1 ∪ B2 = X .
Let n > 2 and the assumption holds when we have n − 1 sets. There exist

disjoint functionally ambiguous sets B̃1, . . . , B̃n−1 such that Ei ⊆ B̃i if 1≤ i ≤ n − 2,
En−1 ∪ En ⊆ B̃n−1 and X =

⋃n−1
i=1 B̃i . Moreover, there exist disjoint functionally

ambiguous sets C and D such that En−1 ⊆ C , En ⊆ D and C ∪ D = X . Set Bi = B̃i
for i = 1, . . . , n − 2, Bn−1 = B̃n−1 ∩ C and Bn = B̃n−1 ∩ D.

Let ri : X→ Ei be H1-retractions, 1≤ i ≤ n. For every x ∈ X define r(x)= ri (x)
if x ∈ Bi for some i ∈ {1, . . . , n}. Clearly, r ∈ H1(X, E) and r(x)= x if x ∈ E . 2

3. Extension of continuous mappings to the first class mappings from
completely metrizable subspaces

In this section we prove the main results of this paper. All topological spaces will
be considered to be Hausdorff.

We say that a family A= (Ai : i ∈ I ) of sets Ai refines a family B = (B j : j ∈ J )
of sets B j if for every i ∈ I there exists j ∈ J such that Ai ⊆ B j . We write this as
A� B.

LEMMA 3.1. Let X be a perfect paracompact space and G be a locally finite cover
of X by ambiguous sets. Then there exists a disjoint locally finite cover of X by
ambiguous sets which refines G.

PROOF. Without loss of generality we may assume that G = {Gα | 0≤ α < β}, where
β is some ordinal.

Denote A0 = G0. For every 0< α < β let Aα = Gα \
⋃
ξ<α Gξ . According to

Michael’s theorem [4, p. 430], the set
⋃
ξ<α Gξ is ambiguous as a locally finite

union of ambiguous sets. Then the set Aα is also ambiguous. Clearly, the family
A= (Aα : 0≤ α < β) is to be found. 2

The next theorem is the main result of our paper.

THEOREM 3.2. Let X be a perfect paracompact space and E ⊆ X be a completely
metrizable subspace of X. Then E is an H1-retract of X.

PROOF. Let d be a metric on E such that (E, d) is a complete metric space and d
induces the topology in E .

For every n ∈N consider a cover Vn of the set E by open balls with radius 1/(2n+2).
For every ball V ∈

⋃
∞

n=1 Vn choose an open set UV in X so that V = E ∩UV .
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For every n ≥ 1 let Gn = (UV1 ∩ · · · ∩UVn : V1 ∈ V1, . . . , Vn ∈ Vn) and
Gn =

⋃
G∈Gn

G.
Since X is perfect, the set Gn is an Fσ -set in X . It follows from [4, p. 457] that

Gn is paracompact space. Then there exists a locally finite in Gn cover Un of Gn by
open sets in Gn , which refines Gn . According to Lemma 3.1, there exists a disjoint
locally finite in Gn cover of Gn by ambiguous sets in Gn , which refines Un . Remove
from this cover those sets that do not intersect with E and denote this new system by
Wn . Let Pn = ∪Wn . Note that Pn ⊆ Gn . Fix an arbitrary set Wn from Wn and denote
W 0

n =Wn ∪ (X \ Pn).
Index the elements of the system {W 0

n } ∪ (Wn \ {Wn}) and obtain the family
Xn = (Xn,i : i ∈ In).

Constructed in such a way, the sequence (Xn)
∞

n=1 of families Xn satisfies the
following properties:

(i) X =
⋃

i∈I Xn,i ;
(ii) Xn,i ∩ Xn, j = ∅, i 6= j ;
(iii) Xn,i ∩ E 6= ∅ for all i ∈ In .
(iv) family (Xn,i ∩ Gn : i ∈ In) is locally finite in Gn;
(v) |{i ∈ In | Xn,i \ Gn 6= ∅}| = 1;
(vi) diam(Xn,i ∩ E)≤ 1/(2n+1) for every i ∈ In .

Since all the elements of the system Wn are ambiguous sets in the open subset Gn
of a perfect space X , all the elements of system Wn are ambiguous sets in X . In
addition, since Wn is locally finite in Gn , Michael’s theorem [4, p. 430] implies that
Pn is also an ambiguous set in X . This implies that

(vii) Xn,i is ambiguous in X for all i ∈ In .

For every n ∈N let
En,i = Xn,i ∩ E

and for all i1 ∈ I1, . . . , in ∈ In let

Bi1...in = E1,i1 ∩ E2,i2 ∩ · · · ∩ En,in ,

Ci1...in = X1,i1 ∩ X2,i2 ∩ · · · ∩ Xn,in .

