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Abstract

We introduce the concept of infinite cochain sequences and initiate a theory of homological algebra for
them. We show how these sequences simplify and improve the construction of infinite coclass families
(as introduced by Eick and Leedham-Green) and also how they can be applied to prove that almost all
groups in such a family have equivalent Quillen categories. We also include some examples of infinite
families of p-groups from different coclass families that have equivalent Quillen categories.
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1. Introduction

Coclass theory was initiated by Leedham-Green and Newman [14]. The fundamental
aim of this theory is to classify and investigate finite p-groups using the coclass as
primary invariant. The infinite coclass families of finite p-groups of fixed coclass, as
defined by Eick and Leedham-Green [10], are considered to be a step towards these
aims. Their definition is based on a splitting theorem for a certain type of second
cohomology group.

Various interesting properties of the infinite coclass families have been determined.
For example, the automorphism groups and the Schur multiplicators of the groups in
one family can be described, simultaneously, for all groups in the family (see [5–7]). It
is conjectured that almost all groups in an infinite coclass family have isomorphic mod-
p cohomology rings. This conjecture is still open, but it is underlined by computational
evidence obtained by Eick and King [9] and by our earlier result [8], which says that
the Quillen categories of almost all groups in an infinite coclass family are equivalent.
The proof of the latter theorem uses a splitting theorem for cohomology groups.
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In this paper, we derive a generalization of the splitting theorems obtained and used
in [10] and [8], and describe the splitting at the cocycle level. Based on this, we
introduce the concept of an infinite cochain sequence and take the first steps towards
the development of a theory of homological algebra for them.

We then show that the infinite coclass families of [10] can be defined using the
infinite cochain sequence. This way of defining the families is more explicit than the
definition in [10], since it is based on cocycles rather than just cohomology classes.
This difference is significant: for example, it is useful for the investigation of the
Quillen categories of the groups in a coclass family. Further, we use the infinite
cochain sequences to give a new, more conceptual proof of our main theorem in [8] on
the Quillen categories of the groups in an infinite coclass family.

In the final part of this paper, we give some examples of groups from different
coclass families with equivalent Quillen categories. Let q = p` for a prime p, let Zp

denote the p-adic integers and consider the irreducible action of Cq on T = Z
(p−1)p`−1

p

(this is unique up to equivalence). Then Gq = T o Cq is an infinite pro-p-group
of coclass `. For ` = 1, it is the unique infinite pro-p-group of coclass one (or of
maximal class) and, for ` > 1, it is an interesting example for an infinite pro-p-group
of coclass `.

The main line groups associated with an infinite pro-p-group G of coclass r are
the infinite number of lower central series quotients G/γi(G) that have coclass r; this
infinite sequence is not necessarily a coclass family itself, but it consists of a finite
number of different coclass families. The skeleton groups associated with an infinite
pro-p-group G of coclass r form a significantly larger family of groups containing the
main line groups and they play an important role in coclass theory; we refer to [13,
Section 8.4] or [11, Section 3], for details.

Theorem 1.1.

(1) For an arbitrary, fixed prime p, the Quillen categories of almost all main line
groups associated with Gp are pairwise equivalent.

(2) The Quillen categories of almost all skeleton groups associated with G9 are
pairwise equivalent.

Proof. (1) See Section 8.1 for odd p; for p = 2 the main line groups are the dihedral
2-groups, and the result is well known (see e.g. [8, Section 9]).

(2) See Section 8.2. �

Remark 1.2. Theorem 1.1(1) can be made more explicit: the Quillen categories of
the quotients Gp/γi(Gp) are equivalent for all i ≥ p + 1. Note that G3/γi(G3) have
isomorphic mod-3 cohomology rings for i ∈ {5, 6, 7}, but the cohomology ring for i = 4
is different, see [9].
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2. Infinite cochain sequences

2.1. Preliminaries. We work, throughout, with the normalized standard resolution
(see [12, page 8]): that is, a cochain f ∈ Cn(G, M) is a map f : Gn → M with the
additional property that f (g1, . . . , gn) is zero if any gi is the identity element.

We denote the coboundary operator by ∆ : Cn(G,M)→ Cn+1(G,M). Recall that the
coboundary of a 2-cochain is given by

∆ f (g1, g2, g3) = g1 f (g2, g3) − f (g1g2, g3) + f (g1, g2g3) − f (g1, g2)

and, more generally, the coboundary of an n-cochain is

∆ f (g1, . . . , gn+1) = g1 f (g2, . . . , gn+1)

+

n∑
i=1

(−1)i f (g1, . . . , gi−1, gigi+1, gi+2, . . . , gn+1)

+ (−1)n+1 f (g1, . . . , gn).

The n-cocycles are the elements of

Zn(G,M) = ker(Cn(G,M)
∆
−→ Cn+1(G,M)),

and the n-coboundaries are the elements of

Bn(G,M) = Im(Cn−1(G,M)
∆
−→ Cn(G,M)).

Since ∆2 = 0, it follows that Bn(G, M) ⊆ Zn(G, M), and we set Hn(G, M) =

Zn(G, M)/Bn(G, M). Elements of Hn(G, M) are called cohomology classes; if f is
an n-cocycle, then its cohomology class is f + Bn(G,M) ∈ Hn(G,M).

Remark 2.1. By transfer theory, |G| · Hn(G, M) = 0 for all n ≥ 1 (see, for example, [3,
Proposition 3.6.17]).

2.2. Splitting theorems. For the remainder of this section, we fix the following
notation.

Notation 2.2. Let G be a finite p-group with m = logp(|G|), let R be a commutative
ring, let M an RG-module and let N be a submodule of M with AnnN(p) = {0}.

We need the following generalization of [8, Theorem 7], which is itself a
generalization of [10, Theorem 18].

Theorem 2.3. We use Notation 2.2 and let n ≥ 1 and r ≥ 2m. Then there is a splitting

Hn(G,M/prN) � Hn(G,M) ⊕ Hn+1(G,N),

which is natural with respect to restriction to subgroups of G.
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Notation 2.4. Projection M � M/prN induces maps
Cn(G,M)� Cn(G,M/prN)

of cochain modules and Hn(G, M)→ Hn(G, M/prN) of cohomology modules. We
shall denote all three maps by pror.

Proof. Recall that |G| = pm and define ir : N → M : x 7→ pr x. Consider the long exact
sequence in group cohomology induced by the following short exact sequence of
coefficient modules

0 −−−−−→ N
ir

−−−−−→ M
pror
−−−−−→ M/prN −−−−−→ 0.

The proof of [8, Theorem 7] readily generalizes, showing that, if n ≥ 0 and r ≥ 2m,
then

0 −−−−−→ Hn(G,M)
pror
−−−−−→ Hn(G,M/prN)

conr
−−−−−→ Hn+1(G,N) −−−−−→ 0

is a split short exact sequence, where conr is the connecting homomorphism. �

We now describe how Theorem 2.3 works at the cocycle level.

Proposition 2.5. Use Notation 2.2. Let n ≥ 1, and pick ρ ∈ Zn(G, M) and η ∈
Zn+1(G,N).

(1) There is a (not necessarily unique) n-cochain σ ∈ Cn(G, N) such that ∆(σ) =

pmη.
(2) For every r ≥ m and for every choice of σ in (1), the induced cochain pror( ρ +

pr−mσ) lies in Zn(G,M/prN).
(3) For every r ≥ 2m and for every choice of σ in (1), the cohomology class

pror( ρ + pr−mσ) + Bn(G,M/prN) ∈ Hn(G,M/prN)
is the unique class corresponding, via the isomorphism of Theorem 2.3, to

( ρ + Bn(G,M), η + Bn+1(G,N)) ∈ Hn(G,M) ⊕ Hn+1(G,N).
Proof. (1) pmη is a coboundary, since pmHn+1(G,N) = 0, by Remark 2.1.

(2) pror and ∆ commute, and ∆( ρ + pr−mσ) = prη lies in the kernel of pror.
(3) The proof of [8, Theorem 7] says that the component maps of the isomorphism

Hn(G, M/prN)→ Hn(G, M) ⊕ Hn+1(G, N) are the connecting homomorphism conr :
Hn(G,M/prN)→ Hn+1(G,N) and the map

Hn(G,M/prN)
π∗
−→ Hn(G,M/pr−mN)

(pror−m)−1

−−−−−−−→ Hn(G,M),
where π : M/prN → M/pr−mN, is the projection map x + prN 7→ x + pr−mN. As

π∗ pror( ρ + pr−mσ) = pror−m( ρ + pr−mσ) = pror−m( ρ),
the image in Hn(G,M) is ρ + Bn(G,M).

Recall from, for example, the proof of [13, Theorem 9.1.5], that conr is constructed
as the composition

Zn(G,M/prN)
(pror)−1

−−−−−→ Cn(G,M)
∆
−→ Zn+1(G,M)

(ir)−1
∗

−−−−→ Zn+1(G,N),
with ir as in the proof of Theorem 2.3. So pror( ρ + pr−mσ) 7→ ρ + pr−mσ 7→ 0 + prη =

ir(η) 7→ η. Uniqueness follows. �
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2.3. The definition of cochain sequences. Using the ideas of Proposition 2.5, we
now define infinite cochain sequences.

Definition 2.6. We use Notation 2.2 and let n ≥ 1 and r0 ≥ 0. We call a sequence
(αr)r≥r0 of cochains αr ∈ Cn(G, M/prN) a cochain sequence if there are cochains
ρ ∈ Cn(G,M) and σ ∈ Cn(G,N) and an ω ∈ {0, 1, . . . , r0} such that

αr = pror( ρ + pr−ωσ) ∈ Cn(G,M/prN) for all r ≥ r0.

Note that the cochain sequences defined by (ρ,σ; r0, ω) and (ρ′, σ′; r′0, ω
′) are equal

if and only if r0 = r′0 and the cochains pror(ρ + pr−ωσ) and pror(ρ
′ + pr−ω′σ′) are equal

as elements of Cn(G,M/prN) for all r ≥ r0.
Often, r0 will be clear from the context. We then also write α• for (αr | r ≥ r0) and

M/p•N for (M/prN | r ≥ r0). If α• is induced from ( ρ, σ; r0, ω), then we also write

α• = pro•( ρ + p•−ωσ).

Notation 2.7. Often, r0 and N will be fixed from the context. We then denote
Mr = M/prN, we write M• for (Mr | r ≥ r0) and we denote by Cn

r0
(G,M•) the set of all

cochain sequences which start at r0.

2.4. Homological algebra for cochain sequences. Our next aim is to develop some
elementary homological algebra for cochain sequences.

Notation 2.8. We continue to use the Notation 2.2, imposing minor additional
restrictions. We assume from now on that R is a noetherian integral domain and that
pis a prime number, which, in R, is neither zero nor a unit. Further, M is a finitely
generated RG-module which is free as an R-module. Then

⋂
r pr M = {0}, by Krull’s

theorem [2, 10.17] and AnnN(p) = {0}.

Lemma 2.9. The set Cn
r0

(G,M•) of cochain sequences is an R-module.

Proof. Let α• be defined by ( ρ, σ; r0, ω) and β• by ( ρ′, σ′; r0, ω
′). Then

αr + βr = pror( ρ + ρ′ + pr−`(p`−ωσ + p`−ω
′

σ′)) for ` = max(ω,ω′),

and so α• + β• is the cochain sequence defined by ( ρ + ρ′, p`−ωσ + p`−ω
′

σ′; r0, `). For
x ∈ R, xα• is the cochain sequence defined by (xρ; xσ; r0, ω). �

Lemma 2.10. Let α• ∈ Cn
r0

(G,M•) be the cochain sequence defined by ( ρ;σ; r0, ω).

(1) Either α• = 0, that is, αr = 0 for all r ≥ r0, or αr , 0 for all sufficiently large r.
(2) α• = 0 if and only if ρ = 0 in Cn(G,M) and σ lies in pωCn(G,N).

Proof. If ρ = 0 and σ is not divisible by pω, then pr−ωσ is not divisible by pr, and so
αr is nonzero for all r. If ρ , 0, then there is k such that prok( ρ) , 0 in Cn(G,M/pkN),
and hence αr , 0 for all r ≥ k + ω. �

Notation 2.11. Let α• ∈ Cn
r0

(G,M•). We define the level of α• to be the smallest value
of ω such that α• is defined by ( ρ, σ; r0, ω) for some ρ, σ.
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Remark 2.12. By definition, the cochain sequence, defined by (ρ,σ; r0, ω), has level at
mostω. Note that (ρ,σ; r0, ω) and (ρ, pσ; r0, ω + 1) define the same cochain sequence.
Thus the level of the cochain sequence defined by ( ρ, σ; r0, ω) can be strictly smaller
than ω.

Definition 2.13. Define Cn
r0

(G, M•)
∆
→ Cn+1

r0
(G, M•) by (∆α)r := ∆(αr). So if α• is

defined by ( ρ, σ; r0, ω), then ∆(α•) is defined by (∆( ρ),∆(σ); r0, ω). Further, write
Zn

r0
(G,M•) = ker(∆) and Bn+1

r0
(G,M•) = Im(∆).

The map ∆ is R-linear and satisfies ∆2 = 0. Thus Bn
r0

(G,M•) ⊆ Zn
r0

(G,M•).

Remark 2.14. By Lemma 2.10, ∆(α•) = 0 if and only if ∆( ρ) = 0 and ∆(σ) is divisible
by pω. So we may rephrase Proposition 2.5 as the following corollary.