Then:

(1) E =
⋃

i1∈I1,...,in∈In
Bi1...in and X =

⋃
i1∈I1,...,in∈In

Ci1...in for every n ∈N;
(2) Bi1...in ∩ B j1... jn = ∅ and Ci1...in ∩ C j1... jn = ∅ if (i1, . . . , in) 6= ( j1, . . . , jn);
(3) if m ≥ n and Ci1...in ∩ C j1... jm 6= ∅ then i1 = j1, . . . , in = jn;
(4) Ci1...in ∩ E = Bi1...in for every n ∈N and i1 ∈ I1, i2 ∈ I2, . . . , in ∈ In;
(5) Bi1...in is an ambiguous set in E and Ci1...in is an ambiguous set in X for all n

and i1 ∈ I1, i2 ∈ I2, . . . , in ∈ In .

Moreover,

(6) for every n ∈N and any set I ′ ⊆ I1 × · · · × In the set A =
⋃
(i1,...,in)∈I ′ Ci1...in

is ambiguous in X .
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According to (iv), for every k ∈N the family (Xk,i ∩ Gk : i ∈ Ik) is locally finite
in Gk , and (v) implies that the family (Xk,i ∩ (X \ Gk) : i ∈ Ik) is locally finite in
X \ Gk . Therefore, taking into consideration the fact that the sequence (Gn)

∞

n=1
decreases, we obtain that for an arbitrary set

D ∈ {X \ G1, G1 \ G2, G2 \ G3, . . . , Gn−1 \ Gn, Gn} = {D0, . . . , Dn}

and for every k ∈ {1, 2, . . . , n} the family (Xk,i ∩ D : i ∈ Ik) is locally finite in D.
Then we have that the family (Ci1,...,in : i1 ∈ I1, . . . , in ∈ In) is also locally finite
in D. Hence, the family (Ci1,...,in ∩ D : (i1, . . . , in) ∈ I ′) is locally finite in D.
Furthermore, since all the sets D0, . . . , Dn are ambiguous in X and (5) holds, all
the sets Ak =

⋃
(i1,...,in)∈I ′ Ci1,...,in ∩ Dk are ambiguous in X and A =

⋃n
k=0 Ak is an

ambiguous set in X .
For every n and i ∈ In choose an arbitrary point yni ∈ Eni . For every x ∈ E let

ψn(x)= yn,in if x ∈ Bi1...in . Note that, according to (1) and (2), mappingsψn : E→ E
are correctly defined. We now show that the sequence (ψn)

∞

n=1 uniformly converges
to the identical mapping ψ : E→ E , ψ(x)= x .

Fix x ∈ E and n ∈N. Then there exist i1 ∈ I1, . . . , in ∈ In such that x ∈ Bi1...in .
Then ψn(x)= yn,in . Since Bi1...in ⊆ En,in , x ∈ En,in and yn,in ∈ En,in . According
to (vi), we have that diamEn,in ≤ 1/(2n+1). Then

d(ψ(x), ψn(x))= d(x, yn,in )≤
1

2n+1 .

Note that

d(ψm(x), ψn(x))≤
1

2n+1 +
1

2n+1 =
1
2n for all m ≥ n and x ∈ E . (∗)

For every n and multi-index (i1 . . . in)⊆ I1 × · · · × In denote

`(i1 . . . in)=max{1≤ k ≤ n | Bi1...ik 6= ∅}.

For all n ∈N and x ∈ X let rn(x)= y`(i1...in),i`(i1...in )
if x ∈ Ci1...in . Properties (1)

and (2) imply that all the mappings rn : X→ E are correctly defined.
We now prove that the sequence (rn)

∞

n=1 satisfies inequality (∗) for all x ∈ X .
Let x0 ∈ X and m ≥ n. Then there exist i1 ∈ I1, . . . , in ∈ In and j1 ∈ I1, . . . , jm

∈ Im such that x0 ∈ Ci1...in ∩ C j1... jm . Property (3) implies that i1 = j1, . . . , in = jn .
If Bi1...in 6= ∅ then rn(x0)= yn,in . Let k = `( j1 . . . jm). Then rm(x0)= yk, jk .

Clearly, k ≥ n. Choose any point x ∈ B j1... jk . Since B j1... jk = Bi1...in jn+1... jk ⊆ Bi1...in ,
ψn(x)= yn,in and ψk(x)= yk, jk . Inequality (∗) implies that

d(rn(x0), rm(x0))= d(yn,in , yk, jk )= d(ψn(x), ψk(x)) <
1
2n .