Corollary 2.15. Let n ≥ 1 and r0 ≥ 2m. For every ρ̄ ∈ Hn(G, M) and every η̄ ∈
Hn+1(G,N), there is a cocycle sequence α• ∈ Zn

r0
(G, M•) of level at most m such that,

for every r ≥ r0, the cohomology class αr + Bn(G,Mr) ∈ Hn(G,Mr) corresponds, under
the isomorphism of Theorem 2.3, to (ρ̄, η̄) ∈ Hn(G,M) ⊕ Hn+1(G,N). �

Lemma 2.16. Let n ≥ 1. Suppose that α• ∈ Zn
r0

(G, M•) has level ω ≤ r0 − m. The
following statements are equivalent:

(1) αr1 ∈ Bn(G,Mr1 ) for some value r1 ≥ r0 of r;
(2) αr ∈ Bn(G,Mr) for every r ≥ r0;
(3) α• ∈ B

n
r0

(G,M•); and
(4) α• = ∆(β•) for some β• ∈ Cn−1

r0
(G,M•) of level at most ω + m.

Proof. The implications (4)⇒ (3)⇒ (2)⇒ (1) are clear.
(1) ⇒ (4): Let α• = pro•( ρ + p•−ωσ). Since αr1 ∈ Bn(G, Mr1 ), there are φ ∈

Cn−1(G,M) and ψ ∈ Cn(G,N) such that ρ + pr1−ωσ = ∆(φ) + pr1ψ, and hence

pr1−ω(σ − pωψ) = ∆(φ) − ρ.

By Lemma 2.10, we may replace σ by σ − pωψ without altering α•. Hence

pr1−ωσ = ∆(φ) − ρ.

Now, the right-hand side is a cocycle, since α• ∈ Zn(G, M•) means that ρ is a cocycle.
Hence the left-hand side lies in Zn(G, N). So σ ∈ Zn(G, N), by regularity of p, and
therefore, since pmHn(G,N) = 0, there is χ ∈ Cn−1(G,N) with ∆(χ) = pmσ. Hence ρ =

∆(λ) for λ = φ − pr1−ω−mχ ∈ Cn−1(G,M). So α• = ∆(β•) for β• = pro•(λ + p•−ω−mχ). �

The next result will be needed in the proof of Lemma 4.6.

Lemma 2.17. Let n ≥ 1 and r1 ≥ r0 ≥ 2m. For each z ∈ Zn(G, Mr1 ) there is an α• ∈
Zn

r0
(G,M•) of level at most m with αr1 = z.
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Proof. Let ξ be the element of Hn(G, M) ⊕ Hn+1(G, N) corresponding to z +

Bn(G, Mr1 ) ∈ Hn(G, Mr1 ) under the isomorphism of Theorem 2.3. By Corollary 2.15,
there is some β• = pro•(ρ + p•−mσ) ∈ Zn

r0
(G,M•) such that βr + Bn(G,Mr) corresponds

to ξ for every r ≥ r0. Hence z − βr1 ∈ Bn(G, Mr1 ). Pick λ ∈ Cn−1(G, Mr1 ) with z =

∆(λ) + βr1 , and choose λ̄ ∈ Cn−1(G,M) with pror1
(λ̄) = λ. For ρ′ = ρ + ∆(λ̄) ∈ Zn(G,M)

we then have z = αr1 for α• = pro•( ρ
′ + p•−mσ). �

3. Coclass families of p-groups

Coclass families are certain infinite families of finite p-groups of fixed coclass.
Their construction has been introduced in [10] based on a version of Theorem 2.3.
Here we exhibit a construction based on Proposition 2.5. The construction differs
from [10] in that it uses cocycles rather than their corresponding cocycle classes and
thus is slightly more explicit. This difference will be essential in our later applications.

Every coclass family of p-groups of coclass r is associated with an infinite pro-
p-group S of coclass r. The structure of the infinite pro-p-groups of finite coclass
is well investigated. For example, it is known that, for each such group S , there
exist natural numbers l and d so that the lth term of the lower central series γl(S)
satisfies that γl(S) � Zd

p, where Zp denotes the p-adic numbers and S/γl(S) is a finite
p-group of coclass r. The integer d is an invariant of S called the dimension of S.
The integer l is not an invariant; in fact, each integer larger than l can be used instead
of l. The subgroup γl(S) is often denoted by T and called a translation subgroup of
S. Its subgroup series, defined by T0 = T and Ti+1 = [Ti, S], satisfies [Ti : Ti+1] = p for
i ∈ N0. Thus the series T = T0 > T1 > · · · is the unique series of S-normal subgroups
in T , and T is called a uniserial S-module. We refer to [13] for many more details on
the structure of the infinite pro-p-groups of coclass r.

Given S and l, we write Si = S/γl+i(S) for i ∈ N0. Then S0, S1, . . . is an infinite
sequence of finite p-groups of coclass r. This sequence is called the main line
associated with S. The main line is not necessarily a coclass family itself, but it always
consists of d coclass families and a finite number of other groups. More precisely,
there exists an integer h ≥ l so that the d infinite sequences (Sh+i, Sh+i+d, Sh+i+2d, . . .) for
0 ≤ i < d are coclass families. Note that the group S can be viewed as an extension of
Sh+i+ jd by its natural module Th+i+ jd, for each h, i and j, and that the group Sh+i+ jd+k

can be viewed as an extension of Sh+i+ jd by its natural module Th+i+ jd/Th+i+ jd+k, for
each h, i, j and k.

For each coclass family (G0,G1, . . .) associated with the infinite pro-p-group S ,
there exists an integer k so that each group G j is a certain extension of Sh+i+ jd with its
natural module Th+i+ jd/Th+i+ jd+k. The extensions can be chosen so that the main line
group Sh+i+ jd+1 is not a quotient of G j. In this case, the integer k is an invariant of the
coclass family called its distance to the main line.

To describe the groups in a coclass family explicitly, it is more convenient to use a
different type of extension construction. Instead of describing a group G j in a coclass
family as extension of an associated main line group Sh+i+ jd by its natural module
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of fixed size pk, we describe each G j as an extension of a fixed main line group S`
for some suitable ` by a module of variable size M j := T`/T`+ jd. It is not difficult to
observe that T`+ jd = p jT`, and thus the group M j is isomorphic to a direct product of
d copies of cyclic groups of order p j.

We now use Proposition 2.5 to exhibit a complete construction for a coclass family
(G0,G1, . . .) associated with the infinite pro-p-group S of coclass r. For this purpose,
let m = logp(S`) = r + ` − 1 and let j ≥ 3m + 1. Let ρ ∈ Z2(S`, T`) so that S is an
extension of S` with T` via ρ.

Definition 3.1. There exists η ∈ Z3(S`, T`) so that G j is an extension of S` by M j via
τ j, where τ• = pro•( ρ + p•−mσ) and ∆(σ) = pmη.

The definition of coclass families asserts that, for each coclass family, there exists
an η yielding this family. It may happen that different cocycles η1, η2 yield coclass
families with pairwise isomorphic groups; for example, this is the case if η1 ≡

η2 mod B3(S`, T`). We note that every η ∈ Z2(S`, M j) yields a coclass family via the
above construction.

The significance of coclass families is underlined by the fact that, for (p, r) = (2, r)
or (p, r) = (3, 1), all but a finite number of p-groups of coclass r are contained in a
coclass family.

4. Cochain sequences and elementary abelians

We now apply the results of Section 2.4 to the coclass family G• of Section 3. In the
language of Notation 2.8, this means that M = T . It would be natural to take N = T as
well, but we shall actually take N = pT , for the following technical reason: it simplifies
Remark 4.4 and, especially, Lemma 5.2 if M/prN and M/N have the same elementary
abelian subgroups. Hence M• = M/p•N = T/p•+1T , and G•+1 = M•.P with extension
cocycle τ• ∈ Z2

r0
(P,M•).

Recall that if N E G and U ≤ G/N, then a lift of U is a subgroup Ū ≤ G such that
the projection map G→ G/N maps Ū isomorphically to U.

Suppose that we are given H ≤ Gr+1. Setting K := H ∩ Mr and Q := HMr/Mr, we
see that H is an extension H = K · Q, with Q ≤ P, and K a Q-submodule of Mr. If K
has a complement C in H (which is certainly the case if H is elementary abelian), then
C ≤ Gr+1 is a lift of Q.

4.1. Extension theory. We recall some details of extension theory (see, for example,
[3, Section 3.7]). Let G be a finite group and M a left ZG-module. Recall that every
group extension Γ = M · G can be constructed using a 2-cocycle τ ∈ Z2(G, M): the
underlying set is M ×G, with multiplication

(t1, g1)(t2, g2) = (t1 + g1 t2 + τ(g1, g2), g1g2).

Associativity is equivalent to the cocycle condition. The extension splits as a
semidirect product Γ = M o G if and only τ ∈ B2(G, M). If τ = ∆( f ), then G( f ) =

{(− f (g), g) | g ∈ G} ≤ Γ is a lift of G, and every lift arises thus.
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Lemma 4.1. If f , f ′ ∈ C1(G, M) satisfy ∆( f ) = τ = ∆( f ′), then f ′ − f ∈ Z1(G, M) and,
moreover,

f ′ − f ∈ B1(G,M) ⇔ G( f ) and G( f ′) are conjugate by an element of M.

Proof. This is Proposition 3.7.2 of [3]. Observe, from the proof of that result, that
conjugation by elements of M induces every coboundary. �

4.2. Lifting elementary abelians.

Lemma 4.2. Let Q ≤ P and suppose r0 ≥ 2m. Then the three following statements are
equivalent:

(1) Q has a lift Q̄r ≤ Gr+1 for all r ≥ r0; and
(2) Q has a lift Q̄r ≤ Gr+1 for at least one r ≥ r0;
(3) τ•|Q = ∆( f•) for some cochain sequence f• ∈ C1

r0
(Q,M•) of level at most m.

Proof. Let Hr ≤ Gr+1 be the subgroup with Mr ≤ Hr and Hr/Mr = Q. Then Hr =

Mr · Q with extension class τr |Q, and Q has a lift Q̄r ≤ Gr+1 if and only if τr |Q lies in
B2(Q,Mr). Now apply Lemma 2.16. �

Now suppose that E ≤ Gr+1 is elementary abelian. Setting K = E ∩ Mr and U =

EMr/Mr ≤ P, as above, we have E = K × Ū for a lift Ū ≤ Gr+1 of U. Recall that
Ū = U(φ) for some φ ∈ C1(U,Mr), with ∆(φ) = τr |U .

Notation 4.3. We shall need to refer to several different maps between cohomology
modules. Let L ⊆ M be a submodule.

• Inclusion L ↪→ M induces Hn(G, L)
inc
−−→ Hn(G,M).

• mulr : M/L → M/prL, x + L 7→ pr x + prL induces Hn(G, M/L)
mulr
−−−→ Hn

(G,M/prL).

Note that mulr ◦muls = mulr+s, and that

pror( ρ + pr−mσ) = pror( ρ) + mulr−m prom(σ).

Remark 4.4. Since K ≤ Mr = T/pr+1T is elementary abelian, it follows that

K ≤ Ω1(Mr) = prT/pr+1T
(mulr)−1

−−−−−−→
�

T/pT.

So K = mulr(W) for some W ≤ T/pT . Since E is abelian, [Ū, K] = 1, which is
equivalent to W ≤ (T/pT )U .

Notation 4.5. E is the set of all triples (U, f•,W) with U ≤ P an elementary abelian,
f• ∈ C1

r0
(U, M•) is a cochain sequence of level at most 2m such that ∆( f•) = τ•|U and

W ≤ (T/pT )U .

Lemma 4.6. Suppose that r ≥ r0 ≥ 2m. Every elementary abelian E ≤ Gr+1 has the
form E = Er(U, f•,W) := mulr(W) × U( fr) for some (U, f•,W) ∈ E.
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Proof. We saw above that E = mulr(W) × U(φ) with U ≤ P elementary abelian,
W ≤ (T/pT )U and φ ∈ C1(U, Mr) with ∆(φ) = τr |U . As U(φ) is a lift of U in Gr+1,
there is f• ∈ C1

r0
(U, M•) of level at most 2m with ∆( f•) = τ•|U , by Lemma 4.2. Hence

φ − fr ∈ Z1(U,Mr), so, by Lemma 2.17, there is z• ∈ Z1
r0

(U,M•) of level at most m with
zr = φ − fr. So (U, f• + z•,W) ∈ E, and E = mulr(W) × U( fr + zr). �

5. Change of module

The following technical lemma is required in the proofs of Proposition 6.2 and
Lemma 7.1. We revert to Notation 2.8, and consider the case of two submodules
L,N ⊆ M satisfying the condition pL ⊆ N ⊆ L.

Example 5.1. If (U, f•,W) ∈ E, then W ≤ T/pT , and so W = L/pT for some pT ⊆ L ⊆
T . Hence pL ⊆ N ⊆ L, since N = pT .

We shall investigate the cohomology maps induced by the short exact sequence

0→ L/N
mulr
−−−→ M/prN → M/prL→ 0.

As we now have to distinguish between two different projection maps, we shall denote

them by M
proN

r
−−−→ M/prN and M

proL
r

−−−→ M/prL.

Lemma 5.2. Suppose the RG-submodule L ⊆ M satisfies pL ⊆ N ⊆ L.

(1) Assume r0 ≥ 1. Then j∗ ◦ i∗ = 0 for the chain maps

C∗(G, L/N)
i∗
−→ C∗r0

(G,M/p•N)
j∗
−→ C∗r0

(G,M/p•L)

given by in(c)r = mulr(c) and jn(α•)r = αr + prL.
(2) Suppose that α• ∈ Zn

r0
(G, M/p•N) satisfies jn(α•) ∈ Bn

r0
(G, M/p•L). If α• has

level ω ≤ r0 − m, then

α• = in(c)• + ∆(proN
• (κ + p•−(ω+m)λ))

for some c ∈ Zn(G, L/N), κ ∈ Cn−1(G,M) and λ ∈ Cn−1(G, L).