If Bi1...in = ∅ then `(i1 . . . in)= `( j1 . . . jm). Now we have that rn(x0)= rm(x0)

and d(rn(x0), rm(x0))= 0. Hence, sequence (rn)
∞

n=1 satisfies (∗) for all x ∈ X .
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Since X is a completely metrizable space, there exists a mapping r : X→ E such
that the sequence (rn)

∞

n=1 uniformly converges to r on X . Moreover, since rn|E = ψn
and ψ(x)= limn→∞ ψn(x) for all x ∈ E , we have that r |E = ψ , that is r(x)= x for
every x ∈ E .

Since a uniform limit of the Lebesgue class one mappings is a Lebesgue class one
mapping [12, p. 395], it remains to prove that rn ∈ H1(X, E) for all n ∈N.

Since for any n ∈N and i1, . . . , in ∈ I1 × · · · × In such that Ci1,...,in 6= ∅ the
mapping rn|Ci1,...,in

is constant, we have that for an arbitrary set B ⊆ E

r−1
n (B)=

⋃
(i1,...,in)∈I ′

Ci1,...,in ,

where I ′ = {(i1, . . . , in) ∈ I1 × · · · × In | rn(Ci1,...,in )⊆ B}. Therefore, according
to (6), r−1

n (B) is an ambiguous set in X . In particular, all the mappings rn are of
the first Lebesgue class. 2

COROLLARY 3.3. Let X be a completely metrizable space and E ⊆ X. The set E is
an H1-retract of X if and only if E is Gδ in X.

PROOF. Sufficiency. This immediately follows from 2.3.
Necessity. According to the Aleksandrov–Hausdorff theorem [4, p. 407], the space

E is completely metrizable. Hence, Theorem 3.2 implies that E is an H1-retract of
X . 2

The following corollary gives a positive answer to Question 1.2.

COROLLARY 3.4. Let X be a metrizable space, Y be a completely metrizable space,
A ⊆ X and f : A→ Y be a continuous mapping. Then there exists a Lebesgue class
one mapping g : X→ Y such that g|A = f .

PROOF. Denote by X̂ the completion of X . According to [4, p. 405], there exists a Gδ-
subset Â of X̂ and a continuous mapping h : Â→ Y such that A ⊆ Â and h|A = f .
According to Corollary 3.3, Â is an H1-retract of X̂ . Then there exists a mapping
ĥ ∈ H1(X̂ , Y ) such that ĥ| Â = h.

Let g = ĥ|X . Then g : X→ Y is the desired extension of f . 2

Since every completely metrizable separable space is hereditarily Baire and
Lindelöf, the result of Kalenda and Spurný implies the following fact.

THEOREM 3.5. Let E be a completely metrizable separable subspace of a completely
regular space X. Then E is an H1-retract of X.

At first sight this theorem gives a solution to the problem of the extension of a
continuous mapping to a mapping of the first Lebesgue class with values in an arbitrary
(not necessary separable) topological space, analogously to as in Theorem 3.2.
However, since a continuous image of a separable space E is also separable, in fact
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separability of Y is present here imperceptibly and we cannot obtain Corollary 3.4
from Theorem 3.5.

The following example shows that the assumption that X is perfect in Theorem 3.2
and the assumption that E is separable in Theorem 3.5 cannot be omitted. Moreover,
this example gives a negative answer to Question 1.4.

EXAMPLE 3.6. There exist a completely metrizable subspace E of a compact space
X and a continuous function f : E→ [0, 1] which cannot be extended to a Lebesgue
class one function on X .

PROOF. Let E be an uncountable discrete space and X = αE = E ∪ {∞} be the
Aleksandrov compactification of E .

Choose two uncountable disjoint subsets E1 and E2 of E so that E = E1 t E2 and
consider the function

f (x)=

{
1 if x ∈ E1,

0 if x ∈ E2.

The function f : E→ [0, 1] is continuous and hence a σ -discrete function of the first
Lebesgue class.

Note that for every continuous function (and for every Baire one function that is a
pointwise limit of continuous functions) g : X→ [0, 1] there exists at most countable
set X0 ⊆ X such that g(x)= g(∞) for all x ∈ X \ X0. It follows that a function f
cannot be extended to a Baire one function g : X→ [0, 1], provided E1 and E2 are
uncountable sets.

According to [15, Theorem 3.7], the class H1(X, [0, 1]) coincides with the class of
all Baire one functions g : X→ [0, 1]. Therefore, the function f cannot be extended
to a Lebesgue class one function on X . 2
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