Proof. (1) Pick c̄ ∈ Cn(G, L) with proL
0 (c̄) = c, then pc̄ ∈ Cn(G,N) and

in(c)• = proN
• (0 + p•−1 · pc̄) ∈ Cn

r0
(G,M/p•N) with level 1 ≤ r0.

If α• = proN
• ( ρ + p•−ωσ) ∈ Cn

r0
(G,M/p•N), then jn(α•) = proL

• ( ρ + p•−ωσ).
Clearly i∗, j∗ are chain maps. And jnin = 0, since c takes values in L.
(2) Let α• = proN

• ( ρ + p•−ωσ), so jn(α•) = proL
• ( ρ + p•−ωσ). By Lemma 2.16,

jn(α•) = ∆(γ•) for some γ• ∈ Cn−1
r0

(G,M/p•L) of the form

γ• = proL
• (κ + p•−ω−mλ) with κ ∈ Cn−1(G,M), λ ∈ Cn−1(G, L).

Applying Lemma 2.10, we have ρ = ∆(κ), and

pmσ = ∆(λ) + pω+mc̄ for some c̄ ∈ Cn(G, L).
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From α• ∈ Z
n
r0

(G,M/p•N), it follows that ∆(σ) takes values in pωN, and so ∆(c̄) takes
values in N. So c := proN

0 (c̄) lies in Zn(G, L/N), and in(c)r = proN
r (prc̄). Hence

α• = proN
• ( ρ + p•−ωσ)

= proN
• (∆(κ + p•−(ω+m)λ) + p•c̄)

= in(c) + ∆(pro•(κ + p•−(ω+m)λ)). �

6. Morphisms in the Quillen category

Notation 6.1. Consider the triple (U, f•,W) ∈ E. Recall from Section 2 that Gr+1
has underlying set Mr × P and that U( fr) = {(− fr(u), u) | u ∈ U}. So the subgroup
Er(U, f•,W) ≤ Gr+1 of Lemma 4.6 is

Er(U, f•,W) = {(prw − fr(u), u) | u ∈ U,w ∈ W}.

Let j f
r : W × U → Er(U, f•,W) be the isomorphism (w, u) 7→ (prw − fr(u), u).

Proposition 6.2. Suppose that r0 ≥ 3m and m ≥ 1. For elements (U, f•,W), (U′, f ′• ,W
′)

∈ E the set of isomorphisms W × U → W ′ × U′ of the form

W × U
j f
r

−−−−−→ Er(U, f•,W)
conjugation
−−−−−−−−→

in Gr+1
Er(U′, f ′• ,W

′)
( j f ′

r )−1

−−−−−→ W ′ × U′

is independent of r.

For the proof, we need two lemmas. Observe that mulr−r0 embeds Mr0 = T/pr0+1T
in Gr+1 as pr−r0 T/pr+1T ≤ Mr.

Lemma 6.3. Suppose that m ≥ 1 and r0 ≥ 2m. Let (U, f•,W) ∈ E.

(1) AutMr (Er(U, f•,W)) = Autmulr−r0 (Mr0 )(Er(U, f•,W)).
(2) The subgroup

N = {x ∈ Mr0 | mulr−r0 (x) ∈ NGr+1 (Er(U, f•,W))}

depends on neither r nor f•; nor does the action of N on W × U obtained by
using j f

r to identify Er(U, f•,W) with W × U.

Write W̄ for the module pT ⊆ W̄ ⊆ T with W = W̄/pT .

Proof. (1) Conjugation by t ∈ T fixes MrU( fr)/Mr and W pointwise and is described
by ∆(t) ∈ B1(U,Mr):

(t,0)(prw − fr(u), u) = (prw − ∆(t)(u) − fr(u), u).

If t normalizes mulr(W) × U( fr) ≤ Gr+1 then ∆(t) must take values in prW̄. Hence
∆(t) ∈ prZ1(U, W̄) ⊆ pr−mB1(U, W̄). So there is v̄ ∈ W̄ such that ∆(t) = pr−m∆(v̄), and
pror(pr−mv̄) = mulr−r0 pror0

(pr0−mv̄) ∈ mulr−r0 (Mr0 ) has the same conjugation action
as t.

(2) Conversely, if v = v̄ + pr0+1T ∈ Mr0 , then mulr−r0 (v) normalizes mulr(W) ×U( fr)
if and only if ∆(pr−r0 v̄) ∈ Z1(U, T ) takes values in prW̄, that is, if ∆(v) = mulr0 (z) for
some z ∈ Z1(U,W). The action on W × U is then (w, u) 7→ (w − z(u), u). �
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Lemma 6.4. Suppose r0 ≥ 2m and g ∈ P. Let (U, f•,W), (gU, f ′• ,
gW) ∈ E. Define

χr ∈ C1(gU,Mr) by

χr(v) = (g fr)(v) − τr(g, vg) + τr(v, g) − f ′r (v).

Then χ• ∈ Z1
r0

(gU,M•) is a cocycle sequence of level at most 2m.

Proof. For c ∈ Cn(H,M) we, of course, define gc ∈ Cn(gH,M) by

(gc)(k1, . . . , kn) = gc(kg
1, . . . , k

g
n).

Everything is of level at most 2m. Since ∆( f ′•) = τ•|gU and ∆(g f•) = g(τ•|U)

∆( χr)(v1, v2) = gτr(v
g
1, v

g
2) − τr(g, v

g
2) + τr(g, v

g
1vg

2) − τr(g, v
g
1)

+ τr(v2, g) − τr(v1v2, g) + τr(v1, g) − τr(v1, v2)
= ∆(τr)(g, v

g
1, v

g
2) − ∆(τr)(v1, g, v

g
2) + ∆(τr)(v1, v2, g) = 0. �

Proof of Proposition 6.2. If (t,g)Er(U, f•, W) = Er(U′, f ′• , W ′), then gU = U′ and
gW = W ′. So we assume that g ∈ P is fixed, and consider which t ∈ Mr satisfy
(t,g)Er(U, f•,W) = Er(gU, f ′• ,

gW) and which isomorphisms arise in this way.
The map F : W × U → gW × gU, given by j f

r , then conjugation by (t, g) and then
( j f ′

r )−1 must have the form F(w, u) = (gw − π(gu), gu) for some π ∈ Z1(gU, gW). So we
consider g, π to be fixed and ask for which values of r there is t + pr+1T ∈ Mr realizing
this F. The condition on t, i can be phrased as

(t, g)(prw − fr(u), u) = (pr · gw − prπ(gu) − f ′r (gu), gu)(t, g).

Equality in gU is immediate. We are left with the condition in Mr given by

t + pr · gw − g( fr(u)) + τr(g, u) = pr(gw − π(gu)) − f ′r (gu) + (gu)t + τr(gu, g).

So, with χr as in Lemma 6.4,

prπ(gu) = (g f )(gu) − τr(g, u) + τr(gu, g) − f ′r (gu) + ∆(t)(gu)
= ( χr + ∆(t))(gu).

That is, F is realizable for this r if and only if

prπ − χr ∈ B1(gU,Mr). (6.1)

Since π takes values in gW = gW̄/pT , a necessary condition for any such F to be
realizable is that

χr + pr · gW̄ ∈ B1(gU,T/pr · gW̄). (6.2)

Since χ• ∈ Z
1
r0

(gU, M•) has level at most 2m and r0 ≥ 2m + m, we deduce, from
Lemma 2.16, that (6.2) is either satisfied for all r0 or for none.

If (6.2) is satisfied, then we apply Lemma 5.2 with G = gU, α• = χ• and L = gW̄, and
hence L/N = gW. Note that χ• has level at most 2m ≤ r0 − m. We conclude that there
are c ∈ Z1(gU, gW), κ ∈ C0(gU, T ) and λ ∈ C0(gU, gW̄) with χ• = mul•(c) + ∆(pro•(κ +

p•−3mλ)). We also conclude that if we take π = c, then (6.1) is solvable for all r: that
is, this one map F : W ×U → gW × gU is independent of r. But all other maps for this
value of g correspond to a Mr-automorphism of U ×W followed by F, and we saw in
Lemma 6.3 that these isomorphisms are independent of r too. �
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Corollary 6.5. Suppose that e ≥ 3m and m ≥ 1. For elements (U, f•,W), (U′, f ′• ,W
′) ∈

E the following statements are equivalent:

(1) Er(U, f•,W) and Er(U′, f ′• ,W
′) are Gr+1-conjugate for some r; and

(2) Er(U, f•,W) and Er(U′, f ′• ,W
′) are Gr+1-conjugate for every r.

Proof. They are Gr+1-conjugate if and only if the set of isomorphisms in
Proposition 6.2 is nonempty. But this set does not depend on r. �

7. Wrapping up the main theorem

Lemma 7.1. Suppose r0 ≥ 2m. Let (U, f•,W) ∈ E. For each V ≤ W × U there is
(U′, f ′• ,W

′) ∈ E such that, for all r, j f
r (V) = Er(U′, f ′• ,W

′). Moreover, the map

κV : W ′ × U′
j f ′
r
−−→ Er(U′, f ′• ,W

′) ↪→ Er(U, f•,W)
( j f

r )−1

−−−−→ W × U

has image V and is independent of r.

Proof. Take W ′ = V ∩W and U′ = {u ∈ U | uW ∈ VW/W} ≤ U. Then V/W ′ � U′ and
W ′ is a direct factor of V , so there is c ∈ Z1(U′,W) with V = {(w − c(u), u) | w ∈ W ′,
u ∈ U′}. Then

j f
r (V) = {(pi+e−1w − pi+e−1c(u) − fr(u), u) | w ∈ W ′, u ∈ U′}.

In the terminology of Lemma 5.2, f ′• = f•|U′ + i1(c)•. In particular, κV (w, u) = (w −
c(u), u). �

Corollary 7.2. Suppose that r0 ≥ 3m and m ≥ 1. For elements (U, f•,W), (U′, f ′• ,W
′) ∈

E, the set of homomorphisms W × U → W ′ × U′ of the form

W × U
j f
r

−−−−−→ Er(U, f•,W)
morphism
−−−−−−−−→
in Ap(Gr+1)

Er(U′, f ′• ,W
′)

( j f ′
r )−1

−−−−−→ W ′ × U′

is independent of r.

Proof. Every such map is an isomorphism to some V ≤ W ′ × U′. From Lemma 7.1,
for some (U′′, f ′′• ,W

′′), j f ′
r (V) = Er(U′′, f ′′• ,W

′′) for all r. From Proposition 6.2, the
set IV of isomorphisms of the form

W × U
j f
r

−−−−−→ Er(U, f•,W)
conjugation
−−−−−−−−→

in Gr+1

Er(U′′, f ′′• ,W
′′)

( j f ′′
r )−1

−−−−−→ W ′′ × U′′

is independent of r. But φ 7→ κV ◦ φ is a bijection fromIV to the set of homomorphisms
of the form

W × U
j f
r

−−−−−→ Er(U, f•,W)
morphism
−−−−−−−−→
in Ap(Gr+1)

Er(U′, f ′• ,W
′)

( j f ′
r )−1

−−−−−→ W ′ × U′

whose image is V . �
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Proposition 7.3. Suppose e ≥ 3m and m ≥ 1. Choose a subset E0 ⊆ E such that, for
every conjugacy class C of elementary abelian subgroups in Gr0+1, there is exactly
one (U, f•,W) ∈ E0 such that Er0 (U, f•,W) lies in C. Define Cr to be the full
subcategory of the Quillen category Ap(Gr+1) on the Er(U, f•,W) with (U, f•,W) in
E0. Then:

(1) Cr is a skeleton of Ap(Gr+1) for every r ≥ r0; and
(2) the categories Cr are all isomorphic to each other.

Hence the Quillen categories Ap(Gr+1) are all equivalent to each other.

Proof. E0 exists, by Lemma 4.6.
(1) We need to show that each conjugacy class C in Gr+1 contains Er(U, f•,W) for

precisely one (U, f•,W) ∈ E0. From Corollary 6.5, there is, at most, one such triple.
From Lemma 4.6, there is some (U′, f ′• ,W

′) ∈ E such that Er(U′, f ′• ,W
′) lies in C. By

construction of E0, there is (U, f•,W) ∈ E0 such that E0(U, f•,W), E0(U′, f ′• ,W
′) are

G0-conjugate. So Er(U, f•,W) lies in C, by Corollary 6.5.
(2) For r, r′ ≥ r0 and (U, f•,W) ∈ E0 have isomorphism

λ
f
rr′ : Er(U, f•,W)

( j f
r )−1

−−−−→ W × U
j f
r′
−−→ Er′(U, f•,W),

with λ f
r′r = (λ f

rr′)
−1. For a morphism Er(U, f•,W)

φ
−→ Er(U′, f ′• ,W

′) in Cr, define F(φ)
in Cr′ by

F(φ) : Er′(U, f•,W)
λ

f
r′r
−−→ Er(U, f•,W)

φ
−→ Er(U′, f ′• ,W

′)
λ

f ′

rr′
−−→ Er′(U′, f ′• ,W

′).

This is a bijection

Cr(Er(U, f•,W), Er(U′, f ′• ,W
′))→ Cr′(Er′(U, f•,W), Er′(U′, f ′• ,W

′)),

by Corollary 7.2, and it is functorial since F(IdW×Ur( f )) = λ
f
rr′ Idλ

f
r′r = IdW×Ur′ ( f ). Also,

for Er(U′, f ′• ,W
′)

ψ
−→ Er(U′′, f ′′• ,W

′′) in Cr,

F(ψ)F(φ) = λ
f ′′

rr′ψλ
f ′

r′r ◦ λ
f ′

ir′φλ
f
r′r = λ

f ′′

rr′ψφλ
f
r′r = F(ψφ).

This establishes (2). The last part follows from (1) and (2). �

8. Examples

8.1. Main line maximal class groups. If p is an odd prime, then G(p, 1) consists
of one infinite tree, together with the isolated point Cp2 : so there is only one uniserial
p-adic space group of coclass one. We recall the construction of the main line groups
from [13, Example 3.1.5(ii)].
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The pth local cyclotomic number field is K = Qp(θ), where θ has minimal
polynomial Φp(X) = (Xp − 1)/(X − 1). The ring of integers in K is O = Zp[θ],
which is a free Zp-module of rank p − 1 with basis 1, θ, . . . , θp−2. The coclass one
uniserial p-adic space group is then G := O o Cp, where the generator τ of Cp acts as
multiplication by θ: that is, τv = θv for v ∈ O.

The valuation ring O has unique maximal ideal αO, where α = θ − 1. So γi(G) =

αi−1O for i ≥ 2; and, by considering Φp(X + 1), one observes that pO = αp−1O.
Since 1, α, . . . , αp−2 is a Zp-basis of O, this means that O/αO � Fp, and hence
γi(G)/γi+1(G) � Cp for i ≥ 2.

The main line groups are the quotients Gi = G/γi(G). These main line groups
fall into p − 1 coclass families, where, for 0 ≤ r ≤ p − 2, the ith group in the rth family
is Gr+(p−1)i. From [8] (see, also, Proposition 7.3), we know that all groups in one
coclass family have equivalent Quillen categories. But here a stronger result holds: all
p − 1 coclass families have the same equivalence class of Quillen categories.

Lemma 8.1. For this group G = O oCp, the Quillen category of G/γi(G) is independent
(up to equivalence of categories) of i for i ≥ p + 1.

Remark 8.2. For p = 3, the first author and King [9] have shown that G/γ5(G),
G/γ6(G) and G/γ7(G) have isomorphic cohomology rings, and that these differ from
the cohomology ring of G/γ4(G) � 31+2

+ .

Proof. If v ∈ O, then (vτ)p = (Φp−1(θ) · v)τp = 1, and so vτ has order p. Since
pO = αp−1O, there are two kinds of order p elements of G/γi(G):

• elements of the form vτrγi(G), with v ∈ O and 1 ≤ r ≤ p − 1; and
• elements of γi−p+1(G)/γi(G) � (Cp)p−1.

Moreover, the conjugacy class of vτ in G is {wτ | w ∈ v + αO}, and the centralizer
of vτγi(G) in G/γi(G) is elementary abelian of rank two, generated by vτγi(G) and
γi−1(G)/γi(G). So, as τ acts on γi−p+1(G)/γi(G) = αi−pO/αi−1O as multiplication by
1 + α, the objects of the Quillen category form the following equivalence classes:

• the class of 〈v jτγi(G), γi−1(G)/γi(G)〉 � C2
p for some fixed transversal v1, . . . , vp

of O/αO;
• the class of 〈v jτγi(G)〉 � Cp for the same transversal v1, . . . , vp; and
• the conjugacy classes of subgroups of γi−p+1(G)/γi(G) � O/αp−1O � Cp−1

p under
the action of Cp, given by multiplication by 1 + α.

So the equivalence classes of objects admit a description which is independent
of i. From this description and the fact that 〈v jτγi(G), γi−1(G)/γi(G)〉 has normalizer
〈v jτγi(G), γi−2(G)/γi(G)〉, it follows that the morphisms between these representatives
also admit a description which is independent of i. �
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As p ∈ αO, we may always take the transversal v1, . . . , vp to be 0, 1, . . . , p − 1. For
p = 3 and i = 4, the Quillen category has skeleton

1

〈α2〉 〈0τ〉 〈1τ〉 〈2τ〉

〈α2, α3〉 〈0τ, α3〉 〈1τ, α3〉 〈2τ, α3〉

〈α3〉

where the three automorphisms of each rank two elementary abelian are omitted, for
clarity. Specifically, the three maps 〈2τ〉 → 〈2τ, α3〉 are 2τ 7→ (2 + λα3)τ for λ = 0,1,2,
and three automorphisms of 〈2τ, α3〉 fix α3 and act on 2τ as one of these three maps.

8.2. A more substantial example. Together with Leedham-Green, Newman and
O’Brien, the first author studied the 3-groups of coclass two in [11]. In particular,
they construct the skeleton groups in the four coclass trees (out of sixteen) whose
branches have unbounded depth. Here we consider the skeleton groups in one of these
unbounded depth trees: that is, the tree associated to the pro-3-group, which they
denote as R (see their Theorem 4.2(a)).

We briefly recall the construction of the skeleton groups R j−3,γ,m from [11,
Section 5]. Let j ≥ 7. Let K = Q3(θ) be the ninth local cyclotomic number field, so θ
is a root of Φ9(X) = X6 + X3 + 1. Let O be the ring of integers in K; then O = Z3[θ] is
free as a Z3-module, with basis 1, θ, . . . , θ5. Moreover, O is a local ring, with maximal
ideal p = (θ − 1)O. Observing that (θ − 1)6 and 3 are associates, one sees that 3O = p6.

We now recall the twisting map p ∧ p→ O, which we shall denote by γ0. Note,
however, that, in [11], it is called ϑ. It is the map

γ0(x ∧ y) = σ2(x)σ−1(y) − σ−1(x)σ2(y),

where the automorphism σr ∈ Gal(K/Q3) is given by σr(θ) = θr. Lemma 5.1 of [11]
shows that

γ0(pi ∧ p j) = pi+ j+ε for ε =

3 i ≡ j mod 3,
2 otherwise.

Pick j ≥ 7 and set T = p j−3, T` = p j−3+`. Then γ0(T ∧ T ) = T j, and γ0(T j ∧ T ) = Tk
for

k =

2 j 3 | j,
2 j − 1 3 - j.

Now pick a unit c ∈ O× and set γ = cγ0. For any m ∈ { j, j + 1, . . . , k}, one defines
T j−3,γ,m to be the group with underlying set T/Tm and product

(x + Tm) ∗ (y + Tm) = (x + y + 1
2γ(x ∧ y)) + Tm.
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Finally, one sets R j−3,γ,m = T j−3,γ,m o C, where C = 〈τ〉 has order nine and acts on T
via τv = θv for v ∈ T . Note that |R j−3,γ,m| = 3m+2.

Lemma 8.3. Let v,w ∈ T.

(1) (v + Tm)r = rv + Tm in T j−3,γ,m for all r ∈ Z.
(2) The order three elements of R j−3,γ,m are:

• elements of the form (v + Tm)τ3r, with v ∈ T and r ∈ {1, 2}; and
• elements of the form v + Tm with v ∈ Tm−6.

(3) If v + Tm has order three, then γ(v ∧ w) ∈ Tm for all w ∈ T. Hence Ω1(T j−3,γ,m) ≤
Z(T j−3,γ,m).

Proof. (1) This follows by induction, since γ(v ∧ rv) = rγ(v ∧ v) = 0.
(2) Firstly, [(v + Tm)τ3]3 = (1 + θ3 + θ6)v + Tm = 0. Secondly, (v + Tm)3 = 3v + Tm.

This is zero for v ∈ 3−1Tm = Tm−6.
(3) Suppose that v ∈ Tm−6 and w ∈ T . Then γ(v ∧ w) lies in T j+m−9+ε, with ε ∈ {2, 3}.

Since ε ≥ 2 and j ≥ 7, this means that γ(v ∧ w) lies in Tm. �

Lemma 8.4.

(1) The orbit of (v + Tm)τ3 under conjugation by T j−3,γ,m is

{(v′ + Tm)τ3 | v ∈ v + T3}.

(2) (v + Tm)τ3 and (w + Tm)τ3 are conjugate in R j−3,γ,m if and only if v + T3 and
w + T3 lie in the same orbit under the action of C on T/T3.

(3) The action of R j−3,γ,m on Tm−6/Tm factors through C and coincides with the
action of C on T/T6 via the isomorphism v + T6 7→ (θ − 1)m−6v + Tm.

(4) CT j−3,γ,m ((v + Tm)τ3) = Tm−3/Tm.

Proof. (1) Since Tm and the image of γ lie in T j ⊆ T7,

(w+Tm)[(v + Tm)τ3] = [(w + Tm) ∗ (v + Tm) ∗ (−θ3w + Tm)]τ3

∈ (v + (1 − θ3)w + T7)τ3.

Since p = (θ − 1)O and 3O = p6, it follows that (1 − θ3)T = (1 − θ)3T = p3T = T3.
So, for each v′ ∈ v + T3, we find w ∈ T with (w+Tm)[(v + Tm)τ3] = (v′′ + Tm)τ3 and

v′′ ∈ v′ + T7. If we now adjust w by adding u ∈ Tr, then, since γ(T ∧ Tr) = T j+r−3+ε ⊆

Tr+6, we alter v′ by an element of (1 − θ3)u + Tr+6. So if the error v′′ − v′ lies in Ts+3,
then, with one correction, we can reduce to an error in Ts+6. Iterating reduces the error
to an element of Tm.

(2) This follows from (1).
(3) The action factors, by Lemma 8.3(3). The second statement follows, since C

acts as multiplication by θ.
(4) This follows from (3), since T3/T6 is the subspace of T/T6 consisting of

elements fixed by τ3. �
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Let d be the number of orbits for the action of C on T/T3. One easily verifies that
d = 11. Pick v1, . . . , vd ∈ T such that the vi + T3 form a set of orbit representatives for
this action.

Lemma 8.5. Every maximal elementary abelian subgroup of R j−3,γ,m is conjugate to
precisely one of the following:

(1) d rank four groups of the form Vi = 〈(vi + Tm)τ3〉 × Tm−3/Tm; or
(2) V0 = Tm−6/Tm of rank six.

If U ≤ Vi is not contained in V0, then it is not conjugate to a subgroup of any other V j.

Proof. Any elementary abelian outside Tm−6/Tm must contain some element of the
form (v + Tm)τ3 and is therefore contained in 〈(v + Tm)τ3〉 × CT j−3,γ,m ((v + Tm)τ3): that
is, 〈(v + Tm)τ3〉 × Tm−3/Tm. Since m ≥ j ≥ 7 and, therefore, m − 3 ≥ 3, no two of the
rank four elementary abelians in (1) are conjugate. This argument also demonstrates
the last part. �

Theorem 8.6. Up to equivalence of categories, the Quillen category of the skeleton
group R j−3,γ,m is independent of j, γ,m.

Proof. V0 is a normal subgroup, and Lemma 8.4(3) describes the conjugation action.
So, by the last part of Lemma 8.5, it suffices to show that if U ≤ Vi is not contained
in V0, then the set of homomorphisms U → Vi lying in the Quillen category is
independent of j, γ,m.

So U = 〈(v + Tm)τ3〉 × A for some A ≤ Tm−3/Tm and some v ∈ vi + Tm−3. Consider
conjugation by (u + Tm)τr. By Lemma 8.4, this can only send (v + Tm)τ3 to an element
of V if θrvi lies in vi + T3 and, if θrvi does lie there, then, by adjusting u, we may send
(v + Tm)τ3 to any element of the form (v′ + Tm)τ3 with v′ ∈ vi + Tm−3. Moreover, the
restriction to A of conjugation by (u + Tm)τr only depends on r. �

8.3. The generalized quaternion groups. Let G be a finite group, and k a field of
characteristic p. Write

H̄∗(G, k) = lim
E∈Ap(G)

H∗(E, k).

Quillen [16, Theorem 6.2] proved that the induced homomorphism

φG : H∗(G, k)→ H̄∗(G, k)

induces a homeomorphism between prime ideal spectra.
Our result shows that if Gr is a coclass family, then H̄∗(Gr, k) is independent of r.

However, this does not mean that the map φGr is an isomorphism for large r. The
(generalized) quaternion groups Q2n (n ≥ 3) provide a good example.

The quaternion groups form a coclass sequence. The mod-2 cohomology ring
H∗(Q2n ,F2) is well known

H∗(Q8,F2) � F2[x, y, z]/(x2 + xy + y2, x2y + xy2)

H∗(Q2n ,F2) � F2[x, y, z]/(x2 + xy, y3) (n ≥ 4),
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with x, y ∈ H1 and z ∈ H4. To our knowledge, the earliest references are [4, pages 253–
254] for the additive structure and [15, page 244] for the ring structure. By 1987,
Rusin [17, page 316] could quote the result without needing to give a reference.

Since H1(G, F2) = Hom(G, F2) and all order two elements lie in the Frattini
subgroup, it follows that x, y ∈ ker(φQ2n ). In fact, H̄∗(Q2n , F2) � F2[z], since z restricts
to the central C2 as t4 ∈ H∗(C2, F2) � F2[t] (see Rusin’s construction of z as a top
Stiefel–Whitney class [17, page 316]). So both H∗(Q2n , F2) and H̄∗(Q2n , F2) are
constant for n ≥ 4, but φQ2n is never injective.

In fact, one can demonstrate that φQ2n is never injective without even knowing the
cohomology of Q2n . Recall that a class x ∈ Hn(G, k) is called essential if its restriction
to every proper subgroup H <G vanishes: so if G is not elementary abelian, then every
essential class lies in the kernel of φG. Now, Adem and Karagueuzian showed [1] that
H∗(G, Fp) is Cohen–Macaulay and has nonzero essential elements if and only if G is
a p-group and all order p elements are central. As Q2n satisfies this group-theoretic
condition, it follows that ker(φQ2n ) , 0.
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